1. The diagram shows part of the graph of $y = a (x - h)^2 + k$. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

- (a) Write down the value of
 - (i) *h*;
 - (ii) *k*.
- (b) Calculate the value of *a*.

Working:	
	Answars:
	Answers.
	(a) (i)
	(ii)
	(b)
	(Total 6 marks

- 2. Consider the function $f(x) = 2x^2 8x + 5$.
 - (a) Express f(x) in the form $a(x-p)^2 + q$, where $a, p, q \in \mathbb{Z}$.
 - (b) Find the minimum value of f(x).

Working:	
	Answers:
	(a)
	(b)
	(Total 6 mark

3. Let
$$f(x) = \frac{1}{x}, x \neq 0.$$

(a) Sketch the graph of f.

The graph of *f* is transformed to the graph of *g* by a translation of $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

- (b) Find an expression for g(x).
- (c) (i) Find the intercepts of g.
 - (ii) Write down the equations of the asymptotes of g.
 - (iii) Sketch the graph of g.

(10) (Total 14 marks)

(2)

(2)

4. Let f(x) = 2x + 1 and $g(x) = 3x^2 - 4$.

Find

- (a) $f^{-1}(x);$
- (b) $(g \circ f) (-2);$
- (c) $(f \circ g)(x)$.

Working:	
	Answers:
	(a)
	(b)
	(c)
	(Total 6 mark

- 5. Consider the functions f(x) = 2x and $g(x) = \frac{1}{x-3}$, $x \neq 3$.
 - (a) Calculate $(f \circ g)$ (4).
 - (b) Find $g^{-1}(x)$.
 - (c) Write down the domain of g^{-1} .

Working:	
	Answers:
	(a)
	(b)
	(c)

- 6. Consider the line *L* with equation y + 2x = 3. The line L_1 is parallel to *L* and passes through the point (6, -4).
 - (a) Find the gradient of L_1 .
 - (b) Find the equation of L_1 in the form y = mx + b.
 - (c) Find the *x*-coordinate of the point where line L_1 crosses the *x*-axis.

Working:	
	Answers:
	(a)
	(b)
	(c)
	(Total 6 marks)

7. (a) Expand $(x-2)^4$ and simplify your result.

(b) Find the term in x^3 in $(3x + 4)(x - 2)^4$.

(3) (Total 6 marks)

(3)

8. Determine the constant term in the expansion of $\left(x - \frac{2}{x^2}\right)^9$.

Working:	
	Answer:
L	(Total 4 marks

9. Find the coefficient of x^5 in the expansion of $(3x - 2)^8$.

Working:	
	Answer:
	(Total 4 mark

10. Find the coefficient of a^5b^7 in the expansion of $(a + b)^{12}$.

Working:	
	Answer:

(Total 4 marks)

11. Use the binomial theorem to complete this expansion.

 $(3x + 2y)^4 = 81x^4 + 216x^3y + \dots$

Working:	
0	
	Answer
	(Total 4 montra

12. Find the coefficient of x^3 in the expansion of $(2 - x)^5$.

Working:	
	Answer:

(Total 6 marks)

13. Complete the following expansion.

 $(2 + ax)^4 = 16 + 32ax + \dots$

Working:

Answer:

.....

14. Consider the expansion of $\left(3x^2 - \frac{1}{x}\right)^9$.

- (a) How many terms are there in this expansion?
- (b) Find the constant term in this expansion.

Working:	
	Answers:
	(a)
	(b)
	(Total 6 marks

IB Questionbank Maths SL

- **15.** Given that $(3 + \sqrt{7})^3 = p + q\sqrt{7}$ where p and q are integers, find
 - (a) *p*;
 - (b) *q*.

Working:	
	Answers:
	(a)
	(b)

16. Find the term containing x^3 in the expansion of $(2 - 3x)^8$.

Working:		
	Answer:	

17. Find the term in x^3 in the expansion of $\left(\frac{2}{3}x-3\right)^8$.

(Total 5 marks)

18. When the expression $(2 + ax)^{10}$ is expanded, the coefficient of the term in x^3 is 414 720. Find the value of *a*.

Working:	
	Answer
	11157761.
	(Total 6 marks

19. One of the terms of the expansion of $(x + 2y)^{10}$ is $ax^8 y^2$. Find the value of *a*.

(Total 6 marks)

- **20.** The fifth term in the expansion of the binomial $(a + b)^n$ is given by $\binom{10}{4} p^6 (2q)^4$.
 - (a) Write down the value of *n*.
 - (b) Write down a and b, in terms of p and/or q.

(2)

(1)

(c) Write down an expression for the sixth term in the expansion.

(3) (Total 6 marks)

- **21.** Consider the expansion of $(x^2 2)^5$.
 - (a) Write down the number of terms in this expansion.
 - (b) The first four terms of the expansion in descending powers of x are

$$x^{10} - 10x^8 + 40x^6 + Ax^4 + \dots$$

Find the value of *A*.

Working:	
	Answers:
	(a)
	(b)
	(Total 6 marks

22. Find the term in x^4 in the expansion of $\left(3x^2 - \frac{2}{x}\right)^5$.

- **23.** Consider the expansion of the expression $(x^3 3x)^6$.
 - (a) Write down the number of terms in this expansion.
 - (b) Find the term in x^{12} . (Total 6 marks)
- **24.** (a) Expand $(2 + x)^4$ and simplify your result.

(b) Hence, find the term in
$$x^2$$
 in $(2+x)^4 \left(1+\frac{1}{x^2}\right)$.

(3) (Total 6 marks)

(3)

25. Let
$$g(x) = 3x - 2$$
, $h(x) = \frac{5x}{x - 4}$, $x \neq 4$.

- (a) Find an expression for $(h \circ g)(x)$. Simplify your answer.
- (b) Solve the equation $(h \circ g)(x) = 0$.

26. Part of the graph of the function $y = d (x - m)^2 + p$ is given in the diagram below. The *x*-intercepts are (1, 0) and (5, 0). The vertex is V(*m*, 2).

27. Consider the expansion of $(x + 2)^{11}$.

(a)	Write down the number of terms in this expansion.	
		(1)

(b) Find the term containing x^2 .

(4) (Total 5 marks)

28. Let $f(x) = a (x - 4)^2 + 8$.

- (a) Write down the coordinates of the vertex of the curve of f.
- (b) Given that f(7) = -10, find the value of *a*.
- (c) Hence find the *y*-intercept of the curve of *f*.

29. The following diagram shows part of the graph of f(x).

Consider the five graphs in the diagrams labelled A, B, C, D, E below.

- (a) Which diagram is the graph of f(x+2)?
- (b) Which diagram is the graph of -f(x)?
- (c) Which diagram is the graph of f(-x)

30. Consider the function $f(x) = \frac{16}{x-10} + 8, x \neq 10$.

- (a) Write down the **equation** of
 - (i) the vertical asymptote;
 - (ii) the horizontal asymptote.

(2)

(4)

(b) Find the

- (i) y-intercept;
- (ii) *x*-intercept. (2)
- (c) Sketch the graph of f, clearly showing the above information.

(d) Let $g(x) = \frac{16}{x}, x \neq 0.$

The graph of g is transformed into the graph of f using two transformations.

The first is a translation with vector $\begin{pmatrix} 10\\ 0 \end{pmatrix}$. Give a full geometric description of the second transformation.

(2) (Total 10 marks)

- **31.** Consider two different quadratic functions of the form $f(x) = 4x^2 qx + 25$. The graph of each function has its vertex on the *x*-axis.
 - (a) Find both values of q.
 - (b) For the greater value of q, solve f(x) = 0.
 - (c) Find the coordinates of the point of intersection of the two graphs.

(Total 6 marks)

32. Let $f(x) = 2^x$, and $g(x) = \frac{x}{x-2}$, $(x \neq 2)$.

Find

- (a) $(g \circ f)(3);$
- (b) $g^{-1}(5)$.

Working:

working.	
	Answers:
	(a) (b)

(Total 6 marks)

- **33.** The function f is given by $f(x) = x^2 6x + 13$, for $x \ge 3$.
 - (a) Write f(x) in the form $(x-a)^2 + b$.
 - (b) Find the inverse function f^{-1} .
 - (c) State the domain of f^{-1} .

Working:	
	Answers:
	(a)
	(b)
	(c)
	(Total 6 marks

- 34. Let f(x) = 7 2x and g(x) = x + 3.
 - (a) Find $(g \circ f)(x)$.
 - (b) Write down $g^{-1}(x)$.
 - (c) Find $(f \circ g^{-1})(5)$.

(2) (Total 5 marks)

(2)

(1)

- **35.** The quadratic function *f* is defined by $f(x) = 3x^2 12x + 11$.
 - (a) Write f in the form $f(x) = 3(x-h)^2 k$.
 - (b) The graph of *f* is translated 3 units in the positive *x*-direction and 5 units in the positive *y*-direction. Find the function *g* for the translated graph, giving your answer in the form $g(x) = 3(x-p)^2 + q$.

(3) (Total 6 marks)

(3)

36. Part of the graph of a function *f* is shown in the diagram below.

(a) On the same diagram sketch the graph of y = -f(x).

(b) Let g(x) = f(x+3).

- (i) Find g(-3).
- (ii) Describe **fully** the transformation that maps the graph of f to the graph of g.

(4) (Total 6 marks)

(2)

- **37.** Find the **exact** value of *x* in each of the following equations.
 - (a) $5^{x+1} = 625$
 - (b) $\log_a (3x+5) = 2$

(Total 6 marks)

- **38.** Consider $f(x) = 2kx^2 4kx + 1$, for $k \neq 0$. The equation f(x) = 0 has two equal roots.
 - (a) Find the value of k. (5)
 - (b) The line y = p intersects the graph of *f*. Find all possible values of *p*.

(2) (Total 7 marks)

39. Let $f(x) = x^3 - 4$ and g(x) = 2x.

(a) Find
$$(g \circ f)$$
 (-2).

(b) Find $f^{-1}(x)$.

40. The following diagram shows part of the graph of *f*, where $f(x) = x^2 - x - 2$.

(a) Find both *x*-intercepts.

(b) Find the *x*-coordinate of the vertex.

(4)

(2) (Total 6 marks)

41. (a) Express
$$y = 2x^2 - 12x + 23$$
 in the form $y = 2(x - c)^2 + d$.

The graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations

- a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units.
- (b) Write down the value of
 - (i) *k*;
 - (ii) *p*;
 - (iii) q.

42. The following diagram shows part of the graph of a quadratic function *f*.

The x-intercepts are at (-4, 0) and (6, 0) and the y-intercept is at (0, 240).

- (a) Write down f(x) in the form f(x) = -10(x-p)(x-q). (2)
- (b) Find another expression for f(x) in the form $f(x) = -10(x h)^2 + k$. (4)
- (c) Show that f(x) can also be written in the form $f(x) = 240 + 20x 10x^2$. (2)

A particle moves along a straight line so that its velocity, $v \text{ m s}^{-1}$, at time *t* seconds is given by $v = 240 + 20t - 10t^2$, for $0 \le t \le 6$.

- (d) (i) Find the value of *t* when the speed of the particle is greatest.
 - (ii) Find the acceleration of the particle when its speed is zero.

(7) (Total 15 marks) 43. The diagram shows the parabola y = (7 - x)(1 + x). The points A and C are the x-intercepts and the point B is the maximum point.

Find the coordinates of *A*, *B* and *C*.

Working:		
	Answer:	
		(Total 4 marks)

- 44. Let $f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. The graph of g is the image of the graph of f after this translation.
 - (a) Write down the coordinates of the vertex of the graph of g.

(2)

(2)

(b) Express g in the form $g(x) = 3(x-p)^2 + q$.

The graph of *h* is the reflection of the graph of *g* in the *x*-axis.

(c) Write down the coordinates of the vertex of the graph of *h*.

45. The diagram shows the graph of the function $y = ax^2 + bx + c$.

Complete the table below to show whether each expression is positive, negative or zero.

Expression	positive	negative	zero
а			
С			
b^2-4ac			
b			

46. The following diagram shows part of the graph of $f(x) = 5 - x^2$ with vertex V (0, 5).

Its image y = g(x) after a translation with vector $\begin{pmatrix} h \\ k \end{pmatrix}$ has vertex T (3, 6).

- (a) Write down the value of
 - (i) *h*;
 - (ii) *k*.
- (b) Write down an expression for g(x).
- (c) On the same diagram, sketch the graph of y = g(-x).

(2) (Total 6 marks)

(2)

(2)

47. The quadratic equation $4x^2 + 4kx + 9 = 0$, k > 0 has exactly one solution for *x*. Find the value of *k*.

Working:	
	Answer:
	(Total 4 marks)

48. Let f(x) = 3x, g(x) = 2x - 5 and $h(x) = (f \circ g)(x)$.

(a) Find h(x).

(2)

(b) Find $h^{-1}(x)$.

(3) (Total 5 marks) **49.** The diagrams show how the graph of $y = x^2$ is transformed to the graph of y = f(x) in three steps.

For each diagram give the equation of the curve.

- The functions f and g are defined by $f: x \mapsto 3x, g: x \mapsto x+2$. 50.
 - (a) Find an expression for $(f \circ g)(x)$.

(b) Find
$$f^{-1}(18) + g^{-1}(18)$$
.

(4) (Total 6 marks)

(2)

51. Two functions f, g are defined as follows:

$$f: x \to 3x + 5$$
$$g: x \to 2(1 - x)$$

Find

- (a) $f^{-1}(2);$
- (b) $(g \circ f)(-4)$.

Workin

Working:	
	Answers:
	(a)
	(b)
	(Total 4 marks)

IB Questionbank Maths SL

52. Solve the following equations.

(a)
$$\log_x 49 = 2$$
 (3)

(b) $\log_2 8 = x$

- (c) $\log_{25} x = -\frac{1}{2}$ (3)
- (d) $\log_2 x + \log_2(x 7) = 3$ (5) (Total 13 marks)

53. Let
$$f(x) = 2x^2 - 12x + 5$$
.
(a) Express $f(x)$ in the form $f(x) = 2(x - h)^2 - k$.
(3)

(b) Write down the vertex of the graph of
$$f$$
. (2)

- (c) Write down the equation of the axis of symmetry of the graph of f. (1)
- (d) Find the *y*-intercept of the graph of *f*.

(e) The *x*-intercepts of *f* can be written as
$$\frac{p \pm \sqrt{q}}{r}$$
, where $p, q, r \in \mathbb{Z}$.
Find the value of *p*, of *q*, and of *r*.

(7) (Total 15 marks)

(2)

54. Let $f(x) = 8x - 2x^2$. Part of the graph of *f* is shown below.

- (a) Find the *x*-intercepts of the graph.
- (b) (i) Write down the equation of the axis of symmetry.
 - (ii) Find the *y*-coordinate of the vertex.

(3) (Total 7 marks)

(4)

55. Let
$$f(x) = 2x^2 + 4x - 6$$
.

- (a) Express f(x) in the form $f(x) = 2(x h)^2 + k$. (3)
- (b) Write down the equation of the axis of symmetry of the graph of *f*.
- (c) Express f(x) in the form f(x) = 2(x-p)(x-q).

(2) (Total 6 marks)

(1)

- 56. Consider $f(x) = \sqrt{x-5}$.
 - (a) Find
 - (i) *f*(11);
 - (ii) *f*(86);
 - (iii) f(5). (3)
 - (b) Find the values of x for which f is undefined.
 - (c) Let $g(x) = x^2$. Find $(g \circ f)(x)$.

(2) (Total 7 marks)

(2)

- 57. Let $f(x) = \log_3 \sqrt{x}$, for x > 0. (a) Show that $f^{-1}(x) = 3^{2x}$.
 - (2)
 - (b) Write down the range of f^{-1} . (1)

Let $g(x) = \log_3 x$, for x > 0.

(c) Find the value of $(f^{-1} \circ g)(2)$, giving your answer as an integer.

(4) (Total 7 marks)

IB Questionbank Maths SL

58. Let f(x) = p(x - q)(x - r). Part of the graph of *f* is shown below.

The graph passes through the points (-2, 0), (0, -4) and (4, 0).

- (a) Write down the value of q and of r.
- (b) Write down the **equation** of the axis of symmetry.
- (c) Find the value of *p*.

(3) (Total 6 marks)

(2)

(1)

- **59.** Let $f(x) = 3(x+1)^2 12$.
 - (a) Show that $f(x) = 3x^2 + 6x 9$.
 - (b) For the graph of f
 - (i) write down the coordinates of the vertex;
 - (ii) write down the **equation** of the axis of symmetry;
 - (iii) write down the *y*-intercept;
 - (iv) find both *x*-intercepts.
 - (c) **Hence** sketch the graph of f.
 - (d) Let $g(x) = x^2$. The graph of f may be obtained from the graph of g by the two transformations:

a stretch of scale factor t in the y-direction

followed by

a translation of
$$\begin{pmatrix} p \\ q \end{pmatrix}$$
.

Find $\begin{pmatrix} p \\ q \end{pmatrix}$ and the value of *t*.

(3) (Total 15 marks)

(2)

(8)

(2)

- 60. (a) Express $f(x) = x^2 6x + 14$ in the form $f(x) = (x h)^2 + k$, where h and k are to be determined.
 - (b) Hence, or otherwise, write down the coordinates of the vertex of the parabola with equation $y x^2 6x + 14$.

Working:	
	Anowaro
	Answers.
	(a)
	(b)
	(Total 4 marks

- **61.** Consider the function $f: x \mapsto \sqrt{x+1}, x \ge -1$
 - (a) Determine the inverse function f^{-1} .
 - (b) What is the domain of f^{-1} ?

Working:	
	Answers:
	(a)
	(b)
	(Total 4 marks

(Total 7 marks)

(3)

(2)

63. Let
$$f(x) = x^2 + 4$$
 and $g(x) = x - 1$.

(a) Find
$$(f \circ g)(x)$$
. (2)

The vector
$$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 translates the graph of $(f \circ g)$ to the graph of *h*.

(b) Find the coordinates of the vertex of the graph of *h*.

(c) Show that
$$h(x) = x^2 - 8x + 19$$
.

(d) The line y = 2x - 6 is a tangent to the graph of *h* at the point P. Find the *x*-coordinate of P. (5) (Total 12 marks)

64. The quadratic equation $kx^2 + (k-3)x + 1 = 0$ has two equal real roots.

- (a) Find the possible values of k. (5)
- (b) Write down the values of k for which $x^2 + (k-3)x + k = 0$ has two equal real roots.

(2) (Total 7 marks)

- 65. Let $f(x) = x^2$ and g(x) = 2x 3.
 - (a) Find $g^{-1}(x)$.
 - (b) Find $(f \circ g)(4)$.

(3) (Total 5 marks)

(2)

- 66. Let $f(x) = x^2$ and $g(x) = 2(x-1)^2$.
 - (a) The graph of g can be obtained from the graph of f using two transformations. Give a full geometric description of each of the two transformations.

(2)

(b) The graph of g is translated by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ to give the graph of h.

The point (-1, 1) on the graph of *f* is translated to the point P on the graph of *h*. Find the coordinates of P.

(4) (Total 6 marks)

67. Solve the equation $\log_9 81 + \log_9 \frac{1}{9} + \log_9 3 = \log_9 x$.

Working:
Answer: