1.	Consider the function $f(x) = x^3 + \frac{48}{x}$, $x \neq 0$.		
	(a)	Calculate <i>f</i> (2).	(2)
	(b)	Sketch the graph of the function $y = f(x)$ for $-5 \le x \le 5$ and $-200 \le y \le 200$.	(4)
	(c)	Find $f'(x)$.	(3)
	(d)	Find <i>f</i> (2).	(2)
	(e)	Write down the coordinates of the local maximum point on the graph of f .	(2)
	(f)	Find the range of <i>f</i> .	(3)
	(g)	Find the gradient of the tangent to the graph of f at $x = 1$.	(2)
	Ther	the is a second point on the graph of f at which the tangent is parallel to the tangent at $x = 1$.	

(h) Find the *x*-coordinate of this point.

(2) (Total 20 marks) 2. The diagram shows a sketch of the function $f(x) = 4x^3 - 9x^2 - 12x + 3$.

		(3)	
(b)	Write down $f'(x)$.	(3)	
(c)	Find the value of the local maximum of $y = f(x)$.	(4)	
Let P be the point where the graph of $f(x)$ intersects the y-axis.			
(d)	Write down the coordinates of P.	(1)	

(e) Find the gradient of the curve at P. (2)

The line, *L*, is the tangent to the graph of f(x) at P.

(f) Find the equation of L in the form y = mx + c. (2)

There is a second point, Q, on the curve at which the tangent to f(x) is parallel to L.

- (g) Write down the gradient of the tangent at Q.
- (h) Calculate the *x*-coordinate of Q.

(3) (Total 19 marks)

(1)

3. Consider the function $f(x) = x^3 - 3x^2 - 24x + 30$.

(a)	Write down $f(0)$.	(1)
(b)	Find $f'(x)$.	(3)
(c)	Find the gradient of the graph of $f(x)$ at the point where $x = 1$.	(2)

The graph of f(x) has a local maximum point, M, and a local minimum point, N.

- (d) (i) Use f'(x) to find the *x*-coordinate of M and of N.
 - (ii) Hence or otherwise write down the coordinates of M and of N. (5)
- (e) Sketch the graph of f(x) for $-5 \le x \le 7$ and $-60 \le y \le 60$. Mark clearly M and N on your graph.

(4)

Lines L_1 and L_2 are parallel, and they are tangents to the graph of f(x) at points A and B respectively. L_1 has equation y = 21x + 111.

- (f) (i) Find the *x*-coordinate of A and of B.
 - (ii) Find the *y*-coordinate of B.

(6) (Total 21 marks)

4. Consider the function
$$f(x) = 3x + \frac{12}{x^2}, x \neq 0.$$

(a) Differentiate
$$f(x)$$
 with respect to x.

(3)

(2)

(2)

(3)

- (b) Calculate f'(x) when x = 1.
- (c) Use your answer to part (b) to decide whether the function, f, is increasing or decreasing at x = 1. Justify your answer.

(d) Solve the equation f'(x) = 0.

- (e) The graph of f has a local minimum at point P. Let T be the tangent to the graph of f at P.
 - (i) Write down the coordinates of P.
 - (ii) Write down the gradient of *T*.
 - (iii) Write down the equation of *T*.
- (f) Sketch the graph of the function *f*, for $-3 \le x \le 6$ and $-7 \le y \le 15$. Indicate clearly the point P and any intercepts of the curve with the axes.

(4)

(5)

- (g) (i) On your graph draw and label the tangent T.
 - (ii) T intersects the graph of f at a second point. Write down the *x*-coordinate of this point of intersection.

(3) (Total 22 marks)

(4)

(7)

- 5. A function is defined by $f(x) = \frac{5}{x^2} + 3x + c, x \neq 0, c \in \mathbb{Z}$.
 - (a) Write down an expression for f'(x).

Consider the graph of f. The graph of f passes through the point P(1, 4).

- (b) Find the value of c. (2)
- (c) There is a local minimum at the point Q.
 - (i) Find the coordinates of Q.
 - (ii) Find the set of values of *x* for which the function is decreasing.

Let T be the tangent to the graph of f at P.

(d)	(i)	Show that the gradient of T is -7 .	
	(ii)	Find the equation of <i>T</i> .	(4)

(e) *T* intersects the graph again at R. Use your graphic display calculator to find the coordinates of R.

(2) (Total 19 marks)

- 6. Consider the curve $y = x^3 + \frac{3}{2}x^2 6x 2$
 - (a) (i) Write down the value of *y* when *x* is 2.
 - (ii) Write down the coordinates of the point where the curve intercepts the *y*-axis.
 - (b) Sketch the curve for $-4 \le x \le 3$ and $-10 \le y \le 10$. Indicate clearly the information found in (a).

(c) Find
$$\frac{dy}{dx}$$
. (3)

- (d) Let L_1 be the tangent to the curve at x = 2. Let L_2 be a tangent to the curve, parallel to L_1 .
 - (i) Show that the gradient of L_1 is 12.
 - (ii) Find the x-coordinate of the point at which L_2 and the curve meet.
 - (iii) Sketch and label L_1 and L_2 on the diagram drawn in (b).

(3)

(4)

- (e) It is known that $\frac{dy}{dx} > 0$ for x < -2 and x > b where *b* is positive.
 - (i) Using your graphic display calculator, or otherwise, find the value of b.
 - (ii) Describe the behaviour of the curve in the interval -2 < x < b.
 - (iii) Write down the equation of the tangent to the curve at x = -2.

(5) (Total 23 marks)

- 7. The function g(x) is defined by $g(x) = \frac{1}{8}x^4 + \frac{9}{4}x^2 5x + 7, x \ge 0.$
 - (a) Find g(2).

Calculate g'(x).

(b)

- The graph of the function y = g(x) has a tangent T_1 at the point where x = 2.
- (c) (i) Show that the gradient of T_1 is 8.
 - (ii) Find the equation of T_1 . Write the equation in the form y = mx + c.

(5)

(2)

(2)

(3)

(d) The graph has another tangent T_2 at the point $\left(1, \frac{35}{8}\right)$. T_2 has zero gradient.

Write down the equation of T_2 .

- (e) (i) Sketch the graph of y = g(x) in the region $0 \le x \le 3, 0 \le y \le 22$.
 - (ii) Add the two tangents T_1 and T_2 to your sketch, in the correct positions.

(5) (Total 17 marks)

8.	Cons	ider the function $f(x) = \frac{3}{x^2} + x - 4$.	
	(a)	Calculate the value of $f(x)$ when $x = 1$.	(2)
	(b)	Differentiate $f(x)$.	(4)
	(c)	Find $f'(l)$.	(2)
	(d)	Explain what $f'(l)$ represents.	(2)
	(e)	Find the equation of the tangent to the curve $f(x)$ at the point where $x = 1$.	(3)
	(f)	Determine the <i>x</i> -coordinate of the point where the gradient of the curve is zero.	(3)
			(Total 16 marks)

9. (a) On the same graph sketch the curves $y = x^2$ and $y = 3 - \frac{1}{x}$ for values of x from 0 to 4 and values of y from 0 to 4. Show your scales on your axes. (4)

(b) Find the points of intersection of these two curves.

(c) (i) Find the gradient of the curve $y = 3 - \frac{1}{x}$ in terms of *x*.

(ii) Find the value of this gradient at the point (1, 2).

(4)

(4)

(d) Find the equation of the tangent to the curve
$$y = 3 - \frac{1}{x}$$
 at the point (1, 2).
(3)
(Total 15 marks)