Imię i nazwisko: Klasa: Grupa 2 Wynik:

Question 1 (1 pt)

 $\cos(510^\circ)$ is equal to:

A. $-\frac{\sqrt{3}}{2}$ B. $-\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{\sqrt{3}}{2}$

Question 2 (1 pt) If $\sin \alpha = \frac{2}{5}$ and α is an acute angle, then:

A. $\cos \alpha = \frac{\sqrt{21}}{5}$ B. $\cos \alpha = -\frac{\sqrt{21}}{5}$ C. $\operatorname{tg} \alpha = \frac{\sqrt{21}}{5}$ D. $\operatorname{tg} \alpha = -\frac{\sqrt{21}}{5}$

Question 3 (1 pt)

The value of tg $30^{\circ} \times \text{tg} 35^{\circ} \times \text{tg} 40^{\circ} \times \text{tg} 45^{\circ} \times \text{tg} 50^{\circ} \times \text{tg} 55^{\circ}$ is

A. 0 B.
$$\frac{\sqrt{3}}{3}$$
 C. 1 D. $\sqrt{3}$

Question 4 (1 pt)

If the value of $tg \alpha - ctg \alpha = 5$, then $tg^2 \alpha + ctg^2 \alpha$ is equal to:

A. 3 B. 23 C. 25 D. 27

Question 5 (1 pt)

In a triangle ABC, |AB| = 10, |AC| = 7 and $\cos \angle BAC = -\frac{1}{5}$. The length of BC is equal to:

A. 11 B. $\sqrt{149}$ C. 13 D. $\sqrt{177}$

Question 6 (3 pts)

Prove that if α is an acute angle, then:

$$\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} + \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{2}{\sin\alpha}$$

Question 7 (3 pts)

Given that α is acute and $\sin \alpha \times \cos \alpha = \frac{1}{4}$, find the value of $\sin^3 \alpha + \cos^3 \alpha$.

Question 8 (3 pts)

Prove that in an acute triangle with heights h_a and h_b and the angle γ , the area is given by the formula:

$$P = \frac{h_a \times h_b}{2\sin\gamma}$$

Question 9 (3 pts)

Given a triangle ABC with side-lengths: |AB| = 7, |AC| = 8 and |BC| = 5, find the size of the angle $\angle ACB$.

Question 10 (3 pts)

In an obtuse triangle ABC, |AB| = 4, $|AC| = 2\sqrt{6}$ and $\angle ACB = 45^{\circ}$. Find the size of the other two angles of the triangle.