Converse, inverse, contrapositive

	nas			

3

In this presentation we will take a look at conditional statements of the form $p \rightarrow q$ and introduce the converse, the inverse and the contrapositive of such conditional statements.

Given a conditonal statement $p \rightarrow q$:

the **converse** of this statement is $q \rightarrow p$, the **inverse** of this statement is $\neg p \rightarrow \neg q$, the **contrapositive** of this statement is $\neg q \rightarrow \neg p$.

3

(日) (周) (三) (三)

If it rains, then 2 + 2 = 4.

This statement is of the form p
ightarrow q, where:

p it rains

q 2 + 2 = 4

3

イロン イヨン イヨン イヨン

If it rains, then 2 + 2 = 4.

This statement is of the form $p \rightarrow q$, where:

p it rains

q 2+2=4

- 32

The **converse** of this statement will be $q \rightarrow p$,

If 2 + 2 = 4, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

If $2 + 2 \neq 4$, then it doesn't rain.

Tomasz	

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If 2 + 2 = 4, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be: If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

If $2 + 2 \neq 4$, then it doesn't rain.

Tomasz Lechowsk	

(日) (同) (三) (三)

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If 2 + 2 = 4, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so that be

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be: If $2 + 2 \neq 4$, then it doesn't rain.

Tomasz Lechowski

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If 2 + 2 = 4, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be: If $2 + 2 \neq 4$, then it doesn't rain.

Tomasz		

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If 2 + 2 = 4, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$,

 $f 2 + 2 \neq 4$, then it doesn't rain

イロト 不得下 イヨト イヨト 二日

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If 2 + 2 = 4, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

If $2 + 2 \neq 4$, then it doesn't rain.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

If a number is divisible by 4, then it is divisible by 2.

This statement is of the form $\rho \rightarrow q$, where: ρ a number is divisible by 4 q a number is divisible by 2

If a number is divisible by 4, then it is divisible by 2.

This statement is of the form $p \rightarrow q$, where:

p a number is divisible by 4

q a number is divisible by 2

(日) (同) (三) (三)

The **converse** of this statement will be $q \rightarrow p$,

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be: If a number is not divisible by 2, then it is not divisible by 4.

Tomasz		

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be: If a number is not divisible by 2, then it is not divisible by 4.

(日) (同) (日) (日)

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$,

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be: If a number is not divisible by 2, then it is not divisible by 4.

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The contrapositive of this statement will be $\neg q \rightarrow \neg p$, so it will be: If a number is not divisible by 2, then it is not divisible by 4.

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$,

If a number is not divisible by 2, then it is not divisible by 4

イロト 不得下 イヨト イヨト 二日

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be: If a number is not divisible by 2, then it is not divisible by 4.

(日) (周) (三) (三)

Construct truth tables for the statement $p \rightarrow q$, its converse, its inverse and its contrapositive. Hence decide which pairs of statements are equivalent.

(日) (同) (三) (三)