Problem Let $x, y \in \mathbb{R}$. Prove that if $y^3 + yx^2 \leq x^3 + xy^2$ then $y \leq x$.

Solution We want to prove a conditional statement. The equivalent to this statement is its contrapositive:

if
$$y > x$$
, then $y^3 + yx^2 > x^3 + xy^2$

y>x is our assumption. $y^3+yx^2>x^3+xy^2$ is the conclusion we want to reach.

We start with the assumption and multiply both sides by $(x^2 + y^2)$:

$$y > x / (x^2 + y^2)$$

$$y(x^2 + y^2) > x(x^2 + y^2)$$

$$yx^2 + y^3 > x^3 + xy^2$$

$$y^3 + yx^2 > x^3 + xy^2$$

Of course the crucial step is multiplying both sides by $(x^2 + y^2)$. Can we do this? We need to make sure of two things. First, that this expression is not less than 0 (otherwise we would need to reverse the inequality sign). Second, that it is not 0 (if it is, then the inequality may not be strict, i.e. it would become \geq instead of >). Think why in our example $x^2 + y^2$ is positive.