MATHEMATICS – Higher Level (Core)

XAMPLE 2.22

	x + 2y = 10
Solve the simultaneous equations	3x + 2y - 4z = 18
	v + z = 3

0	We label the equations as follows; $x + 2y = 10$	-(1)
L	3x + 2y - 4z = 18	- (2)
u 1	y + z = 3	- (3)
	We eliminate x using equations (1) and (2):	
•	(2) $-3x(1)$: $-4y-4z = -12$	
n	\Leftrightarrow y + z = 3 - (4)

We are now left with equations (3) and (4). However, these two equations are identical.

To obtain the solution set to this problem we introduce a **parameter**, we let z be any arbitrary value, say z = k where k is some real number.

Then, substituting into equation (4), we have:

 $v + k = 3 \Rightarrow v = 3 - k$. $x + 2(3 - k) = 10 \Rightarrow x = 4 + 2k$. Next, we substitute into (1) so that

Therefore, the solution is given by, x = 4 + 2k, y = 3 - k, z = k.

Notice the nature of the solution, each of the variables is expressed as a linear function of k. This means that we have a situation where the three original planes meet along a straight line.

1. Solve the simultaneous equations

$$6x + 4y - z = 3 x + y + z = 2$$
(a)
$$x + 2y + 4z = -2 (b) 4x + y = 4$$

$$5x + 4y = 0 -x + 3y + 2z = 8$$

$$4x + 9y + 13z = 3 x - 2y - 3z = 3$$
(c)
$$-x + 3y + 24z = 17 (d) x + y - 2z = 7$$

$$2x + 6y + 14z = 6 2x - 3y - 2z = 0$$

$$x - y - z = 2 x - 2y = -1$$
(e)
$$3x + 3y - 7z = 7 (f) -x - y + 3z = 1$$

$$x + 2y - 3z = 3 y - z = 0$$

$$x + y + z = 1 -2x + y - 2z = 5$$
(g)
$$x - y + z = 3 (h) x + 4z = 1$$

$$4x + 2y + z = 6 x + y + 10z = 10$$