1. Let $f(x) = 3(x+1)^2 - 12$.

(a)	Show that $f(x) = 3x^2 + 6x - 9$.	(2)
(b)	For the graph of f	
	(i) write down the coordinates of the vertex;	
	(ii) write down the equation of the axis of symmetry;	
	(iii) write down the <i>y</i> -intercept;	
	(iv) find both <i>x</i> -intercepts.	(8)
(c)	Hence sketch the graph of <i>f</i> .	(2)
(d)	Let $g(x) = x^2$. The graph of <i>f</i> may be obtained from the graph of <i>g</i> by the two transformations:	
	a stretch of scale factor t in the y-direction	
	followed by	
	a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$.	
	Find $\begin{pmatrix} p \\ q \end{pmatrix}$ and the value of <i>t</i> .	
		(3) (Total 15 marks)
Let f($(x) = 2x^2 + 4x - 6.$	

(a) Express
$$f(x)$$
 in the form $f(x) = 2(x - h)^2 + k$. (3)

(b) Write down the equation of the axis of symmetry of the graph of
$$f$$
. (1)

(c) Express
$$f(x)$$
 in the form $f(x) = 2(x-p)(x-q)$.

(2) (Total 6 marks)

2.

- 3. The quadratic function *f* is defined by $f(x) = 3x^2 12x + 11$.
 - (a) Write *f* in the form $f(x) = 3(x h)^2 k$. (3)
 - (b) The graph of *f* is translated 3 units in the positive *x*-direction and 5 units in the positive *y*-direction. Find the function *g* for the translated graph, giving your answer in the form $g(x) = 3(x-p)^2 + q$.

(2)

(1)

(2)

4. Let $f(x) = 2x^2 - 12x + 5$.

(a) Express
$$f(x)$$
 in the form $f(x) = 2(x-h)^2 - k$.
(3)

- (b) Write down the vertex of the graph of f.
- (c) Write down the equation of the axis of symmetry of the graph of *f*.
- (d) Find the *y*-intercept of the graph of *f*.
 - (e) The *x*-intercepts of *f* can be written as $\frac{p \pm \sqrt{q}}{r}$, where $p, q, r \in \mathbb{Z}$. Find the value of *p*, of *q*, and of *r*.

(7) (Total 15 marks)

- 5. Let $f(x) = a(x-4)^2 + 8$.
 - (a) Write down the coordinates of the vertex of the curve of f.
 - (b) Given that f(7) = -10, find the value of *a*.
 - (c) Hence find the *y*-intercept of the curve of *f*.

(Total 6 marks)

6. (a) Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x-c)^2 + d$.

The graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations

a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units.

- (b) Write down the value of
 - (i) *k*;
 - (ii) *p*;
 - (iii) q.

(Total 6 marks)

- 7. The function f is given by $f(x) = x^2 6x + 13$, for $x \ge 3$.
 - (a) Write f(x) in the form $(x-a)^2 + b$.
 - (b) Find the inverse function f^{-1} .
 - (c) State the domain of f^{-1} .

Working:

Answers:
(a)
(b)
(c)
 (Total 6 marks)

8. The diagram shows part of the graph of $y = a (x - h)^2 + k$. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

- (a) Write down the value of
 - (i) *h*;
 - (ii) *k*.
- (b) Calculate the value of *a*.

- 9. Consider the function $f(x) = 2x^2 8x + 5$.
 - (a) Express f(x) in the form $a(x-p)^2 + q$, where $a, p, q \in \mathbb{Z}$.
 - (b) Find the minimum value of f(x).

Working:	
	Answers:
	(a)
	(b)
	(Total 6 marks)

10. The diagram shows parts of the graphs of $y = x^2$ and $y = 5 - 3(x - 4)^2$.

The graph of $y = x^2$ may be transformed into the graph of $y = 5 - 3(x - 4)^2$ by these transformations.

A reflection in the line $y = 0$	followed by
a vertical stretch with scale factor k	followed by
a horizontal translation of <i>p</i> units	followed by
a vertical translation of q units.	

Write down the value of

- (a) *k*;
- (b) *p*;
- (c) q.

- 11. (a) Express $f(x) = x^2 6x + 14$ in the form $f(x) = (x h)^2 + k$, where h and k are to be determined.
 - (b) Hence, or otherwise, write down the coordinates of the vertex of the parabola with equation $y x^2 6x + 14$.

Working:	
	Answers.
	(a)
	(b)
	(Total 4 marks

12. The diagram shows the parabola y = (7 - x)(1 + x). The points A and C are the x-intercepts and the point B is the maximum point.

Find the coordinates of *A*, *B* and *C*.

Working:	
	Answer:

(Total 4 marks)