1. Find all values of x that satisfy the inequality $\frac{2x}{|x-1|} < 1$.

(Total 5 marks)

2. Consider the functions given below.

$$f(x) = 2x + 3$$
$$g(x) = \frac{1}{x}, x \neq 0$$

- (a) (i) Find $(g \circ f)(x)$ and write down the domain of the function.
 - (ii) Find $(f \circ g)(x)$ and write down the domain of the function.

(b) Find the coordinates of the point where the graph of y = f(x) and the graph of $y = (g^{-1} \circ f \circ g)(x)$ intersect.

(4) (Total 6 marks)

(2)

- 3. Use mathematical induction to prove that $5^n + 9^n + 2$ is divisible by 4, for $n \in \mathbb{Z}^+$. (Total 9 marks)
- 4. The quadratic function $f(x) = p + qx x^2$ has a maximum value of 5 when x = 3.

Determine the equation of the new graph.

(a) Find the value of p and the value of q. (4)
(b) The graph of f(x) is translated 3 units in the positive direction parallel to the x-axis.

(2) (Total 6 marks) 5. Solve the equation $\log_3(x + 17) - 2 = \log_3 2x$.

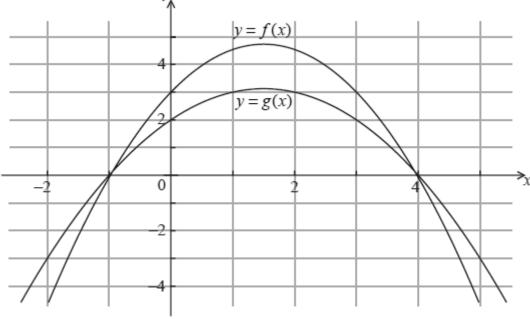
2

(1)

(Total 6 marks)

6. Shown below are the graphs of y = f(x) and y = g(x).

v


- y = f(x)y = g(x)0 1 2
- If $(f \circ g)(x) = 3$, find all possible values of *x*.

(Total 4 marks)

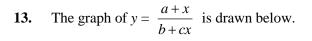
(Total 5 marks)

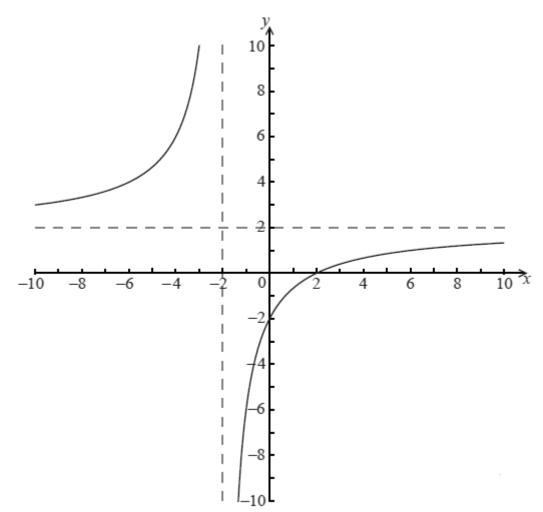
- 7. When $\left(1+\frac{x}{2}\right)^n$, $n \in \mathbb{N}$, is expanded in ascending powers of x, the coefficient of x^3 is 70.
 - Find the value of *n*. (a) (5)
 - Hence, find the coefficient of x^2 . (b)

- Solve the equation $2^{2x+2} 10 \times 2^x + 4 = 0, x \in \mathbb{R}$. 8.

9. Let
$$f(x) = \frac{x+4}{x+1}$$
, $x \neq -1$ and $g(x) = \frac{x-2}{x-4}$, $x \neq 4$. Find the set of values of x such that f
(x) $\leq g(x)$. (Total 6 marks)

10. Solve the equation
$$4^{x-1} = 2^x + 8$$
.

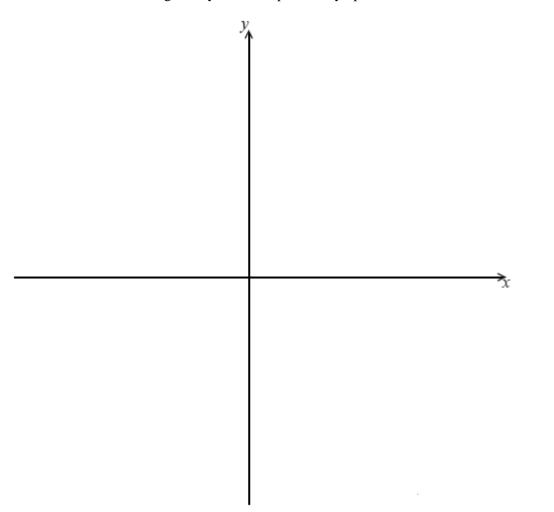

(Total 5 marks)


11. Let $g(x) = \log_5 |2\log_3 x|$. Find the product of the zeros of *g*.

(Total 5 marks)

12. Expand and simplify $\left(x^2 - \frac{2}{x}\right)^4$.

(Total 4 marks)



(a) Find the value of *a*, the value of *b* and the value of *c*.

(4)

(b) Using the values of *a*, *b* and *c* found in part (a), sketch the graph of $y = \left| \frac{b + cx}{a + x} \right|$ on the axes below, showing clearly all intercepts and asymptotes.

14. (a) Write down the quadratic expression $2x^2 + x - 3$ as the product of two linear factors.

(1)

(4)

(b) Hence, or otherwise, find the coefficient of x in the expansion of $(2x^2 + x - 3)^8$.

(Total 5 marks)

15. Find the set of values of x for which |x-1| > |2x-1|.

(Total 4 marks)

16. Prove by mathematical induction that, for $n \in \mathbb{Z}^+$,

$$1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \dots + n\left(\frac{1}{2}\right)^{n-1} = 4 - \frac{n+2}{2^{n-1}}.$$

(Total 8 marks)

17. A function *f* is defined by
$$f(x) = \frac{2x-3}{x-1}, x \neq 1$$
.

- (a) Find an expression for $f^{-1}(x)$.
- (b) Solve the equation $|f^{-1}(x)| = 1 + f^{-1}(x)$.

(3) (Total 6 marks)

(3)

18. (a) Express the quadratic
$$3x^2 - 6x + 5$$
 in the form $a(x+b)^2 + c$, where $a, b, c \in \mathbb{Z}$.
(3)

(b) Describe a sequence of transformations that transforms the graph of $y = x^2$ to the graph of $y = 3x^2 - 6x + 5$.

(3) (Total 6 marks)