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CHAPTER OBJECTIVES:

1.5  Complex numbers: the number i = 1 ; the terms real part, imaginary 

part, conjugate, modulus and argument; cartesian form z = a + ib; 

sums, products and quotients of complex numbers

1.6  The complex plane

1.7 Powers of complex numbers; nth roots of a complex number

1.8 Conjugate roots of polynomial equations with real coef cients

1.9  Solutions of systems of linear equations (a maximum of three equations in 

three unknowns), including cases where there is a unique solution, an in nity of 

solutions or no solution

2.5  Polynomial functions and their graphs; the factor and remainder theorems; 

the fundamental theorem of algebra

2.6 Solving quadratic equations using the quadratic formula;

use of the discriminant Δ = b2 – 4ac to determine the nature of the roots; 

solving polynomial equations both graphically and algebraically; sum 

and product of the roots of polynomial equations

2.7  Solutions of g (x) ≥ f (x): graphical or algebraic methods, for simple 

polynomials up to degree 3; use of technology for these and other functions

3

You should know how to:

1 Solve quadratic equations by factorization.

 e.g.  x 2 – 3x – 4 = 0

⇒ (x – 4) (x + 1) = 0

⇒ x = 4 or x = –1

2 Find a linear combination of  two 

polynomials.

 e.g.  f (x) = x 2 – 3x + 1 and 

g (x) = x 3 + 7x – 3 

 5f (x) + 2g(x) =  5(x 2 – 3x + 1) + 2(x 3 + 7x – 3)

 = 2x 3 + 5x 2 – x – 1 

Skills check

1 Solve these quadratic equations:

a x 2 + 2x – 3 = 0 b x 2 – 11x + 10 = 0

c 2x 2 + x – 3 = 0

2 Given the polynomials f (x) = x 2 – 3x + 1, 

g (x) = 2x 3 – x 2 + 3x – 4 and 

h (x) = 3x 4 – 2x 2 – 5, fi nd:

a f (x) + g (x)

b 2h (x) – 4g (x) + 5f (x)

c
1

2
h (x) – 

2

5
g (x)

Before you start
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Important problems that challenged great minds

The Italian mathematician Leonardo of  Pisa, best known as Fibonacci, 

most important contribution to mathematics was spreading the use of  

the Hindu-Arabic numeral system throughout Europe. In the next 

centuries, fi rst in Italy, and then in other parts of  Europe, bursts of  

mathematical creativity lead to incredible developments and 

discoveries in mathematics and science in general.

Over the centuries generations of  mathematicians have helped the 

scientifi c community to achieve great insight into nature, moving us 

forward in our understanding of  the world and allowing the remarkable 

development of  science and technology. Throughout this history, 

scientifi c progress has always been related to revolutions in 

mathematical thought.

In this chapter we are going to take a close look at the evolution of  the 

most fundamental mathematical concept – the concept of  number. Using 

modern methods we are going to discover and explore the properties of  

a new set of  numbers. These are the set of  complex numbers.

.  Introduction to complex numbers

Solving quadratic equations using the 
quadratic formula

Zero is in many ways a mysterious number. Medieval mathematicians 

could not decide whether or not it really was a number! Nowadays, 

however, zero has high status in mathematics due to its algebraic 

properties. One is the zero factor property, that can be used to solve 

some polynomial equations.
Chapter 3 97



➔ Zero factor property: a  b = 0 ⇒ a = 0 or b = 0

A quadratic equation has the form, ax 2 + bx + c = 0, where a, b, c ∈ ,

and a ≠ 0. When one of the coeffi cients is zero there is a special case 

that you can solve without using the general quadratic formula. 

Special cases:

i b = 0, c ≠ 0 ⇒ ax 2 + c = 0

⇒ x 2 = – 
c

a

⇒ x = ±
c

a
⇒ x = – 

c

a
 or x = 

c

a

The solutions are real and opposite if – 
c

a

 > 0.

When 
c

a

 < 0 the solutions are not real.

ii b ≠ 0, c = 0 ⇒ ax 2 + bx = 0

⇒ x (ax + b) = 0

⇒ = = −x x
b

a
0 or

Factorize and apply the zero product 

property.

The solutions are always real and distinct and one is always zero.

iii b = 0, c = 0 ⇒ ax 2 = 0 

 ⇒ x 2 = 0

 ⇒ x = 0 or x = 0

This is the only case where there is only one (double) real solution – 

which is zero.

The method for fi nding a general formula for the solutions of a 

quadratic equation is called ‘completing the square’. This method 

can be used directly as in case i, or again by factorization.

Method I: Completing the square

ax 2 + bx + c = 0

⇒ + + =x x
b

a

c

a

2 0

Divide the equation by a.

⇒ + ⋅ ⋅ + = −⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟x x

b

a

c

a

b

a

b

a

2

2 2

2
2 2 2

Add 
b

a2

⎛
⎝
⎜

⎞
⎠
⎟

2

 to both sides in 

order to apply the formula 

(A ± B) 2 = A2 ± 2AB + B2

⇒ + = −⎛
⎝
⎜

⎞
⎠
⎟x

b

a

b

a

c

a2 4

2 2

2
Factorize and simplify.

If a function vanishes 

for a particular value 

of its argument, 

f  (x) = 0, then x is 

called a zero or root 

of f  (x).

See Chapter 14, 

section 2.2
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⇒ + = ±x
b

a

b ac

a2

4

4

2

2

⇒ = − ±x
b

a

b ac

a2

4

2

2

Take the square root of  both 

sides and simplify.

⇒ = − ± −
x

b b ac

a

2
4

2

⇒ = − − −
x

b b ac

a

2
4

2
 or x

b b ac

a
= − + −2

4

2

Method II: Completing the square and factorization

ax 2 + bx + c = 0

⇒ a 2x 2 + abx + ac = 0

Multiply the equation 

by a.

⇒ + ⋅ ⋅ + −( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟a a

b b b

perfect square

x x
2

2 2

2
2 2 2

  

++ =ac 0

⇒ + − =⎛
⎝
⎜

⎞
⎠
⎟a

b b ac
x

2

4

4

2 2

0

Add and subtract 

b

2

2

⎛
⎝
⎜

⎞
⎠
⎟  in order to apply 

the formula 

(A ± B)2

= A2 ± 2AB + B2 

⇒ + − =⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ax
b b ac

2

4

2

2 2
2

0

⇒ + − + + =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ax ax
b b ac b b ac

2

4

2 2

4

2

2 2

0

Apply A2 – B2

= (A – B) (A + B).

Apply the zero product 

property.

either ax
b b ac+ − =
2

4

2

2

0

⇒ = − +ax
b b ac

2

4

2

2

⇒ =
− + −

x
b b ac

a

2
4

2

Solve for x and 

simplify.

or ax
b b ac+ + =
2

4

2

2

0

⇒ = − −ax
b b ac

2

4

2

2

⇒ = − − −
x

b b ac

a

2
4

2

Solve for x and 

simplify.
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➔ You can use the quadratic formula x
b b ac

a
=

− ± −
2 4

2
  to fi nd 

the solutions or roots of  a quadratic equation.

Example 

Use the quadratic formula to solve these equations. Check your answers

with a GDC.

a 3x 2 + 11x + 6 = 0 

b 5x 2 − 9x − 3 = 0 

c 3px 2 + (p − 6)x − 2 = 0 

Answers

a 3 11 6 02

a b c

x x
  

+ + = ⇒ =
− ± − ⋅ ⋅

x
11 11 4 3 6

2 3

2

=
− ± −11 121 72

6

=
− ±11 49

6

=

⇒ = = − = = −

− ±

− − − +

11 7

6

11 7

6

11 7

6

2

3
3x xor

b 5 9 3 02

a b c

x x


 

− − =
⇒ =

− −( ) ± −( ) − ⋅ ⋅ −( )
x

9 9 4 5 3

2 5

2

=
± +9 81 60

10

=

⇒ = =

±

− +

9 141

10

9 141

10

9 141

10
x xor

The Babylonians 

(2000–1600 BCE) 

knew how to solve a 

quadratic equation 

by using a quadratic 

formula in a slightly 

different form from 

the one we use 

today. They were 

essentially using the 

standard formula in 

two different types of 

quadratic equation 

x2 + bx = c and 

x2 + bx = c, where b

and c were positive 

but not necessarily 

integers.

Why did the 

Babylonians need to 

consider two different 

types of quadratic 

equations? You may 

wish to explore their 

methods for solving 

these equations and 

their contributions 

to the progress of 

mathematics.

{ Continued on next page
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c 3 6 2 02p x p x
a b c
   

+ − − =( )

⇒ =
− −( ) ± −( ) − ⋅ ⋅ −( )

x
p p p

p

6 6 4 3 2

2 3

2

=
− −( ) ± − + +p p p p

p

6 12 36 24

6

2

=
− −( ) ± + +p p p

p

6 12 36

6

2

= =
− −( ) ± +( ) − −( ) ± +( )p p

p

p p

p

6 6

6

6 6

6

2

⇒ = = − = =
− + − − − + + +

x x
p p

p

p p

p p

6 6

6

1

3

6 6

6

2
or

Exercise 3A

1 Solve these quadratic equations, giving your answers in exact 

form.

a 2x 2 – 3x = 0 b 3x 2 – 75 = 0

c 5x 2 – 4x = 0 d 7 + 28x 2 = 0

e 242x 2 + 2x = 0 f 2 8 02x − =

g πx 2 – 11x = 0 h ex 2 3 0− =

2 Use the quadratic formula to solve these equations. Check your 

answers with a GDC.

a 2x 2 + 5x + 2 = 0 b 3x 2 – 10x + 3 = 0

c 5x 2 + 3x – 2 = 0  d 21x 2 + 5x – 6 = 0

e 9x 2 – 6x + 35 = 0 f 122x = 143x 2 + 24

3 Solve these equations and write the solutions in exact form. 

Check your answers with a GDC.

a x 2 + 4x + 2 = 0 b 5x 2 – 6x – 1 = 0

c 3x 2 – x – 3 = 0 d 2x 2 + 11x + 13 = 0

e 11x 2 =  23x – 7 f 29x = 5x2 – 41 

4 Solve for x:

a x 2 + px – 2p 2 = 0 b kx 2 + (k + 2) x + 2 = 0

c 2ax 2 + 6 = ax + 12x d x 2 – 2a 2 = b 2 – ax – 3ab

This problem cannot 

be solved by a GDC 

because it requires 

a Computer Algebra 

System.
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Discriminant of a quadratic equation

A quadratic equation can have:

● two real roots

● one repeated real root

● no real roots.

Example 

Solve these equations.

a 3x 2 + 5x − 2 = 0

b 4x 2 + 12x + 9 = 0

c 5x 2 + x + 4 = 0

Answers

a 3 5 2 02

2
5 5 4 3 2

2 3

5 25 24

6

5 49

6
x x x+ − = ⇒ = = =

− ± ( ) − ⋅ ⋅ −( ) − ± + − ±

⇒ = = − = =
− − − +

x x
5 7

6

5 7

6

1

3
2 or

b 4 12 9 02

2
12 12 4 4 9

2 4
x x x+ + = ⇒ =

± −( ) − ⋅ ⋅

= = =
− ± − − ±12 144 144

8

12 0

8

3

2

c 5 4 02
21 1 4 5 4

2 5

1 1 80

10
x x x+ + = ⇒ = =

− ± − ⋅ ⋅ − ± −

⇒ = ∉
− ± −

x
1 79

10


Investigation –  the general quadratic 
function

A general quadratic function can be written y = ax2 + bx + c, with 

a, b, c ∈, a ≠ 0. By using completing the square  nd the location of 

the minimum (a > 0) or maximum (a < 0) point on this curve. Hence, or 

otherwise,  nd the conditions on the coef cients a, b, c which determine 

how many solutions there are to the equation ax2 + bx + c = 0

The nature of  the roots in Example 2 depends on the expression 

under the square root, that is, b2 – 4ac. The expression Δ = b2 – 4ac is 

called the discriminant because it acts to discriminate between the 

three different types of  solutions.

The symbol used for 

the discriminant 

b2 − 4ac is the Greek 

letter Δ (delta).
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➔ i Δ = b 2 − 4ac > 0 

If  the discriminant is positive, you can add b ac2 4−  to –b 

and subtract  b ac2 4−  from –b. In this case, you obtain two 

different numbers so there are two distinct real roots

ii Δ = b 2 − 4ac = 0

If  the discriminant is equal to zero, adding zero to –b and 

subtracting zero from –b gives the same solution so there is 

one repeated real root

iii Δ = b 2 − 4ac < 0

If  the discriminant is less than zero, the expression under 

the square root is negative, and therefore the square root is 

not a real number. There are no real roots

Example 

Without solving the equations, determine the nature of  their roots.

a x 2 − x + 1 = 0

b 3x 2 + 30x − 75 = 0

c 5x 2 + 4x − 1 = 0

Answers

a x 2 − x + 1 = 0 ⇒

Δ = (−1)2 − 4 · 1 · 1 = 1 − 4 = −3 < 0

 No real roots. 

b 3x 2 + 30x + 75 = 0 ⇒

Δ = 302 − 4 · 3 · 75 = 900 − 900 = 0

 One real root.

c 5x 2 + 4x − 1 = 0 ⇒

Δ = 42 − 4 · 5 · (−1) = 16 + 20 = 36 > 0

 Two real roots.

Find the discriminant

Δ < 0

Find the discriminant

Δ = 0

Find the discriminant

Δ > 0

Example 

Find the value(s) of  the real parameter m so that: 

a x 2 − 6x + m = 0 has two real roots

b x 2 − mx + m − 1 = 0 has one repeated real root

c mx 2 + (2m − 1) x + 1 = 0 has no real roots

Answers

a x 2 − 6x + m = 0 ⇒

Δ = (−6)2 − 4 · 1 · m

Δ = 36 − 4m 

 36 − 4m > 0

 36 > 4m ⇒ m < 9

Find the discriminant

Simplify Δ and set Δ > 0

Solve the inequality for m

Why do we use Greek 

letters to represent 

so many quantaties 

in mathematics. You 

may wish to explore 

the ancient Greeks’ 

contributions to 

number, geometry 

or algebra. 

{ Continued on next page
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b x 2 − mx + m − 1 = 0 ⇒

Δ = (−m)2 − 4 · 1 · (m − 1)

Δ = m 2 − 4m + 4 

m 2 − 4m + 4 = 0

 (m − 2)2 = 0 ⇒ m = 2

c mx 2 − (2m − 1)x + m = 0 ⇒

Δ = (2m − 1)2 − 4 · m · m

Δ = 4m 2 − 4m + 1 − 4m 2 ⇒

1 − 4m < 0

1 4
1

4
< ⇒ >m m

Find the discriminant

Set  = 0

Solve the equation for m

Find the discriminant

Simplify  and set  < 0

Solve the inequality for m

Exercise 3B

1 Without solving the equations, determine the nature of  the roots.

a x 2 – 2x – 3 = 0  b x 2 + 10x + 25 = 0 

c 4x 2 – 3x + 2 = 0 d 5x 2 – 11x + 6 = 0 

e 3

5

4

7

2

3

2 0x x− + =
f 2 2 26 13 02x x+ + =

2 Find the value(s) of  the real parameter k so that:

a x 2 – 2x – k = 0  has one real root

b kx 2 + 3x – 2 = 0  has two real roots

c 3x 2 + 5x + 2k – 1 = 0  has no real roots

d x 2 – (3k + 2)x + k 2 = 0 has one real root

e kx 2 + 2kx + k – 2 = 0  has two real roots

f 2kx 2 + (4k + 3)x + k – 3 = 0 has no real roots

Sum and product of roots of a quadratic equation

Investigation – Viète’s theorem

A general quadratic equation ax2 + bx + c = 0, with a, b, c ∈ a ≠ 0 

has two solutions, x
1
 and x

2
. By using the quadratic formula  nd 

expressions for the sum, x
1
 + x

2
, and product, x

1
x

2
, of the two roots 

in terms of the coef cients a, b, c

The expressions you found in the investigation are known as Viète’s 

theorem.

➔ For a quadratic equation ax 2 + bx + c = 0, a, b, c ∈ , a ≠ 0 

and solutions x
1
 and x

2
, then the sum of  the roots, 

x x x x
a

c

a
1 2 1 2+ = − ⋅ =and the product of the roots, 

François Viète

(1540–1603) 

discovered a 

relationship between 

the parameters a, b

and c of a quadratic 

equation and the 

solutions x
1
 and x

2
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Example 

The roots of  a quadratic equation 3x 2 – 5x + 2 = 0 are x
1
 and x

2
. 

Without solving the equation, fi nd:

a 
1 1

1 2x x
+ b x x1

2

2

2+ c
2 2

1

3

2

3x x
+

Answers

a 
1 1

1 2

2 1

1 2x x

x x

x x
+ = +

= =

5

3

2

3

5

2

b x x x x x x1

2

2

2

1 2

2

1 22+ = + −( )

= −

= =

⎛
⎝
⎜

⎞
⎠
⎟

5

3

2

3

25

9

4

3

13

9

2

2

c 
2 2

1

3

2

3

2

3

1

3

1

3

2

3
2

x x

x x

x x

+

= +

=
+( ) − +( )

( )
2 1 2

3

1 2 1 2

1 2

3

3x x x x x x

x x

= ⋅

⎛
⎝
⎜

⎞
⎠
⎟ ⋅ ⋅

⎛
⎝
⎜

⎞
⎠
⎟

2

5

3
3

2

3

5

3

2

3

3

3

= ⋅ = ⋅ =2 2

125

27

10

3
8

27

35

27
8

27

35

4

Apply the theorem: 

x x x x1 2 1 2

5

3

2

3
and+ = ⋅ =

Use the binomial formula 

(A + B) 2  A 2 + 2AB + B 2

Use the binomial formula 

(A + B) 3  A3 + 3A2B + 3AB 2 + B 3

The binomial formula 

is discussed in 

Section 1.8

Exercise 3C

 Given a quadratic equation whose roots are x
1
 and x

2
, fi nd the 

indicated expression without solving the equation.

 a x x
x x

2

1 2

3 2 0
2 2− + = +, b 3 5 1 0 3 32

1

2

2

2x x x x− + = +,

 c 5 3 02

1

2

2

2

1 1
x x

x x
+ + = +, d x x x x2

1 2

2
2 4 0− + = −( ),

 e 2 4 3 02

1

3

2

3x x x x− + = +, f x x
x x

2

1

4

2

4
3 1 0

1 1+ + = +,

 g 4 7 1 02

1

3

2

2

1

2

2

3x x x x x x− + = +, h 7 4 5 02

1 2

4
x x x x+ − = −( ),
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Algebraic vs. geometric introduction to 
complex numbers

Algebraic approach

Historically, complex numbers were fi rst encountered when solving 

cubic equations. However, in modern mathematics, these numbers 

appear naturally as solutions of  quadratic equations as we shall see 

in this section.

Since the square of a real number is always a non-negative number, a 

quadratic equation of the form x 2 = c, c ∈  has no real solution. If  

you say that the simplest such equation x 2 = –1 has solutions you can 

develop a whole new algebra starting from x = ± −1

In medieval Italy, mathematical tournaments were very popular and solving 

cubic equations distinguished the winners. These mathematicians discovered 

the formula for solutions of cubic equations and basically introduced complex 

numbers.

Scipione dal Ferro (1465–1526) solved a cubic equation with no quadratic 

term which helped Niccolò Fontana Tartaglia (1499–1557) to discover the 

formula. He shared his knowledge with Gerolamo Cardano (1501–1576) 

who published it in his algebra book Ars Magna. Cardano introduced complex 

numbers of the form a b a b+ − ∈ ∈
+, ,  . Mathematicians realised that 

the two parts could not be combined and the second part was called an 

imaginary or even impossible part. 

René Descartes (1596–1650) was the  rst person to establish the term 

imaginary part and John Wallis (1616–1703) made huge progress in giving 

a geometric interpretation to 1

Leonhard Euler (1707–1783) was the  rst mathematician to use the 

symbol i = −1 and he called it an ‘imaginary unit’. 

Dose the terminology 

‘complex’ and 

‘imaginary’ make 

these numbers seem 

unnatural? Are they 

simply the inventions 

of mathematical 

minds?

Today complex numbers are used in many real world applications.

You can write all the solutions of  the equation x 2 = c, c ∈  as 

x i c id= ± − = ± , d ∈ +. Numbers like  id are purely imaginary 

number. 

Complex numbers have the form z = a + ib, a, b ∈ , where a is called 

a real part, Re(z) = a, and b is called an imaginary part, Im(z) = b, 

of  the complex number z. 

➔ When b = 0, z = a + i · 0 = a. Since the complex number does 

not have a part containing i, it reduces to a real number. 

Similarly, when a = 0, z = 0 + ib = ib. Since the complex 

number has only a part containing the imaginary unit i, it is 

called a purely imaginary number.

The  rst person to 

mention the square 

root of a negative 

number was Heron 

of Alexandria

(c.10–c.60. CE) 

when discussing the 

volume of frustum 

of a pyramid whose 

side lengths were 

impossible.

c c

c c

ci

= − × −

= − × −

= ± −

1

1

c is negative so c

is positive and has a 

real square root.

± − = ±c d  where 

d ∈+
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Example 

Find the real and imaginary parts of  these complex numbers.

a z = 3 + 2i b z = 5i – 4

c z i= − +
2

3
3 d

3 11 11i
z




Answers

a z i
z

z
= +

=
=

⇒
( )
( )

⎧
⎨
⎪

⎩⎪
3 2

3

2

Re

Im

b z i
z

z
= −

= −

=
⇒

( )
( )

⎧
⎨
⎪

⎩⎪
5 4

4

5

Re

Im

c z i
z

z

= − + ⇒
= −

=

( )

( )

⎧

⎨
⎪

⎩
⎪

2

3

2

33

3

Re

Im

d
 

 

3

3

23

11 23

11

Re

Im

i
z

z

z







 





 



Geometric approach

Real numbers can be visualised on the number line that 

was introduced by John Wallis. Each point on the line 

represents one real number. In order to have numbers 

other than real numbers, we need to expand the 

line into the second dimension, which results in 

the complex plane. 

x

y

0

2

–2

The complex plane is a two-dimensional coordinate plane where the 

usual coordinate axes x and y are now called the real and imaginary 

axes respectively. Each complex number z = x + iy is represented by 

a point P(x, y) in the plane where the coordinates are the real and 

imaginary parts of  the complex number itself.

The  rst person to set up the plane 

model of complex numbers was 

Jean-Robert Argand (1768–1822). 

Carl Friedrich Gauss (1777–1855) 

independently developed and re ned 

the plane model and therefore the 

geometrical visualization of complex 

numbers in a plane is known as an 

Argand diagram or Gaussian 

plane
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Example 

Plot these complex numbers in the Argand diagram.

3 + 2i, 2 – i, –3 – 3i, – 4 + i, 3i and – 2.

Answer

1 2 3 4–1–2–4 –3 x

iy

–4 + i

–3 – 3i

2 – i

3 + 2i

3i

–2

2

3

–1

–2

–3

–4

4

1

0

Modulus of a complex number

You saw in Chapter 2 that the modulus, or absolute value, of  a real 

number was algebraically defi ned as x
x x

x x
=

≥

− <

⎧
⎨
⎩

,

,

0

0
. Geometrically 

it represents the distance from the number x on the number line to 

the origin 0. You can extend this idea to complex numbers: the 

modulus of  a complex number |z| is the distance from the point 

P(x, y) (which represents the complex number z = x + iy) to the 

origin (0, 0) in the complex plane.

To fi nd the distance between two points in a coordinate 

plane use Pythagoras theorem.

imaginary axis

real axis

z = x + iy

0

z x y x y z z= −( ) + −( ) = + = ( ) + ( )0 0
2 2 2 2 2 2Re Im

The geometric interpretation will be discussed further in Chapter 12.

➔ z x iy x y= + = +
2 2

The real part is 

measured along the 

real axis (horizontal 

axis) and the 

imagniary part along 

the imaginary axis 

(vertical axis).
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Example 

Find the modulus of  these complex numbers.

a 3 – 4i b − +7 11i c
− −5 12

13

i

Answers

a 3 4 3 42 2
− = + −( )i = + = =9 16 25 5

b − + = −( ) + ( )7 11 7 11
2 2

i = + = =49 11 60 2 15

c
− −

= −⎛
⎝
⎜

⎞
⎠
⎟ + −⎛

⎝
⎜

⎞
⎠
⎟

5 12

13

5

13

12

13

2 2
i =

+
= =25 144

169

169

169
1

Exercise 3D

1 Find the real and imaginary parts of  these complex numbers.

a z = 3i b z = –7 c z
i= 18 12

8

d z i= +11

4

7

5
e




2

4 2

3

i
z

2  Find the modulus of  these complex numbers.

a 12 + 5i b –24 – 7i c 2 2 5+ i

d 
− +21 20

29

i
e



 3 4i

. Operations with complex numbers

Two complex numbers are equal if, and only if, their real and imaginary 

parts are equal

So given that z
1

= a
1
 + ib

1
, z

2
= a

2
+ ib

2
 and a

1
, b

1
, a

2
, b

2
∈ 

(z
1

= z
2
) ⇔ (a

1
= a

2
 and b

1
= b

2
)

or

(z
1

= z
2
) ⇔ (Re(z

1
) = Re(z

2
) and Im(z

1
) = Im(z

2
))

Why is it not possible 

to de ne inequality 

relations (<, >) on 

complex numbers? 

Find reasons to 

declare the following 

statements false:

• i > 0 

• i < 0

Addition and subtraction of complex numbers

The addition of  complex numbers is defi ned in a very natural way:

➔ z
1
 + z

2
 = (a

1
 + ib

1
) + (a

2
 + ib

2
) = (a

1
 + a

2
) + i (b

1
 + b

2
)

Likewise,

➔ z
1
 – z

2
 = (a

1
 + ib

1
) – (a

2
 + ib

2
) = (a

1
 – a

2
) + i (b

1
 – b

2
)
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Multiplication of complex numbers by a 
real number

To multiply a complex number by a real number use the distributive 

property.

➔ λz = λ(a + ib) = (λa) + i (λb), a, b, λ ∈ 

Example 

If  z
1
 = 2 + 3i and z

2
 = 3 – 4i, calculate these and check your answers 

with a GDC.

a z
1
 + z

2
b 5 1 2

1

2
z z

Answers

a z
1
 + z

2
 = 2 + 3i + 3 – 4i

 = (2 + 3) + (3 – 4)i = 5 – i

b 5z
1
 – 

1

2
z

2
 = 5(2 + 3i) – 

1

2
(3 – 4i)

= 10 + 15i – 
3

2
 + 2i

= 
17

2
 + 17i

Multiplication of complex numbers

Use the distributive property and the fact that i 2 = –1 to multiply 

two complex numbers.

➔ z z a ib a ib a a ib a a ib i b b1 2 1 1 2 2 1 2 1 2 1 2

2

1

1 2⋅ = +( ) ⋅ +( ) = + + +


sdf

 = (a
1
a

2
 – b

1
b

2
) + i (a

1
b

2
 + a

2
b

1
)

Example 

Given that z
1
 = 2 + 3i, z

2
 = 3 – 4i and z

3
 = 1 – i, calculate these and 

check your answers with a GDC.

a z
1
 · z

2

b z
1
 · z

3
 – 3z

2

Answers

a z
1
 · z

2
 = (2 + 3i) · (3 – 4i) 

 = 6 + 9i – 8i – 12i 2 = 6 + i –12 · –1

 = 18 + i

This formula is not 

simple to memorize. 

In practice it is 

easier to apply the 

distributive property 

each time when 

multiplying complex 

numbers

{ Continued on next page
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b z
1
 · z

3
 – 3z

2
 = (2 + 3i ) · (1 – i) – 3(3 – 4i )

 = 2 – 2i + 3i – 3i – 9 + 12i = – 7 + 13i – 3 · – 1 = – 4 + 13i

Exercise 3E

1 Given that z i z i z i z
i

1 2 3 42 3 4 1 5
3

2

3 4

5
= + = − = − =

+
, and, , 

calculate these and check your answers with a GDC.

a z
1
 + z

3
b z

1
 – 2z

2
c z

2
 + z

4
d 5z

4
 – 2z

2

e 3 4 51 2 3 4z z z z+ − − f z
1

z
2
 – z

3
z

4
g  

2

3 2 4

2

3
z z z

Example 

Find a complex number z that satisfi es (4 – 2i) · z = 3z + 2 – 5i.

Answer

Let z = a + ib

⇒  (4 – 2i) · (a + ib) = 3(a + ib) + 2 – 5i Expand.

⇒ 4a – 2ai + 4bi + 2b = 3a + 3bi + 2 – 5i Collect the real and 

imaginary parts.

⇒ (4a + 2b) + (– 2a + 4b) i  = (3a + 2) + (3b – 5)i The real and 

imaginary parts 

are equal so set up a 

pair of  simultaneous 

equations.

⇒
⎧
⎨
⎪

⎩⎪

4 2 =3 2

2 4 =3 5

a b a

a b b

+ +
− + −

⇒
⎧
⎨
⎪

⎩⎪

a b

a b

+
− + −

2 = 2

2 = 5

Solve the 

simultaneous 

equations. 

⇒
( )

⎧
⎨
⎪

⎩⎪

a b

b b

= −
− − + −

2 2

2 2 2 = 5
Apply the method 

of  substitution.

⇒
⎧
⎨
⎪

⎩⎪

a b

b b

= −
− + + −

2 2

4 4 = 5
⇒

⎧
⎨
⎩

a b

b

= −
= −

2 2

5 1

⇒

⎛
⎝
⎜

⎞
⎠
⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

a

b

= − ⋅

= −

2 2
1

5

1

5

⇒

⎧

⎨
⎪⎪

⎩
⎪
⎪

⇒
a

b

z i

=

= −
= −

12

5

1

5

12

5

1

5

a b= −

= + =

2 2

2
2

5

12

5

Solve this problem by 

using the equality of 

two complex numbers.

Remember to write 

down the  nal answer 

in the form asked 

for in the question, 

especially when 

solving long questions 

involving many 

different parts.
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Conjugate complex numbers

Two complex numbers are said to be a conjugate pair if  they have 

equal real parts and opposite sign imaginary parts.

If z = a + ib then its conjugate is z∗ = a – ib

Example 

Given the complex number z = a + ib, fi nd:

a z + z* b z – z* c z · z*

Answers

a z + z* = a + ib + a – ib = 2a

b z – z*   = (a + ib) – (a – ib) 

= a + ib – a + ib = 2ib

c z · z*   = (a + ib) · (a – ib)

 = (a)2 – (ib)2

= − = +a i b a b2 2 2 2 2

1


Apply the formula

(A + B) · (A – B) = A2 – B 2

Conjugate complex numbers have these properties:

i (z ∗)∗ = z

ii (z
1
 + z

2
)∗ = z

1
∗ + z

2
∗

iii (z
1
 · z

2
)∗ = z

1
∗ · z

2
∗

iv z · z∗ = |z|2

v (z n)∗ = (z∗)n, n ∈ 

Division of complex numbers

You can divide complex numbers using several of  the properties that 

you have learnt so far. 

z

z

a ib

a ib

a ib

a ib

1

2

1 1

2 2

2 2

2 2

=
+

+

Multiply the numerator and 

denominator by the conjugate of  the 

denominator.

=
+ − −

+

a a ib a a ib i b b

a b

1 2 1 2 1 2

2

1

1 2

2

2

2

2



Multiply the numerators and notice 

that the denominator becomes a 

positive real number.

=
+( ) + −( )

+

a a b b i a b a b

a b

1 2 1 2 2 1 1 2

2

2

2

2
Separate the real and imaginary parts. 

=
+

+
+

+

a a b b

a b
i

a b a b

a b

1 2 1 2

2

2

2

2

2 1 1 2

2

2

2

2
Collect like parts in the numerator.

Again notice that this formula is not very simple. In practise it is easier 

to apply this method each time when dividing complex numbers.

➔ The division formula can be written in the form 
z

z

z z

z

1

2

1 2

2

2
=

∗

The conjugate of the 

number z is denoted 

by z*.

z + z* = 2a∈ and 

z z* ∈, a2 + b2 ≥ 0

The  rst four properties can be easily 

proved. You are asked to do this in 

Exercise 3F. The  fth property can be 

proved using repeated application of 

property iii. In Chapter 12 you will 

see a simpler way of  nding powers of 

complex numbers.
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Example 

Given that z
1
 = 5 + 5i, z

2
 = 1 + 2i and z

3
 = 3 – 2i, calculate these 

and check your answers with a GDC.

a 1

2

z

z
b

z

z z

1

2

2 3
∗

Answers

a 1

2

5 5 1 2

1 2 1 2

z i i

z i i

 


 

2

2 2

5 5 10 10

1 2

i i i  




15 5

5

i
 = 3 – i

b 
z

z z

i

i i

1

2

2 2

2
5 5

1 2 3 2
=

+

+ +
*

( )

( ) ( )
2

2

25 50 25

3 2 6 4

i i

i i i

 


  

50 1 8

1 8 1 8

i i

i i
 
   

 
 

2

2 2

50 8

1 8

i i 


 

   50 8 10 8

65 13

i i 
 

80 10

13 13
i 

Multiply the numerator and 

denominator by the conjugate of  the 

denominator.

Expand the numerator. Expand the 

denominator by using the difference 

of  two squares.

Simplify.

Expand the numerator and 

denominator.

Multiply the numerator and 

denominator by the conjugate of  the 

denominator.

Expand the numerator and 

denominator.

Simplify.

Once you know how to divide two complex numbers you can solve 

linear equations in complex numbers.

Example 

Find the complex number z that satisfi es 
z

i

z i

i

+

+
=

1

3

5

2 1

Answer

z

i

z

i
z zi i i

+

+
= + +⇒ − = −

1

3

5i

2 1
1 2 1 5 3( )( ) ( )( )

⇒ z(2i – 1) + (2i – 1) = z(3 + i) – 5i(3 + i)

⇒ z(2i – 1) – z(3 + i) = –2i + 1 – 15i + 5

⇒ z(2i – 1 – 3 – i) = –17i + 6 

⇒ z(–4 + i) = 6 – 17i

z
i

i

i

i
=

- +

- -

- -

6 17 4

4 4

24 68 6 17 41 62

16 1 17

i i i
z

    
 




+
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Exercise 3F

1 Given that z i i z i
i

1 2 3 41 4 2
1

2

5

2

2 1

3
= + = - = - =, andz z, , 

Calculate these quotients and check your answers with a GDC.

 a 
z

z

1

2

b
z

z

1

1

∗

c
z z

z

2 4

3

d
3 2

3

1 3

2 4

z z

z z+
e

z

z

1

2

2

2
∗( )

2 Find the real numbers a and b that satisfy these equations.

 a (2 + i) (a + ib) = 11 – 2i b
a ib

i
i

+
= − +

2 5
3 2

 c (3i – 2) (a + ib) = 3 + 28i d
1

2

3

4
3 2+⎛

⎝
⎜

⎞
⎠
⎟ +( ) = − +i a ib i

3 Find the real and imaginary parts of  these numbers.

 a 
3 2

4

i
b

5 2

3

i

i
c

1

3

2

1i i
+

+
d

2 3

2 3

2 3

2 3+
+i

i

i

i

4 Given the numbers z
1
 = 1 + 3i and z

2
 = 3 – i, fi nd:

 a z
1

z
2 
+ z

1
z

2
∗ b z

1
z

2 
– z

1
∗ z

2
c z

1
z

2 
+ (z

1
z

2
)∗

5 Find the complex number z that satisfi es these equations.

 a (z + 1)i = (z + 2i )(3 + 2i ) b (2z – 1) (1 + i ) = (z – 1) (2 + 3i )

 c 
z i

i

z

i

− +
+

=
+

3 2

4 3

1

1
d

3 2

2

2 5

10 15

z i

i

z

i+
=

+
+

6  What conditions must the real and imaginary parts of  a complex 

number z satisfy so that 
z

i2 7
∈?

7  What conditions must the real and imaginary parts of  a complex 

number z satisfy so that 
3 5i

z
*

 is purely imaginary?

8 Solve for z ∈:

 a |z| – z = 4 + 3i b |z| + iz = 2 – i c z 2 – z∗ = 0

9 Prove these properties of  the modulus of  a complex number.

 a |z
1

z
2
| = |z

1
|  |z

2
|  b 

11

2 2

zz

z z

 c |z n| = |z|n
d |z

1
 + z

2
| ≤ |z

1
| + |z

2
|

10 Prove these properties of  conjugate complex numbers.

 a (z ∗)∗ = z b (z
1
 + z

2 
)∗ = z

1
∗ + z

2
∗ c (z

1 · z
2 
)∗ = z

1
∗ · z

2
∗

 d z · z ∗ = |z|2
e |z| = |z ∗|
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This table lists the fundamental properties or axioms of  the 

operations on complex numbers. Other properties can be derived 

from these properties. The fi rst four axioms refer to addition and the 

next four to multiplication, while the fi nal axiom refers to both 

operations. 0 and 1 are real numbers but can be seen as complex, 

that is; 0 = 0 + 0i and 1 = 1 + 0i.

➔ Axioms of complex numbers

A For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 is a complex number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 = z

2
 + z

1
 (Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then (z

1
 + z

2
) + z

3
 = z

1
 + (z

2
 + z

3
) 

(Associativity)

A  There exists a complex number 0 = 0 +0i such that for every complex number z, 

0 + z = z + 0 = z (Additive identity)

A  For every complex number z there exists a complex number –z such that 

z + –z = –z + z = 0 (Additive inverse)

A  For every complex numbers z
1
 and z

2
 then z

1
 · z

2
 is a complex number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
z

2
 = z

2
z

1
 (Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then (z

1
z

2
) z

3
 = z

1
 (z

2
z

3
) 

(Associativity)

A  There exists a complex numbers 1 = 1 +0i such that for every complex numbers z, 

1 z = z · 1 = z (Multiplicative identity)

A  For every complex numbers z, z ≠ 0, there exists a complex numbers z–1 such that 

z · z–1 = z–1 · z = 0 (Multiplicative inverse)

A  For every complex numbers z
1
, z

2
 and z

3
 then z

1
 (z

2
 + z

3
) = z

1
z

2
 + z

1
z

3

(Distributivity of  multiplication over addition)

A structure in which addition and multiplication are de ned and satisfy 

certain rules (shown left) is called the fi eld of complex numbers. Since 

all real numbers can also be seen as complex and they satisfy the axioms, 

there is also a structure called the fi eld of real numbers

Investigation – axioms of a fi eld

Decide if these sets of numbers satisfy the axioms of a  eld A–A given above.

a The integers, 

b The rational fractions, 

c The reals, 

d Numbers of the form p + q 2 where p and q are rational fractions.
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Investigation –  further properties of 
complex numbers

Starting from the axioms of a  eld show these results.

a The additive and multiplicative identities 0 and 1 are unique. 

b –(–z) = z and (z–1)–1 = z for any complex number z

c 0 · z = z · 0 = 0 for any complex number z (Hint: consider z · (1 + 0)

d (–z
1
) · z

2
 = –(z

1
 · z

2
) for any complex numbers z

1
 and z

2

e z
1
 · –z

2
 = z

1
 · z

2
 for any complex numbers z

1
 and z

2

suppose they are not

consider 

(z
1
 + –z

1
) · z

2

Powers and roots of complex numbers

To fi nd powers and roots of  complex numbers, you use the 

binomial theorem and powers of  the imaginary unit, i

Investigation –  sum of powers of 
complex numbers

Calculate i n, n = 0, 1, 2, 3, ...

Find a general rule for i n, n ∈ . Use your general rule to  nd i 2012. 

Use the properties of negative powers to  nd a general rule 

for i n, n ∈ 

Use the results you found to investigate the these:

a i n kk

k

n

=1

,∑ > b i n kk

k

n

=1

,∑ >

c i n kk

k

n

=1

,∑ > d i n kk

k

n

=1

,∑ >

Use the Σ -notation for 

a sum. Similarly, there 

is a product notation.

1 2

1

n
k n

k

i i i i  
=

= ...

For veri cation of the 

general rule for i n, 

refer to the summary 

at the end of the 

chapter. 

Example 

Given the complex number z = 1 – 2i, fi nd: a z3 b z
5( )

*

c z
*( )

5

Check your answers using a GDC.

Answers

a z 3 = (1 – 2i )3

 = 13 – 3 · 12 · 2i + 3 · 1 · (2i )2 – (2i )3

 = 1 – 6i – 12 + 8i

 = – 11 + 2i

Use the binomial 

theorem.

Use i 2 = 1 and i 3

= 1

The binomial theorem 

states that (a + x)n


0

n
n r r

r

n
a x

r

 
 
 



{ Continued on next page
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b z 5 = z 2 · z 3

 = (1 – 2i)2 · (–11 + 2i)

 = (1 – 4i – 4) · (–11 + 2i ) 

 = (–3 – 4i) · (–11 + 2i)

 = 33 – 6i + 44i + 8 = 41 + 38i

⇒ (z 5 )∗ = 41 – 38i

c (z ∗)5 = (1 + 2i)5

=  15 + 5 · 14 · 2i + 10 · 13 · (2i )2 + 

10 · 13 · (2i)3 + 5 · 1 · (2i)4 + (2i )5

 = 1 + 10i – 40 – 80i + 80 + 32i

 = 41 – 38i

Simplify the 

calculation by fi nding 

z5 using the answer 

to part a and then 

fi nding its conjugate.

Use the square of  a 

difference.

Use the binomial 

theorem.

Use i 2 = –1, i 3 = – i, 

i 4 = 1 and i 5 = i

You can fi nd the square roots of  a complex number, z, by fi rst 

squaring z so that you can work with the real and complex parts of  

z  separately.

Example 

Evaluate 8 6i

Answer

Let z = x + yi, x, y ∈  such that 

    28 6 8 6z i z i

  (x + yi)2 = 8 − 6i

     x2 + 2xyi − y2 = 8 − 6i

2

2
2 2

3

3

8
8

2 6

x

x

x
x y

xy
y

  
      

 


  


 
 

  
 
 

   
 

  

2 4 2

2

9

3
3

8 9 8
x

x
x

x x x

y
y

  
 
 
  

    
 

   

2 24 2

3 3

9 1 08 9 0 x xx x

y y
x x

3

3

3
3

1

x
x

yy




 
 

   
 

  

⇒ z
1
 = 3 − i and z

2 
= −3 + i

Expand z and use 

i 2 = −1

Equate the real and 

imaginary parts.

Solve the simultaneous 

equations by using 

substitution.

Factorize the equation 

and apply the zero 

product property.

Notice that ±3 are the 

only real solutions for x.

Notice that the results 

in b and c are equal, 

that is, (z*)n = (z n),

n ∈  as stated in the 

properties of conjugate 

complex numbers, that 

is, (z*)n = (zn)*, n ∈ 

A GDC will always give 

just one solution, but 

you need to be aware 

is that there another 

solution which is 

the negative of the 

number on the GDC.
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The method shown in Example 16 for square roots is not an easy one and, 

for higher roots, algebraic skills are needed. In Chapter 12 you will learn a 

different method for  nding roots of complex numbers.

Exercise 3G

1 Calculate:

a i 5 + i 8 + i14 + i19 b i 123 + i 172 + i 256 + i 375

c (2 – i 53)  (3 + 2i 89) d
4 3

2 5

2010 2011

2012 2013

i i

i i+

e i i i i

i i i i

+ + + +

⋅ ⋅ ⋅ ⋅

2 3 2011

2 3 2011

...

...
f i i i i

i i i i

2 4 6 2010

2 4 6 2010

+ + + +

⋅ ⋅ ⋅ ⋅

...

...

2 Calculate these and check your answers with a GDC.

a (2 + 3i )2 + (1 – 4i )2 b (3 + 2i )2 + (3 – 2i )2 

c (3 + 2i )3 + (3 – 2i )3 d (1 + i )4 + (1 – i )4 

3 Evaluate these and check your answers with a GDC.

a 3 4+ i b 12 5i − c
5

4
3+ i

d 
55

144

1

3
− i e i f −i

4 Show that:

a (1 + i )2n = (2i )n, n ∈  b (1 + i )2n+1 = (1 + i )(2i )n, n ∈ 

5 Given that z = 1– i, fi nd the values of  n ∈  such that:

a z n is real b z n is purely imaginary.

.  Polynomial functions: graphs and operations

Historically, complex numbers appeared as roots of  polynomial 

equations which means that they can be seen as zeros of  polynomial 

functions. In this section we are going to study polynomial functions, 

their graphs and operations with the expressions that defi ne them.

Polynomial functions and their graphs

The diagrams show the graphs of  f  (x) = x n, n = 0, 1, 2, 3, ... where n

is a natural number.

1 2 3 4–1–2–4 –3 x

y

f(x) = x0
2

3

–1

–2

–3

–4

4

0 1 2 3 4–1–2–4 –3 x

y

f(x) = x
2

3

–2

–3

–4

4

1

For question 5, it may 

help to plot z, z2, z3, ... 

on an Argand diagram 

and look for a pattern.
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1 2 3 4–1–2–4 –3 x

y

f(x) = x2

2

3

–1

–2

–3

–4

4

1

0 1 2 3 4–2–4 –3 x

y

f(x) = x3

2

3

–1

–2

–3

–4

4

1

0

1 2 3 4–1–2–4 –3 x

y

f(x) = x4

2

3

–1

–2

–3

–4

4

1

0 1 2 3 4–2–4 –3 x

y

f(x) = x5

2

3

–1

–2

–3

–4

4

1

0

1 2 3 4–1–2–4 –3 x

y

f(x) = x6

2

3

–1

–2

–3

–4

4

1

0 1 2 3 4–2–4 –3 x

y

f(x) = x7

2

3

–1

–2

–3

–4

4

1

0

Apart from the fi rst two powers of  n, n = 0 and n = 1, notice that for:

 even powers n = 2, 4, 6 ... the graphs a ‘U’ shape

 odd powers n = 3, 5, 7 ... the graphs have a ‘fl ex’ shape.

The ‘U’ shape graph has a local minimum or maximum, while the 

‘fl ex’ shape graph has a horizontal infl exion

A linear combination of  powers of  x, for example 

3 x 5 – 2 x 2 + 8x – 11, is called a polynomial

➔ A linear combination of  two functions f and g is an expression 

of  the form a f  (x) + b g (x), where a and b are real numbers. 

A linear combination of  n functions is an expression of  the 

form a f xk k

k

n

(
=

∑
1

, where f
k
 are functions and a

k
∈ .
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In general, polynomials can be seen as a linear

combination of  the power functions 

{1, x, x 2, x 3, x 4, x 5, ...}

Polynomials are real functions of  the real variable 

f  :  →  of  the form f  (x) = a
n
x n + a

n–1
x n–1 + ...+ a

1
x + a

0
, 

where a
k
∈ , k = 0, ... , n are called the coeffi cients. 

The highest power of  the variable x n is called the 

degree of  the polynomial, deg( f  ) = n

Polynomials of degree 0, 1, 2 and 3

 Constant function f  (x) = c, c ∈ . The graph is a 

horizontal line. The degree of  a constant polynomial is zero.

1 2 3 4–1–2–4 –3 x

y

f(x) = 2
3

–1

–2

–3

–4

4

1

0 1 2 3 4–1–2–4 –3 x

y

i(x) = 0

2

3

–1

–2

–3

–4

4

1

0

 Zero polynomial θ (x) = 0. The graph is again a horizontal 

line but this time it is the x-axis itself.

 Linear function f  (x) = mx + c, m ≠ 0. This is a polynomial of  the 

fi rst degree. The graph is a straight line. By changing the parameters 

m and c, you change the steepness and the position of  the line.

–1–2–4 –3 x

y

2

3

–2

–3

–4

4

1

0

f(x x – 1
1

2

–1–2–4 –3 x

y

2

3

–1

–2

–3

–4

4

1

0

f(x x + 1
3

2

 Quadratic function f  (x) = ax2 + bx + c, a ≠ 0. This is a polynomial 

of  the second degree. The graph is a parabola, ‘U’ shaped, whose 

axis of  symmetry is a vertical line. By changing the parameters a, b

and c, you change the shape (wide or narrow), concavity (opens 

upwards or downwards) and position of  the parabola.

The word ‘polynomial’ means ‘many 

terms’. A polynomial of one term is 

called a monomial, of two terms a 

binomial, and of three terms a trinomial.

You use the notation (x) = 0 for the 

zero polynomial to distinguish it from 

other polynomials. The zero polynomial 

also has an important property as 

an additive identity element for 

polynomials, that is, 

f  (x) + (x) = 

(x) + f  (x) = f  (x)

for all polynomials f  
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10 2 3 4–1–2–7 –6 –5 –4 –3 x

y

4

6

8

2

f(x x2 + x + 1
1

3

1 2 3–1–4 –3 x

y

4

–8

–6

–4

–2

2

0

f(x) = –3x2 – 4x + 2

Investigation – parameters of parabolas

Given a quadratic function f (x) + ax2 + b(x) + c, a ≠ 0, investigate the 

effect of the parameters a, b and c on the shape and the position 

of the parabola in the coordinate system. In Chapter 2 you were 

investigating the form f (x) + a (x – h)2 + k, a ≠ 0, where h and k were 

horizontal and vertical translations, respectively. Use this to  nd the 

effect of the parameter b

  Cubic function, f  (x) = ax 3 + bx 2 + cx + d, a ≠ 0. This is a 

polynomial of  the third degree. 

1 2 3 4–1–2 x

y
f(x) = x3 + 6x2 + 12x + 8

2

–1

–2

–3

–4

1

0 –1–2–4 –3 x

y
f(x) = –x3 + 3x2 – 3x + 2

2

3

–1

–2

–3

–4

4

1

0

2 4 6–2–8 –6 x

y

4

6

8

–2

2

f(x x3 + 2x2 – x – 2
1

2

–2–4 –3 x

y

6

10

8

–4

–2

2

0

f(x) = –2x3 – 4x2 + 5x + 7

Cubic graphs have two different shapes. One shape looks like a 

‘fl ex’ shape. The second shape is a combination of  two ‘U’ shapes 

opening in opposite directions.
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Investigation – parameters of cubics

Given a cubic function f  (x) = ax 3 + bx2 + cx + d, a ≠ 0, investigate the 

effect of the parameters a, b, c and d on the shape and the position 

of the graphs. Start your investigation by taking two parameters 

at a time, for example a and b, c and c, a and d

One interesting feature of polynomials of the same degree and with the same 

leading coef cient is that even though locally the graphs look very different 

if you change the scale on the axes they look very similar. For example, for a 

polynomial in x 3, f  (x) increases rapidly for large values of x

–4 –3 x

y
f(x) = x3 – 3x2 + 3x – 2

f(x) = x3 + 2x2 – x – 2

2

3

–2

4

1

0 10 20–10–20 x

y
f(x) = x3 – 3x2 + 3x – 2

f(x) = x3 + 2x2 – x – 2

1000

–1000

–2000

2000

0

The functions f  (x) = x3 – 3x 2 + 3x – 2 and f (x) = x 3 + 2x 2 – x – 2 behave 

like polynomials that have only the leading term, x 3, since for extremely large 

values of x, both positive and negative, the other terms are insigni cant to 

the total value and can be neglected. This is the so-called ‘end behavior’ 

property of polynomials.

The end behavior of 

a polynomial function 

is determined by its 

degree and by the 

sign of its leading 

coef cients. 

Polynomials are continuous functions, which means that 

you can draw their graphs without lifting the pen from the paper. 

You have to proceed in one direction (usually from left to right). 

Their graphs are also smooth curves with no sharp points.

Polynomials of  degree 4 are called quartic functions and 

polynomials of  degree 5 are called quintic functions. 

Special names are not usually used for polynomials of  

degree greater than 5.

In a graph of  a polynomial of  a higher degree you can 

see different types of  ‘U’ and ‘fl ex’ shapes. 

The graph shows a quintic polynomial.

x

y

0

‘U’ shape

‘U’ shape

‘Flex’ shape
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Investigation – high–degree polynnomials

1 Describe all the possible shapes of the graphs of polynomials of 

fourth degree. How many of each of the shapes of lower 

degree (2 and 3) can you have in those polynomials?

2 Describe all the possible shapes of the graphs of polynomials of 

 fth degree. How many of each of the shapes of lower 

degree (2, 3 and 4) can you have in those polynomials?

3 How many of each of the shapes of lower degree can you have 

in the polynomials of nth degree? 

Operations with polynomials

Two polynomials f  (x) = a
n
x n + a

n–1
x n–1 + ... + a

2
x 2 + a

1
x + a

0
 and 

g (x) = b
m
x m + b

m–1
x m–1 + ... + b

2
x 2 + b

1
x + b

0
 are equal if  

and only if:

i they have the same degree, n = m

ii  all the corresponding coe  cients are equal a
k
 = b

k

for all k = 0, 1,..., n. 

Addition and multiplication of  polynomials and multiplication by a 

real number follow the same rules for algebraic expressions that you 

met in the “Before you start” section.

➔ The degree of  a linear combination of  two polynomials is not 

larger than the maximum of  the degrees of  either polynomial.

deg(λ f  (x) + μ g (x)) ≤ max{deg(f  (x)), deg(g (x))}

Example 

Given the polynomials f  (x) = 4x 4 + 3x 3 − 2x 2 + 6x − 2 and 

g(x) = 2x 3 − 5x 2 + x − 3, fi nd f  (x) g(x).

Answer

The standard algebraic method is diffi cult to follow because so many 

terms arise. It is usually easier to use the ‘grid method’.

4x 4 3x 3 –2x 2  6x –2

2x 3 8x 7 6x 6 – 4x 5 12x 4 – 4x 5

–5x 2 –20x 6 –15x 5 10x 4 –30x 3 10x 2

x 4x 5 3x 4 –2x 3 6x 2 –2x

–3 –12x 4 –9x 3 6x 2 –18x 6

The ‘grid method’ makes it easier to simplify the like terms.

f  (x) g(x) = 8x7 – 14x 6 – 15x 5 + 13x4 – 45x 3 + 22x 2 – 20x + 6

The grid method for 

multiplication is also 

knwon as the ‘box 

method’.
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➔ The degree of  the product of  two polynomials is 

the sum of  the degrees of  the factor polynomials: 

deg (f  (x) g (x)) = deg(f  (x)) + deg(g (x))

Example 

Given the polynomials f  (x) = x2 + ax − 3 and g(x) = x2 − 4x + b,

fi nd the values of  the real parameters a and b such that 

f  (x) ⋅ g(x) = x4 − 22x2 + 9

Answer

f  (x) ⋅ g (x) = (x2 + ax − 3) ⋅ (x2 − 4x + b)

=  x4 + (a − 4)x3 + (a + 12 + b) x2

+ (ab − 12)x − 3b

= x4 − 22x2  + 9

⇒

− =

− − + = −

− =

− =

⎧

⎨

⎪
⎪

⎩

⎪
⎪

a

a b

ab

b

4 0

4 3 22

12 0

3 9

⇒
=

= −

⎧
⎨
⎩

a

b

4

3

Use distribution.

Simplify.

Make the corresponding 

coeffi cients equal.

Check that the values 

of  a and b satisfy all the 

equations.

Exercise 3H

1 The polynomials f  (x) = 2x 2 + 3x + 1 and g (x) = 3x 2 – 2x – 5 are 

given. Find the real parameters λ and μ such that:

a λ ⋅ f  (x) + μ ⋅ g (x) = 13x + 13

b λ ⋅ f  (x) + μ ⋅ g (x) = 26x 2 + 26x

2 Use the ‘grid method’ to fi nd the product of  the polynomials f

and g given that:

a f  (x) = x 3 – 2x and g (x) = x 2 + 2 

b f  (x) = 27x 3 – 36x 2 + 48x – 64 and g (x) = 3x 2 + 7x + 4 

3 Given the polynomials f  (x) = ax 2 – 3x + 5 and g (x) = 7x 2 + bx – 3, 

fi nd the values of  the real parameters a and b such that 

f  (x) ⋅ g (x) = 14x 4 – 17x 3 + 23x 2 + 19x –15

4 Given the polynomials f  (x) = x 3 + ax 2 – x + 2 and g (x) = 2x 2 + bx + c,

fi nd the values of  the real parameters a, b and c such that  

f  (x) ⋅ g (x) = 2x 5 – 5x 4 + 3x 3 + 5x 2 – 8x + 4

5 Given that a polynomial f  (x) = x 4 + 6x 3 + ax 2 + bx + 4 can be 

written in the form f  (x) = (x 2 + px + q)2, fi nd the values of  a and b

and the polynomial in the required form.

The long journey of mathematics124



6 Find the polynomial g such that g(x) = f  (x – 2), where 

f  (x) = x 3 + 12x 2 + 6x + 3

7 Find the polynomial f such that f  (2x – 1) = 16x 4 – 32x 3 + 12x 2

8 All the coeffi cients of the polynomial f  (x) = ax 4 + bx 3 + cx 2 + dx + 

e are positive integers smaller than 10. Find the polynomial given 

that f  (0) = 4 and f  (10) = 32 584

Division of polynomials

You divide two polynomials using long division.

Example 

Use long division to divide 

2x 4 + 4x 3 + 3x 2 + 2x – 7 

by 

x 2 + x + 2 

Answer

x x x x x x

x x x

x x x

x

x x
2 4 3 2

4 3 2

3 2

3

2

2 2 4 3 2 7

2 2 4

2 2

2

2 2 3
+ + + + + −

+ −

− + +

− +

( )

22 4

3 2 7

3 3 6

1

2

2

2

x x

x x

x x

x

+

− − −

− − −

( )

( )

Divide x 2 into 2x 4

Multiply divisor 2x 2

Divide x 2 into 2x 3

Multiply divisor by 2x

Divide x 2 into 3x 3

Multiply divisor by 3

Remainder is x − 1

2 4 3 2 7

2 2 2 3 1

4 3 2

2 2

x x x x

x x x x x

+ + + −

= + + + − + −( ) ( ) ( )

Stop when the degree of  

the remainder is smaller 

than the degree of  the 

divisor.

➔ Theorem

For any two polynomials f  and g there are unique polynomials 

q and r such that f  (x) = g (x) q (x) + r (x), for all real values of  x

The polynomial q is called the quotient and the polynomial r is 

called the remainder. The degree of  the polynomial r is smaller than 

the degree of  the polynomial g. 

The same algorithm 

is used to divide 

numbers. Consider 

657 ÷ 21

21 657
31

63

27
21

6

So 657 = 21.31 + 6

The proof of this 

theorem uses the 

Euclidian algorithm 

that is part of the 

Discrete option.

dividend = divisior 

quotient + remainder
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Example 
Use long division to fi nd the quotient and remainder when dividing 

f  (x) = 2x 4 − 7x 3 − 7x 2 + 14x + 5 by g(x) = 2x + 3 

Answer

)2 3 2 7 14 5
4 1

4 3 2

3 2

7

5

x x x x x

x x x

+ − + +

+ +

−(2x 4 +3x 3)

−10x 3 − 7x 2 + 14x + 5

− ( 10x 3 − 15x 2)

8x 2 + 14x + 5

 −(8x 2 + 12x)

2x + 5

 −(2x + 3)

2 ← remainder 

So the quotient is q (x) = x 3 − 5x 2 + 4x + 1 and the remainder is r (x) = 2

Therefore, 

2x 4 − 7x 3 − 7x 2 + 14x + 5 = (2x + 3)  (x 3 – 5x 2 + 4x + 1) + 2  

Exercise 3I

1 Use long division to divide f  by g if:

a f  (x) = x 4 + 5x 3 + 8x 2 + 3x – 2 and g (x) = x + 2

b f  (x) = x 5 + 3x 4 + x 3 – 4x 2 –2x + 1 and g (x) = x 2 – 1

c f (x) = 2x 5 – 3x 4  + x 3 – 2x 2 + 3x  – 1 and g (x) = x 2 + x + 1

2 Use long division to fi nd the quotient and remainder when 

f is divided by g given that:

a f  (x) = 2x 4 + 5x 3 + 4x 2 + 4x + 3 and g (x) = x + 1

b f  (x) = 3x 4 + 4x 3 + 6x 2 – 2x + 6 and g (x) = x 2 + 2x + 3

c f  (x) = x 6 + x – 1 and g (x) = x 2 + x + 1

Polynomial remainder theorem

➔ Given a polynomial 

f x a x a x a x a x a a k n an

n

n

n

k n( ) ... , , , , ... , ,= + + + + + ∈ = ≠1

1

2

2

1 0 0 1 0

and a real number p, then the remainder when f  (x) is divided by a 

linear expression (x – p) is f  (p).

Proof:
In the unique decomposition of the polynomial f  (x) = (x – p) q (x) + r, 

where the remainder r is a constant (one degree less than the 

divisor) we input x p f p p p q p r f p r= ⇒ = −( ) + ⇒ =( ) ( ) ( )

0



 QED

The polynomial 

remainder theorem 

is also known 

as ‘Bézout’s 

little theorem’. 

Étienne Bézout
(1730–1837) was 

inspired by the work 

of Euler and so 

decided to become 

a mathematician. 

In 1763 he was 

appointed examiner 

of the Gardes de 

la Marine (French 

Naval Academy) 

with the special 

task of composing 

a textbook 

for teaching 

mathematics to 

the students.
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Factor theorem 

➔ A polynomial 

f x a x a x a x a x a a k n an

n

n

n

k n( ) ... , , , , , ... , ,= + + + + + ∈ = ≠1

1

2

2

1 0 0 1 2 0

has a factor (x – p), p ∈  if  and only if  f ( p) = 0.

This theorem is a direct consequence of  the remainder theorem. 

Its proof  is left as an exercise for you.

To evaluate a polynomial for a certain value of  the variable x,

William George Horner (1786–1837) discovered an algorithm that 

can be used in many different cases.

If  you want to fi nd the value of  f  (x) = 3x 3 –2x 2 –5x – 1 when x = 2, 

select the coeffi cients of  all terms, including missing terms, and 

organizethem in a tabular form:

3

6

+ + +

–2 –5 –1

3 4

8

3 5

f   (x) = ((3 · x – 2) · x – 5) · x – 1

 f (2) = (( 3 · 2 – 2) · 2 – 5) · 2 – 1

 = ((6 – 2) · 2 – 5) · 2 – 1

 = (4 · 2 – 5) · 2 – 1

 = (8 – 5) · 2 – 1

 = 3 · 2 – 1

 = 6 – 1

 = 5

Example 

Use Horner’s algorithm to fi nd the remainder when dividing 

f  (x) = 5x3 + 13x2 − 11x + 7 by g (x) = x + 3

Answer

x + 3 = x − (−3) ⇒ r = f  (−3)

5

–15

+ + +

13 –11 7

6

225 –2 –5

r = f  (−3) = 22

Use the remainder theorem.

Use Horner’s algorithm.

f   (–3) = (( 5 · –3 + 13) · –3 – 11) · 

–3 + 7

 = ((–15 + 13) · –3 – 11) · –3 + 7

 = (–2 · –3 – 11) · –3 + 7

 = (6 – 11) · –3 + 7

 = –5 · –3 + 7

 = 15 + 7

 = 22

Since the algorithm also gives the quotient you can use successive 

division to search for factors of  a polynomial.

When you use 

Horner’s algorithm, 

apart from getting the 

remainder (in the last 

row) you also obtain 

the coef cients of the 

quotient polynomial, 

q(x) = 5x 2 – 2x – 5

This is the reason why 

this algorithm is also 

known as synthetic 

division. 

Investigate Horner’s 

algorithm. Prove the 

general form of the 

algorithm and  nd in 

which other cases it 

can be used.
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Example 

Show that (x − 2) and (x + 5) are factors of  the polynomial 

f  (x) = 2x3 + 13x2 + x − 70

Answer

x − 2 ⇒ r = f  (2) Use the remainder theorem and note 

that the remainders must be zeros 

forfactors.

x + 5 = x − (−5) ⇒ r = q (−5)

2

4

+ + +

13 1 –70

2 17

34

35 0

–5 •

+ +

2 7 0

–10 –35

Use Horner’s algorithm.

f  (2 ) = ((2 · 2 + 13) · 2 + 1) · 2 − 70

= ((4 + 13) · 2 + 1) · 2 − 70

= (17 · 2 + 1) · 2 − 70

= (34 + 1) · 2 − 70

= 35 · 2 − 70

= 70 − 70

Use Horner’s algorithm.

q (x ) = 2x 2 + 17x + 35

q (–5 ) = (2 · –5 + 17) · –5 + 35

= (–10 + 17) · –5 + 35

= 7 · –5 + 35

= –35 + 35

= 0

Exercise 3J

1 Use synthetic division to fi nd the quotient and remainder when 

polynomial f is divided by g given that:

a f  (x) = x 3 – x 2 – 4x – 5 and g (x) = x – 3 

b f  (x) = 2x 3 + 5x 2 + 4x + 3  and g (x) = x + 1 

c f  (x) = x 5 – 3x 3 – 2x + 1 and g (x) = x + 2

d f  (x) = 3x 6 – 2x 4 + 5x 2 – 2  and g (x) = x – 1

2  Show that (x – 2) and (x + 3) are factors of  

f  (x) = 4x 4 – 27x 2 + 25x – 6.

Since the remainders 

are zeros you could 

proceed with the 

quotient polynomial 

as the quotient 

polynomial contains 

x + 5 as a factor. 

Notice that the last 

factor is 2x + 7. 

The long journey of mathematics128



Corollary

Given a polynomial 

f x a x a x a x a x a a i n an

n

n

n

i n( ) ... , , , , ... , ,= + + + + + ∈ = ≠1

1

2

2

1 0 0 1 0

and real numbers a and b, a ≠ 0, then the remainder when f  (x) is 

divided by a linear expression (ax – b) is f
b

a

⎛
⎝
⎜

⎞
⎠
⎟

The proof  can be conducted in a similar way to that of  the theorem 

proof. The proof  is left as an exercise for you.

In order to use synthetic division when dividing by a linear 

expression (ax – b) you have to modify the algorithm. 

f  (x) = (ax – b) q (x) + r

⇒ = − +⎛
⎝
⎜

⎞
⎠
⎟ ( )f x a x q x r

b

a
( )

⇒ = − +⎛
⎝
⎜

⎞
⎠
⎟ ( )( )f x x a q x r

b

a
( ) ⋅ ⋅

Example 

Use the synthetic division to fi nd the quotient and remainder when 

dividing f  (x) = 2x 4 − 7x 3 − 7x 2 + 14x + 5 by g(x) = 2x + 3

Answer

g x x x( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= + = −2 3 2

3

2

2

–3 –12 –3

+ + + +

–7 –7 14 5

2 –10

15

8 2 2

3

2
–    •

So the quotient is q (x) = x 3 − 5x 2 + 4x + 1 

and the remainder is r (x) = 2. 

Use the remainder theorem.

Use synthetic division.

Example 

When polynomial f  (x) = x 3 − 2x 2 + ax + 11 is divided by (x − 2) the 

remainder is 1. Find the value of  a

Answer

1

2 a

+ + +

–2 a 11

1 0

0

a 11 + 2a

11 + 2a = 1 ⇒ 2a = −10 ⇒ a = −5

Use synthetic division.

Use the remainder r = 1 

A theorem easily 

derived from another 

theorem is a corollary 

of that theorem.

The coef cients of the 

quotient polynomial 

were multiplied by 

2, so you need to 

divide them by 2 to 

obtain the quotient 

polynomial.
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Example 

Find the remainder when polynomial f  (x) = x2011 − 3x 2 + 2x − 2 is divided by x 2 − 1. 

Answer

f x x q x ax b
r x

( ) ( ) ( )= − ⋅ + +
( )

2 1


                        x = 1 ⇒ f  (1) = 12011 − 3  12 + 2  1 − 2 = −2

      x = –1 ⇒ f  (–1) = (–1) 2011 − 3  (–1) 2 + 2  –1 − 2 = −8

f q a b

f q a b

1 1 1 1 1 2

1 1 1 1 1 8

2

2

( ) ( ) ( )

( ) ( )( ) ( ) ( )

= − + + = −

− = − − − + − + = −

⎧⎧
⎨
⎪

⎩⎪

Use the theorem on unique decomposition. Note that 

the remainder is linear.

Calculate the value of  the polynomial at the zeros 

ofthe divisor.

Substitute f  (1) = −2 and f  (–1) = –8 in the unique 

decomposition.

a b

a b

+ = −
− + = −

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
+

2

8

2b = −10 ⇒ b = −5  

a − 5 = −2 ⇒ a = 3 

Therefore, the remainder is r (x)= 3x − 5

Solve the simultaneous equations by elimination.

Exercise 3K

1 Use synthetic division to fi nd the quotient and remainder when 

polynomial f is divided by g given that:

a f  (x) = 2x 5 – 3x 4 + 3x 3 + 3x 2 – 3 and g (x) = 2x – 1  

b f  (x) = 3x 4 + 4x 3 + 4x 2 – 2x + 6 and g (x) = 3x + 1 

2 When you divide the polynomial f  by the polynomial 

g (x) = x 2 + 2x – 1 you obtain the quotient q (x) = 3x – 4 and the 

remainder q (x) = x + 2. Find the polynomial f

3 Polynomial f  (x) = x 5 – 4x 4 + 3x 3 + 2x 2 – 3x + a is divisible 

by (x – 3). Find the value of  a

4 Polynomial f  (x) = x5 – 2x4 + 2x3 + bx – 1 is divisible by (x – 1). 

Find the value of  b

EXAM-STYLE QUESTIONS

5 Polynomial f  (x) = 4x 3 + 5x 2 + ax + b is divisible by (x + 2), and 

when divided by (x – 1) there is a remainder of  6. Find the 

values of  a and b

6 When polynomial f is divided by (x – 3) the remainder is 2, and 

when divided by (x + 1) the remainder is –4. Find the remainder 

when polynomial f is divided by (x 2 – 2x – 3).

7 Find the remainder when f  (x) = x 2011 + x 2010 + ... + x + 1 

is divided by (x + 1).
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8 Show that the polynomial f  (x) = (x + 1)2n + (x + 2)n – 1 is 

divisible by (x 2 + 3x + 2)  for all n ∈ +. 

9 Given a polynomial 

f x a x a x a x a x a a i n an

n

n

n

i n( ) ... , , , , ..., ,= + + + + + ∈ = ≠1

1

2

2

1 0 1 2 0

and real numbers a and b, a ≠ 0, show that when f  (x) is divided 

by a linear expression (ax – b) the remainder is f
b

a

⎛
⎝
⎜

⎞
⎠
⎟

.  Polynomial functions: zeros, sum 
and product

The fundamental theorem of algebra

The fundamental theorem of  algebra is one of  the most important 

theorems in mathematics. It establishes the existence of  the complex 

zeros of  a polynomial (points at which the value of  the function is 

zero). There are many theorems and corollaries that derive from this 

theorem which help in algebraic manipulation of  equations and 

polynomial functions. 

➔ The fundamental theorem of algebra (FTA)

A polynomial f  (x) = a
n
x n + a

n – 1
x n–1 + ... + a

2
x 2 + a

1
x + a

0
with 

real or complex coeffi cients (a
n

≠ 0) has at least one zero. 

There is an ω ∈ such that f  (ω) = 0

➔ Corollary

Each polynomial f  (x) = a
n
x n + a

n – 1
x n–1 + ... + a

2
x 2 + a

1
x + a

0

with real or complex coeffi cients can be written in a factored 

form f  (x) = a
n

(x − ω
1
 ) (x − ω

2
  ) ... (x − ω

n
 ) such that 

ω
k

∈ , k = 1, ..., n

These examples highlight the usefulness of  the theorems above.

If  a certain factor appears more than once, we say that the factor has 

a multiplicity. So, if  there are fewer than n different zeros of  the 

given polynomial, the sum of  their multiplicities will add up to n

f x a x x x k n p nn

p p

k

p

r

r

k
k( ) ( ) ( ) ( )− − − < =

=

∑= ...w w w1 2

1

1 2 , ,

This theorem was 

proved by Gauss, but 

is beyond the scope of 

this textbook.

Extension material on CD: 

See the proof of this 
theorem on the CD.
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Example 

Factorize the polynomial f  (x) = x4  6x3 + 11x 2  6x, and check your 

answer with a GDC.

Answer

f  (x) = x4  6x3 + 11x 2  6x

 = x (x3  6x2 + 11x  6)

1

1

+ + +

–6 11 –6

1 –5

–5

6 0

= x (x  1) (x2  5x + 6)

= x (x  1) (x  2) (x  3)

Apply Horner’s algorithm for 

x = 1 since the sum of  the 

coeffi cients is equal to zero. 

Apply the FTA to factorize the 

polynomial.

Factorize the quadratic expression.

Example 

Given that 2 is a zero of  the polynomial 

f  (x) = x5  4x4  3x3 + 34x 2  52x + 24 

and has a multiplicity of  3, factorize f  (x) fully and check your answer 

with a GDC.

Answer

22 •

2 •

2 •

–14

+ + +

40

+

–24

+

+ +

1 –2

–4

–7

1 0 –7 6 0

20 –12 0

1 –4 –3 34 –52 24

2 0

+

–14

+

12

+ +

1 2 –3 0

2 4

+

6

Successively apply Horner’s algorithm 

with respect to the multiplicity of  the 

given zero.

f  (x) = (x  2)3 (x2 + 2x 3)

= (x  2)3 (x + 1) (x + 3)

Apply the FTA to factorize the 

polynomial. 

Factorize the quadratic expression.

On a GDC you obtain 

zeros, but for the 

factor form of the 

polynomial you need 

to use the FTA.

Due to the 

imperfection of the 

calculator’s algorithm 

you obtain the 

approximation of the 

multiple zero (2), 

without its multiplicity. 

When using a complex 

roots  nder you will 

 nd which zero has 

multiplicity, but an 

approximated value is 

given.
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Exercise 3L

1 Given that k is a zero of  multiplicity n of  the polynomial f, 

factorize it fully and check your answers with a GDC.

a k = −2, n = 2, f  (x) = 2x 4 + 3x 3 
− 10x2 

− 12x + 8

b k =
1

2
, n = 2, f  (x) = 12x 3 – 32x 2 

+ 23x − 5

2 Find a polynomial of  the smallest degree, with integer 

coeffi cients, whose zeros are:

a 1, 3 and 5

b −2, −1, 0 and 1 

c 
2

3
1 2 3, ,  and 

3 Find a polynomial of  the smallest degree, with integer 

coeffi cients, whose zeros are:

a 2 3 and 

b 
1

2

3

4
5,  and 

c − −

3

5
1 2 33,  and 

4 Factorize these polynomials and check your answers with a GDC.

a f  (x) = x 3 – 2x 2 – 5x + 6 

b f  (x) = 2x 3 – x 2 – 7x + 6 

c f  (x) = 5x 4 – 12x 3 – 14x 2 + 12x + 9 

Conjugate root theorem
Given a polynomial

f  (x) = a
n
x n + a

n – 1
x n–1 + ... + a

2 
x 2 + a

1
x + a

0
, a

k
∈ , k = 0, 1, ..., n, 

and a
n
≠ 0, that has a complex zero z, then its conjugate z* is also a 

zero of  the polynomial f.

Proof:

Using the properties of  conjugate numbers, see page 110:

f  (z) = 0 ⇒ f  (z∗) = a
n
(z∗ )n + a

n – 1
(z∗ )n–1 + ... + a

2
(z∗ )2 + a

1
(z∗ ) + a

0

 = a
n
(z  n)∗+ a

n – 1
(z  n–1)∗+ ... + a

2
(z 2)∗+ a

1
(z∗ ) + a

0

 = (a
n
z  n)∗+ (a

n – 1
z n –1)∗+ ... + (a

2
z 2)∗+ (a

1
z)∗ + (a

0
)∗

 = (a
n
z  n + a

n – 1
z n –1 + ... + a

2
z 2 + a

1
z + a

0
)∗

 = (f  (z))∗ = 0∗ = 0  QED

Conjugate of  a product.

Conjugate of  a power.

Conjugate of  a sum.
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Example 

Given that 4 + 5i is a complex zero of  the polynomial 

f  (x) = x3 – 6x2 + 25x + 82, fi nd all the remaining zeros and check your 

answers with a GDC.

Answer

x
1
 = 4 + 5i ⇒ x

2
 = 4 – 5i

Method 1

(x – (4 + 5i )) (x – (4 – 5i )) = x2 – 8x + 41

2 3 2

2

8 41 6 25 82

x

x x x x x



    

– (x3 – 8x2 + 41x)

2x2 – 16x + 82

– (2x2 –16x + 82)

0

f  (x) = (x – (4 + 5i )) (x – (4 – 5i )) (x + 2)

x – 2 = 0

⇒ x
3
 = 2

Method 2

1

4 + 5i(4 + 5i) •

(4 – 5i) •

–82

+ + +

+ +

–6 25 82

1 –2 + 5i

–33 + 10i

–8 + 10i

1 2 0

0

4 – 5i 8 – 10i

Use the conjugate zero 

theorem.

Find the quadratic factor.

Use long division to fi nd the 

last linear factor.

Successively apply Horner’s 

algorithm to.

f  (x) = (x – (4 + 5i )) (x – (4 – 5i )) (x + 2)

x + 2 = 0

⇒ x
3
 = –2

Fully factorize the 

polynomial.

Find the last remaining zero.

the complex numbers 

4–5i and 4 + 5i

To check with a GDC 

use the feature called 

‘Complex Roots of 

Polynomials’ within 

the polynomial tools.
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Example 

Given that i is a complex zero of  the polynomial f  (x) = x4 – 2x3 + 6x2 + 

ax + 5, a ∈ , fi nd the value of  a. Hence, fi nd all the remaining zeros 

and check your answers with a GDC.

Answer

1

ii i + ai – 5

+ + +

1 –2 + i

–2i – 1

5 – 2i

+

a

5i + 2

2 + a + 5i (2 + a) i

f  (i) = 0 ⇒ (2 + a) i = 0 

⇒ 2 + a = 0 ⇒ a = – 2

x
1
 = i ⇒ x

2
 = – i

1

i–i •

+ +

–2 5

0

1

–2 + i

2i

5 – 2i

+

5i

–5i

0

x2 – 2x + 5 = 0

2 ± 4 20 2 ± 4

2 2
= = = 1±2

i
x i

x
3
 = 1 + 2i, x

4
 = 1 – 2i

Apply Horner’s 

algorithm for x
1 
= i

Apply the remainder 

theorem.

Use the conjugate zero 

theorem.

Use a = – 2 and 

continue to apply 

Horner’s algorithm for 

x
2 
= −i to obtain the 

quotient.

Find the zeros of  the 

quotient polynomial.

Apply the quadratic 

formula.

Exercise 3M

1 Given a polynomial f and the zero z, fi nd all the remaining zeros.

a f  (x) = x 3 + 3x 2 + 4x + 12, z = 2i

b f  (x) = x 3 – 6x 2 + 13x – 20, z = 1 – 2i 

c f x x x x z i( ) += + + + = −5 17 21 63 2 3

2

3

2
,

d f  (x) = x 4 – 4x 3 + 5x 2 – 4x + 4, z = i 

e f  (x) = 2x 4 + 3x 3 + 17x 2 – 12x – 10, z = –1 – 3i 

f f  (x) = 2x 4 + 9x 3 + 11x 2 – 7x – 15, z = –2 + i 

g f x x x x x z i( ) += + + + + = −6 26 35 36 94 3 2 1

2

5

2
,

h f x x x x x z i( ) += − + − + =3 2 4 2 14 3 2 1

3

2

3
,

2 Given that z is a complex zero of  the polynomial f, fi nd the missing 

coeffi cients. Hence, fi nd all the remaining zeros and check your 

answers with a GDC.

a z = –1, f  (x) = x 3 – 13x + a, a ∈ 

b z = 3, f  (x) = x 3 – 7x 2 + ax – 15, a ∈ 

c z = –1 – i, f  (x) = x 4 + 2x 3 – 2x 2 – 8x + a, a ∈ 

d z = –2i, f  (x) = x 4 – 4x 3 + 9x 2 + ax + b, a, b ∈ 
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Sum and product of polynomial roots

François Viète developed formulae that connect the zeros and the 

coeffi cients of  a polynomial. Viète was the fi rst to investigate this 

connection for positive real zeros. Albert Girard was the fi rst to 

extend that to complex zeros.

Polynomials of the third degree

➔ Theorem

Given a cubic equation ax3 + bx2 + cx + d = 0, a, b, c, d ∈ , a ≠ ο

and solutions x
1
, x

2
 and x

3
 then 

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3

+ + = −

⋅ + ⋅ + ⋅ =

⋅ ⋅ = −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Proof

Using the previous results factorize the cubic polynomial 

f  (x) = ax 3 + bx 2 + cx + d = a(x – x
1
)(x – x

2
)(x – x

3
) 

⇒ + + + = − − −( )( )( )x x x x x x x x x
b

a

c

a

d

a

3 2

1 2 3

Expand the right-hand side of  the equation and equate the 

corresponding coeffi cients:

(x – x
1
)(x – x

2
)(x – x

3
) 

= (x 2 – (x
1

+ x
2
) x + x

1
x

2
) (x – x

3
) 

= x 3 – (x
1

+ x
2
) x 2 + x

1
x

2
 · x – x 2 x

3
+ (x

1
+ x

2
) x · x

3
 – x

1 
x

2 
x

3

= x 3 – (x
1

+ x
2 
+ x

3
) x 2 + (x

1
x

2
 + x

1
x

3 
+ x

2
x

3
) x – x

1 
x

2 
x

3

⇒

− + +( ) =

⋅ + ⋅ + ⋅ =

− ⋅ ⋅( ) =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3⎪⎪

⇒

+ + = −

⋅ + ⋅ + ⋅ =

⋅ ⋅ = −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3

Investigation –  Coe  cients of a quartic 
polynomial

Viéte’s formulae connect the zeros and the coef cients of a cubic 

polynomial. 

Find similar formulae that satisfy the relationship between the 

zeros and the coef cients of a quartic polynomial

f  (x) = ax 4 + bx 3 + cx 2 + dx + e, a, b, c, d, e ∈ , a ≠ 0

Albert Girard

(1595–1632) 

introduced the 

abbreviations sin, 

cos and tan for 

trigonometric functions. 

He enrolled at the 

University of Leiden 

at the age of 22. 

Before that he was a 

professional musician, 

playing the lute.

These are Viète’s 

formulae for cubic 

equations.
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Example 

Given that the roots of  a cubic equation 2x3 + 4x2 –7x + 5 = 0 are 

x
1
, x

2
 and x

3
, without solving the equation, fi nd:

a x
1
 + x

2
 + x

3
b x

1
 · x

2
 · x

3
c x

1
 · x

2
 + x

1
 · x

3
 + x

2
 · x

3

d
1

+
1

+
1

1 2 3x x x
e x

1
2 + x

2
2 + x

3
2

Answers

a = 2, b = 4, c = –7, d = 5

a x x x1 2 3
2

2+ + = - = -

b 2 3

5

2
=x x x 

1

Identify the coeffi cients of  the cubic polynomial.

Use x
1
 + x

2
 + x

3
 = – 

b

a

Use x x x1 2 3

d

a
⋅ ⋅ = −

c x x x x x x1 2 1 3 2 3

7

2
⋅ ⋅ ⋅+ + = −

d
1 1 1

=
+

1 2 3

2 3 1 3 1 2

1 2 3x x x

x x x x x x

x x x
+ +

+

= =

7

2
5

2

7

5

e x
1
2 + x

2
2 + x

3
2

 =  (x
1
 + x

2
 + x

3
)2 – 2x

1
x

2
 – 2x

1
x

3
 –2x

2
x

3

= − = + =− −2
7

2
4 11

2
2 7( ) ⎛
⎝⎜

⎞
⎠⎟

Use 1 2 1 3 2 3

c

a
x x x x x x     

Use the results found in parts a and b

Use the formula (x + y + z) 2

= x 2 + y 2 + z 2 + 2xy + 2xz + 2yz.

Use the results found in parts a and c

Theorem

Given a polynomial f  (x) = a
n
x n + a

n – 1 
x n–1 + ... + a

2 
x 2 + a

1 
x + a

0

with real or complex coeffi cients (a
n
≠ 0) and zeros x

1
, x

2
, ...,x

n
 then

x x x x

x x x x x x x x x x x

n
n

n

n

a

a
1 2 3

1

1 2 1 3 1 2 3 2 4 2

+ + + + = −

+ + + + + + +

...

... ... xx x x

x x x x

n n n
n

n

n

n

n

a

a

a

a

+ + =

⋅ ⋅ = −( )

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

...

...

1
2

1 2 3
01



➔ As a general system: 

x x x k ni i i

i i i n

k n k

n
k

k

a

a1 2

1 21

1 1⋅ ⋅ ⋅( ) = −( ) ≤ ≤
≤ < < < ≤

∑ ... ,

These are Viéte’s 

formulae for an 

‘equation’ of the n th

degree.
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Proof

The proof  is a direct consequence of  the ability to write polynomials 

in factorized form: 

f  (x) = a
n
(x – x

1
) (x – x

2
) . . . (x – x

n 
).

By expanding the right hand side and comparing coeffecients you 

obtain the given formulae.

Example 

Find the sum and product of  the zeros of  these polynomials.

a f  (x) = x4 – 3x3 + 11x2 + 17x – 4 b f  (x) = 3x5 + 11x4 – 4x3 + 5x2 – 13x + 9 

c f  (x) = 17x13 + 4x12 + 122x2 – 14x – 17 d f  (x) = 3x2012 + 7x370 – 4x25 – 15x + 2

Answers

a f  (x) = x4 – 3x3 + 11x2 + 17x – 4

n = 4, a
4
 = 1, a

3
 = –3, a

2
 = 11, a

1
 = 17, a

0
= –4

x x x x x x x x
a

a
1 2 3 4

3

4

1 2 3 4

3

1
3+ + + = − ⇒ + + + = − =

x x x x x x x x
a

a
1 2 3 4

4 0

4

1 2 3 41 4
4

1
= − ⇒ = = −( )

Identify n and the coeffi cients of  the polynomial.

Use x
1
 + x

2 
+...+ x

n
= − 

a

a

n

n

1

Use x
1 
x

2 
x

3
 ·... · x

n
= ( 1)n 

a

a

o

n

b f  (x) = 3x5 + 11x4 – 4x3 + 5x2 – 13x + 9

n = 5, a
5
 = 3, a

4
 = 11, a

0
 = 9

5 5
4

=1 =15

11

3
=r r

r r

a

a
x x    

   
5 5

5 5

1 15

9

3
1 = 1 3r r

r r

a

a
x x

 

      

c f  (x) = 17x13 + 4x12 + 122x2 – 14x – 17

n = 13, a
13

 = 17, a
12

 = 4, a
0
 = –17

13 5
12

1 =113

4

17
r r

r r

a

a
x x



    

   
13 13

5 170

1 113

17

17
1 1 1r r

r r

a

a
x x

 

      

d f  (x) = 3x2012 + 7x370 – 4x25 – 15x + 2

n = 2012, a
2012

 = 3, a
2011

 = 0, a
0
 = 2

2012 2012
2011

1 12012

0

3
x 0r r

r r

a

a
x

 

     

   
2012 2012

2012 20120

=1 =12012

2 2

3 3
1 = 1r r

r r

a

a
x x     

For a polynomial of  degree 5 

you need a
5 
, a

4
 and a

o

For a polynomial of  degree 13 

you need a
13 

, a
12 

and a
0

In part a all the 

coeffi cients were 

listed but they are 

not all needed for the 

formulae. 

For a polynomial of 

degreen you need 

a
n 
, a

n − 1
 and a

0
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Note: You can check the results for Example 31 using a GDC.

a b

c d 

In part c you have to adjust the accuracy when converting to a decimal, 

while in part d the degree of  the polynomial was too large for the algorithm 

for fi nding complex zeros. Note that for the sum and product of  the solutions 

given in the form of  a list you use the Math List menu.

Exercise 3N

1 The roots of a cubic equation 3x 
3 – 2x 

2 – 5x – 4 = 0 are x
1
, x

2

and x
3
. Without solving the equation, fi nd:

a x
1 
+ x

2
 + x

3

b x
1 
· x

2
 · x

3

c x
1
 · x

2
 + x

1
 · x

3 
+ x

2
 · x

3

d 
6 6 6

1 2 3x x x

+ +

e 9 9 91

2

2

2

3

2
x x x+ +

 Check your results using a GDC.

2 The roots of  a quartic equation 

x 
4 – 3x 

3 + 2x 
2 – 4x – 6 = 0 are x

1
, x

2
, x

3 
and x

4
. 

Without solving the equation, fi nd:

a x
1 
+ x

2
 + x

3 
+ x

4

b x
1 
· x

2
 · x

3 
x

4

c x
1 
· x

2
 + x

1 
· x

3
 + x

1 
· x

4
 + x

2
 · x

3 
+ x

2 
· x

4 
+ x

3 
· x

4

d x
1 
· x

2
 · x

3 
+ x

1
 · x

2 
· x

4
 + x

1
 · x

3 
· x

4 
+ x

2 
· x

3 
· x

4

e 
3 3 3 3

1 2 3 4x x x x

+ + +

f 
x x x x1

2

2

2

3

2

4

2

5 5 5 5
+ + +

 Check your results using a GDC.
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3 Find the sum and product of  the zeros of  these polynomials.

a f  (x) = x 4 + 2x 3 – 3x 2 + 4 x + 5

b f  (x) = 4x 6 + x 5 + 7x 4 – 3x 3 + 2x

c      
10 7 33

7
( ) 11 5 22f x x x x x

d f  (x) = 5x7007 – 4x7006 + 2x231 + 10x + 8

. Polynomial equations and inequalities

Some useful theorems

Factorization is a common method used to solve polynomial 

equations. Descartes’ rule of  sign, the integer zero theorem and the 

rational zero theorem are valid for polynomials of  all degrees and 

are an aid to fi nding factors. 

Before factorizing, it is useful to know how many real zeros to 

expect for a given polynomial. René Descartes (1596–1650), in his 

work La Géométrie, noticed the following property.

Descartes’ rule of signs

The number of  positive real roots of  a polynomial f is equal to the 

number of  sign changes (from + to − or from − to +) of  its 

coeffi cients, or an even number less. Also the number of  negative 

real roots of  a polynomial f is equal to the number of  sign changes 

of  the coeffi cients of  f  (–x), or an even number less.

For example, the polynomial f  (x) = x 3 – 7x 2 – 9x + 18 has the following 

sequence of signs: +, −, −, +. Here there are two sign changes so there 

are two or zero (an even number less) positive real roots. Now look at 

f  (–x) = (– x)3 – 7(– x)2 – 9(– x) + 18 = –x 3 – 7x 2 + 9x + 18, 

which has the sequence of signs −, −, +, +. In this sequence there is only 

one sign change, so the polynomial f can have only one negative real root.

The following theorems are valid for polynomials with integer coeffi cients.

Integer zero theorem

➔ Given a polynomial 

f  (x) = a
n

x n + a
n – 1

x n –1 + ... + a
2
x 2 + a

1
x + a

0
, a

k
∈ , a

n
≠ 0 

and an integer p such that f  (p) = 0, then p is a factor of  a
0

Proof

f  (p) = a
n 
p n + a

n –1 
p n–1 + ... + a

2 
p2 + a

1 
p + a

0 
= 0

⇒ a
n  
p n + a

n –1 
p n–1 + ... + a

2 
p 2 + a

1 
p = − a

0

⇒ p (a
n 
pn –1 + a

n–1 
p n–2 + ...+ a

2 
p + a

1
) = – a

0

Therefore, p is a factor of  a
0
.  QED

Some cases of cubic 

equations were solved 

by the Babylonians 

(2000–1600 BCE). 

They used tables 

with perfect squares, 

perfect cubes and 

their sums. They 

were able to solve 

equations of the form 

ax3
+ bx = c

Later, in the 13th 

and 14th centuries, 

a group of Italian 

mathematicians, dal 

Ferro, Tartaglia and 

Cardano, developed 

a formula for solving 

a general cubic 

equation. 
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Sometimes, when the coeffi cient a
0
 is not prime there are many 

possible factors. For example, if  a
0
 = 18 ⇒ p ∈ {±1, ±2, ±3, ±6, ±9, 

±18}.

In these cases the search for all possible zeros would take a long 

time. To speed up the process there is a corollary that reduces the set 

of  possible zeros.

Corollary 

Given a polynomial 

f  (x) = a
n

x n + a
n – 1

x n–1 + ... + a
2 
x 2 + a

1
x + a

0
, a

k
∈ , a

n
≠ 0 

and an integer value p such that f  (p) = 0, then for any integer value 

q, p – q is a factor of  f  (q). 

Proof

f  (p) = a
n
p n + a

n – 1
p n–1 + ... + a

2 
p 2 + a

1 
p + a

0 
= 0 (1)

f  (q) = a
n
q n + a

n – 1
q n–1 + ... + a

2 
q 2 + a

1
q + a

0  
(2)

Equation (1) – equation (2)

f p f q a p q a p q a p q a p qn

n n

n

n n( ) − = −( ) + −( ) + + −( ) + −(− −

0

1

1 1

2

2 2

1


( ) ... ))

The terms on the right-hand side of  the equation are grouped in 

such a way that every term containing ( p r – q r), 

r = 1, 2, . . ., n, has a factor of  p – q, so p – q is a factor of  f  (q). QED

This corollary is useful when there are many possible factors for 

integer zeros as you can eliminate some and simplify the search.

Example 

Find all the possible integer zeros of  the polynomial 

f  (x) = x3 – 7x2 – 9x + 18

Answer

p ∈ {± 1, ± 2, ± 3, ± 6, ± 9, ± 18}

f  (1) = 13 – 7 × 12 – 9 × 1 + 18 = 3

p – 1 ∈ {±1, ±3}

⇒ p ∈ {–2, 0, 2, 4}

p ∈ {–2, 2}

List all the possible zeros, i.e. factors 

of  18, by using the integer zero 

theorem.

Use q = 1 to reduce the set of  possible 

factors by using the corollary.

p – 1 is a factor of  3.

This is the intersection of  both sets. 

an b n is divisible by 

a b for all positive 

integers n. The formula 

an b n = (a b)

(an 1 + an 2 b + . . . 

+ abn 2 + bn 1) was 

proved in Chapter 1.
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Note: By using the corollary 1 in Example 32, you only need to 

inspect two values (instead of  all twelve possible values).

By using Descartes’ rule of  signs you can eliminate the positive 

solution (+2) since there must either be two or no positive roots 

(there cannot be only one).

Apply synthetic division for both values (2 and −2) to check this 

conclusion.

1

2

2 •

–38

+ + +

–7 –9 18

1 –5

–10

–19 –20

1

–2

–2 •

–18

+ + +

–7 –9 18

1 –9

18

9 0

Since the remainder when f  (x) is divided by (x – 2) is −20, the 

polynomial is not divisible by (x – 2), so Descartes’ rule works well. 

The remainder when divided by (x + 2) is zero.

x 3 – 7x 2 – 9x + 18 = (x + 2) (x 2 – 9x + 9)

Notice that by examining both possible integer zeros you can 

conclude that the only integer zero is −2, and you did not need to 

factorize the quadratic quotient.

The next theorem is a generalization from integers to rational zeros 

and the proof  is similar.

Rational zero theorem

➔ Given a polynomial 

f  (x) = a
n

x n + a
n–1

x n–1 + ... + a
2
x 2 + a

1
x+ a

0
, a

i 
∈, a

n
≠ 0 and a 

rational number 
p

q
, gcd( , )where p q = 1 that is 

p

q

⎛

⎝
⎜

⎞

⎠
⎟ is in its 

simplest form, such that f
p

q

⎛

⎝
⎜

⎞

⎠
⎟ = 0, then p is a factor of a

0
 and q

is a factor of a
n

Proof

f a a a a
p

q

p

q

p

q

p

q

p

q
n

n

n

n

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= + + + +1

1

2

2

1... ++ =a0 0 (1)

Multiply equation (1) by q n

a
n 
p n + a

n–1
pn–1 q + ... + a

2 
p 2 q n–2 + a

1 
p qn–1 + a

0
 q n = 0   (2)

Rearrange the equation (2)

p(a
n 
pn–1 + a

n–1
pn–2 q + ... + a

2
p qn–2 + a

1
 qn–1) = –a

0
 qn (3)

Since the left-hand side of  the equation (3) has a factor p and 

gcd (p, q) = 1, then p must be a factor of  a
0
. 

gcd( p, q) means 

greatest common 

divisor of p and q

You can also say that 

p and q are co-prime.

See the proof of this 
theorem on the CD
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In a similar way, we can rearrange equation (2) to obtain 

a
n 
pn = –q (a

n–1
p n–1 + ... + a

2 
p2 q n–3 + a

1 
p q n–2 + a

0
 q n–1) (4)

Again, since the right-hand side of  the equation (4) has a factor q

and gcd (p, q) = 1, 

we can conclude that q is a factor of  a
n
.  QED

Corollary 

Given a polynomial f  (x) = a
n

x n + a
n–1

x n–1 + . . . + a
2
x 2 + a

1
x + a

0
, 

a
i
∈ Z, a

n
≠ 0 and a rational number , where gcd( , ) 1

p

q
p q   such 

that f
p

q

⎛

⎝
⎜

⎞

⎠
⎟ = 0, then for any real value k, (p – qk) is a factor of f  (k).

Example 

Given that the polynomial f  (x) = 2x3 − 11x2 − 11x + 15 has no integer 

zeros, fi nd its only rational zero.

Answer

p

q
∈ ± ± ± ±{ }1

2

3

2

5

2

15

2
, , ,

f  (1)  = 2 × 13 – 11 × 12 – 11 × 1 + 15 

= –5

p – q ∈ {±1, ±5}

3 1 3

2 2 2
, ,

p

q

 
 
 

 

Sequence of signs for f  (x): +, , , +

⇒ 2 or 0 positive roots

Sequence of  signs for f  (−x): 

, , +, +

⇒ only 1 negative root

2

–3 –15

+ + +

–11 –11 15

2 –14

21

10 0

3

2
–    •

List all the possible rational 

(non-integer) zeros by using the 

rational zero theorem.

Use corollary 2 with k=1 to reduce 

the set of  possible zeros.

p – 1  q is a factor of  5.

This is the intersection of  both sets.

Apply Descartes’ rule of  signs.

Since there is only one rational 

zero it can only be the negative one 

 
 
 

3

2
,as complex zeros come in 

conjugate pairs.

Use synthetic division. 

2 11 11 15

2 14 10

3 2

2

2 7 5

3

2
2

x x x

x x x
x x

− − +

= + − +⎛
⎝
⎜

⎞
⎠
⎟( )

− +( )

  

= (2x + 3) (x2 – 7x + 5)

So again, the only rational 

zero is 
3

2

Factorize the quotient to simplify 

the divisor.

The quotient is a quadratic 

expression x2 – 7x + 5 whose 

discriminant is 29. Therefore, 

the remaining two solutions are 

irrational.

See the proof of this 
corollary on the CD

Using corollary 2 in 

Example 33, you only 

need to inspect three 

values (instead of all 

eight possible rational 

zeros).

Chapter 3 143



Exercise 3O

1 Solve these equations in the set of  real numbers and check your 

answers with a GDC.

a x3 – 6x2 + 11x – 6 = 0 b x3 + 2x2 – 7x + 4 = 0

c x3 + 3x2 – 4x – 12 = 0 d 2x3 – 5x2 – 18x + 45 = 0

Solving polynomial equations

In this section you will solve polynomial equations using an 

algebraic method and then use a GDC to verify the solutions 

(graphical method). 

To solve a polynomial equation by a graphical method you need to 

fi nd the points of  intersection of  the graph with the x-axis. At these 

points the value of  the function is zero (y = 0), so these points are 

called the zeros of  the function or the roots

Example 

Solve these equations and check your answers by using a graphical method.

a x3 + 2x2 − 5x − 6 = 0

b 6x4 + 17x3 + 10x2 − 7x − 6 = 0

Answers

a Algebraic method:

x x x xx x x3 2 3 22 6 2 65 6+ − = + −− + −
  

  

= x(x2 + 2x + 1) − 6(x + 1)

= x(x + 1)2 − 6(x + 1)

= (x + 1)(x (x + 1) − 6)

= (x + 1) (x2 + x − 6)

= (x + 1)(x − 2)(x + 3)

⇒ (x + 1)(x − 2)(x + 3) = 0

⇒ x
1
 = −1, x

2
 = 2, x

3
 = −3

Split the linear term (5x) for a common factor.

Notice the perfect square (x + 1)2

Use distribution with the common factor (x + 1).

Factorize the quadratic factor x2 + x – 6

Use the zero product theorem.

Graphical method:

x3 + 2x2 − 5x − 6 = 0 ⇒ f  (x) = x3 + 2x2 − 5x − 6 

The solutions are x
1
 = −3, x

2
 = −1 and x

3
 = 2 

b 6x4 + 17x3 + 10x2 − 7x − 6 = 0 

Algebraic method:

1 1 2 1

2 3 3 6
1, 2, 3, 6, , , ,

p

q

 
 
 

        

List all the possible rational zeros by using the 

rational zero theorem.

{ Continued on next page
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6

–6

1 •

–1 •

1

+ + +

+ + +

17 10 –7

6 11

–11

–1

6 5 –6

–6

6

+

–6

0

–6 –5

0

6

6x4 + 17x3 + 10x2 − 7x − 6 

= (x + 1)2 (6x2 + 5x − 6)

 = (x + 1)2 (2x + 3) (3x − 2)

⇒ (x + 1)2 (2x + 3) (3x − 2) = 0

⇒ = − = − =x x x1 2 3 41
3

2

2

3
, ,

Use synthetic division. 

Factorize the quadratic expression.

Use the zero product theorem.

Graphical method:

 The solutions are 

x x x1 2 3 4

3

2

2

3
1= − = − =,  and 

Note that at the point ( 1, 0) the graph is just 

touching, that is tangent to, the x-axis. In this 

case ( 1, 0) is a double, or repeated, zero of  the 

function.

 A polynomial of  degree n can have up to n roots on the real number 

line. It is useful to be able to restrict any search for roots to a fi nite 

window. The next theorem provides such a search window.

Theorem

➔ All the possible zeros of  the polynomial

f  (x) = a
n
x n + a

n–1 
x n–1 + ... + a

1
x + a

0
 are in the interval 

− + +⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

M

a

M

an n

1 1,  where M = max {|a
n
|, |a

n–1
|, . . . |a

1
|, |a

0
|}

For the equations in Example 34:

a M a= = ⇒ − + + = −⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

[ ]6 1 1 1 7 73

6

1

6

1
, , ,

b M a= = ⇒ − + + = −⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

17 6 1 13

17

6

17

6

23

6

23

6
, , ,

Notice that the zeros satisfy the conditions of  the theorem.

See the proof of this 
theorem on the CD
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You could solve both equations on a GDC using the Polynomial tools

feature.

Notice that in the solution to part b the GDC writes the multiplicity 

of  the zero by repeating the value of  the zero (–1) twice.

Exercise 3P

1 Solve these equations in the set of  real numbers and check your 

answers with a GDC.

a 12x 3 + 17x 2 + 2x – 3 = 0 b x 3 – 4x 2 – 5x + 14 = 0

c 3x 3 – 13x 2 + 11x + 14 = 0 d x 4 – x 3 – 11x 2 + 9x + 18 = 0

2 One of the the roots of the equation x 3 + ax 2 – x – 3 = 0 is equal 

to −3.

a Find the value of  a

b Find the other two roots.

3 The equation ax3 – 7x2 + bx + 4 = 0 has one double root which is 

equal to 2.

a Find the values of  a and b

b Find the remaining root.

4 Show that the polynomial f  (x) = x3 + 5x + p does not have an 

integer zero when p is a prime number.

5 Two of  the zeros of  the polynomial f  (x) = x 3 + ax 2 + bx + c, 

a, b, c ∈  are opposite numbers.

a Show that ab = c. 

b Find the third zero.

Solving polynomial inequalities

To solve polynomial inequalities by an algebraic method you 

factorize the polynomial and investigate the signs of  the factors in 

a sign table. Then you fi nd the values of  x for which the inequality 

is true.

To solve polynomial inequalities by a graphical method use a GDC 

to graph the polynomial and identify the values of  x for which the 

inequality is true.

You will graph more 

polynomials in 

Chapter 4.

Quadratic in equalities 

are discussed in 

Chapter 14, section 

2.12.
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Example 

Solve these inequalities.

a x 3 − x 2 −10x − 8 ≥ 0

b 2x 3 − 5x 2 − 6x + 4 < 0 

c 1 − 4x 2 < 5x 3 + 4x

Verify your solutions by using a graphical method.

Answers

a Algebraic method:

x3 − x2 − 10x − 8 = 0

p ∈ {±1, ±2, ±4, ±8}

1

–1

–1 •

–2 •

8

+ + +

+ +

–1 –10 –8

1 –2

2

–8

1 –4 0

0

–2 8

x3 – x2 – 10x – 8 = (x + 2)(x + 1) (x − 4)

x ]−∞, −2[ −2 ]−2, −1[ −1 ]−1 4[ 4 ]4 ∞[

x + 2 − 0 + + + + +

x + 1 − − − 0 + + +

x − 4 − − − − − 0 +

x x x
3 2

10 8− − −
− 0 + 0 − 0 +

x ∈ [−2, −1] ∪ [4, ∞[

Graphical method:

f  (x) = x3 – x2 – 10x – 8

x ∈ [–2, –1] ∪ [4, ∞[

List all the possible zeros.

Use synthetic division.

Fully factorize the polynomial. 

Construct the sign table.

Find the product of  the signs and 

zeros.

Use a GDC to draw the graph of  

the polynomial and identify the 

parts of  the graph that are above 

the x-axis.

Identify the values of  x that 

satisfy the inequality.

Include zeros since it is not a 

strict inequality.
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b Algebraic method:

 2x3 – 5x2 – 6x + 4 = 0 

1

2
1, 2, 4,

p

q

 
 
 

    

k = −1 ⇒ f  (−1) = 3

p + q ∈ {±1, ±3}

1

2
2, 4,

p

q

 
 
 

  

2

1 –4

+ + +

–5 –6 4

2 –4

–2

–8 0

1

2

 
 2

3 2 2

2 2 4

1

2
2 5 6 4 2 4 8

x x

x x x x x x

 

 
 
 

      


 = (2x − 1)(x2 − 2x − 4)

x x x2 2 4 0
2 4 16

2
− − = ⇒ =

± +

= = ±
±2 2 5

2
1 5

2 5 6 4 2 1 1 5 1 53 2x x x x x x− − + = − − + − −( )( )( )

x ] ∞, 1, – 5 [ 1 – 5 ]1 −  5, 
1

2
[

1

2
]
1

2
5[ 5 ]1 + 5, ∞[

x − +1 5 0 + + + + +

2x − 1 − − − 0 + + +

x − −1 5 − − − − − 0 +

Result 0 + 0 0 +

x ∈ −∞ − ∪ +⎤⎦ ⎡⎣
⎤
⎦⎥

⎡
⎣⎢

, ,1 5 1 5
1

2

List all the possible rational zeros.

Use k = –1 to reduce the set of  

possible zeros.

p – (–1) ⋅ q must be a factor of  3.

Find the intersection of  the two 

conditions. 

Use synthetic division. 

Solve the quadratic equation.

Construct the sign table.

Do not include the zeros since the 

inequality was strict.

{ Continued on next page
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 Graphical method:

  3 22 5 6 4f x x x x   

   , 1.24 0.5, 3.24x    

c Algebraic method:

 1 − 4x2 < 5x3 + 4x

 0 < 5x3 + 4x2 + 4x − 1

 5x3 + 4x2 + 4x − 1 = 0

1

5
1,

p

q

 
 
 

  

5

1 1

+ + +

4 4 –1

5 5

1

5 0

0

1

5

 
 2

3 2 2

5 1

1

5
5 4 4 1 5 5 5

x x

x x x x x x

 

 
 
 

      


 = (5x − 1) (x2 + x + 1)

2 1 1 4

2
1 0x x x

       

 So, the only real zero is: x =

1

5

x −∞
⎤

⎦⎥
⎡

⎣⎢
,

1

5

1

5

1

5
, ∞

⎤

⎦⎥
⎡

⎣⎢

5x − 1 − 0 +

x 2 + x + 1 + + +

5x 4 + 39x 3 + 32x 2 + 27x − 7 − 0 +

x ∈ ∞⎤

⎦⎥
⎡

⎣⎢
1

5
,

Use a GDC to draw the graph of  

the polynomial and identify the 

parts of  the graph that are below 

the x-axis.

Identify the values of  x that 

satisfy the inequality. 

Rewrite the inequality so that the 

leading coeffi cient is positive.

List all the possible rational zeros.

Use synthetic division. 

Solve the quadratic equation.

The quadratic equation has no 

real solution so the quadratic 

expression is irreducible on the set 

of  real numbers.

Construct the sign table. Do 

not include the zeros since the 

inequality was strict.

1 5  = −1.24 (3 sf     ) and 

1 5  = 3.24 (3 sf    ).
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Graphical method:

f  (x) = 5x3 + 4x2 + 4x − 1

x ]0.2, ∞[

Use a GDC to draw the graph of  

the polynomial and identify the 

parts of  the graph that are above 

the x-axis.

Identify the values of  x that satisfy 

the inequality.

Example 

Given the polynomials f  (x) = 4x3 − 17x2 + 30x + 5 and g(x) = −2x3 + 8x2 + 9x − 5 

fi nd all the values of  x such that f  (x) ≤ g(x). 

Verify your solution by using a graphical method on a GDC.

Answer

Algebraic method:

4x3 − 17x2 + 30x + 5 ≤ −2x3 + 8x2 + 9x − 5

6x3 − 25x2 + 21x + 10 ≤ 0 

1 5 1 2 5 1 5

2 2 3 3 3 6 6
1, 2, 5, 10, , , , , , ,

p

q

 
 
 

           

k = 1 ⇒ f  (1) = 12

p – q ∈ {±1, ±2, ±3, ±4, ±6, ±12}

1 5 1 2 5 5

2 2 3 3 3 6
1, 2, 5, , , , , ,

p

q

 
 
 

     

Let h(x) = 6x3 – 25x2 + 21x + 10.

Sequence of  signs for h(x): +, , +, +

Sequence of  signs for h( x): , , , +

There can be only one negative root and two or zero positive real roots.

6

15

+ +

–13 –5 0

6 2

5

0

5

2

6

122 • –10

+ + +

–25 21 10

–26

Rewrite the inequality.

List all the possible 

rational zeros.

Use k = 1 to reduce the set 

of  possible zeros.

p – 1 · q must be a factor 

of  12.

Find the intersection of  

both conditions.

Apply Descartes’ rule of  

signs. 

Use synthetic division. 
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3 2

2 3 1

5

2
6 25 21 10 2 6 2

x

x x x x x x



 
 
 

      


6x3 − 25x2 + 21x + 10 = (x − 2)(2x − 5)(3x + 1) 

x −∞ −
⎤

⎦⎥
⎡

⎣⎢
,

1

3

1

3

⎤

⎦⎥
⎡

⎣⎢
1

3
2, 2 2

5

2
,

⎤

⎦⎥
⎡

⎣⎢
5

2

5

2
, ∞

⎤

⎦⎥
⎡

⎣⎢

x − 2 − − − 0 + + +

2x − 5 − − − − − 0 +

3x + 1 − 0 + + + + +

6x 3 − 25x 2 + 21x + 10 − 0 + 0 − 0 +

x ∈ −∞ −
⎤

⎦⎥
⎤

⎦⎥
∪

⎡

⎣⎢
⎤

⎦⎥
, ,

1

3
2

5

2

Fully factorize the 

polynomial.

Construct the sign table. 

Graphical method 1:

f  (x) = 4x3 − 17x2 + 30x + 5 

g (x) = −2x3 + 8x2 + 9x − 5 

x ∈]–∞, –0.333] ∪ [2, 2.5] 

Use a GDC to draw 

the graphs of  both 

polynomials and identify 

where the graph of  f  is 

below the graph of  g.

Identify the values of  x 

that satisfy the inequality.

Graphical method 2:

Let h(x) = f x g x( ) ( )− ≤ 0

x ∈ ]–∞, –0.333] ∪ [2, 2.5]

Rewrite the inequality 

and call the new function 

h(x).

Use a GDC to draw 

the graphs of  the new 

polynomial and identify 

the parts where the graph 

is below the x-axis.

Identify the values of  x 

that satisfy the inequality.

Chapter 3 151



In Example 36 we used two different graphical methods. 

When using method I you may need to examine different windows 

to fi nd the points of  intersection between the graphs. Moreover, it 

can be diffi cult to read which function is upper and which is lower, 

particulary on calculators with poor resolution. Method II is more 

suitable because you don’t need to think about the size of  the window 

since the zeros appear along the x-axis. This saves having to explore 

the different windows if  the intersections between the graphs are 

not visible in the original window.

Example 

Use a GDC to solve the inequality x11 – 3x7 + 2 ≤ 0

Answer

f(x) = x11 – 3x7 + 2

x ∈ ]–∞, –0.906] ∪ [1,1.18]

Use a GDC to draw the graph of  the 

polynomial and identify the parts of  

the graph that are below the x-axis.

Check that the window shows 

all the  possible zeros by fi nding 

the suitable range of  x-values: 

 3 3

1 1
+ 1 + 1 = 4, 4, 

  
      

Identify the values of  x that satisfy 

the inequality.

Sometimes, when equations or inequalities can be easily split into simpler 

polynomial curves, you can sketch these and fi nd the solution by inspection.

Example 

Use simple polynomial graphs to solve the inequality x3 – 3x + 2 ≤ 0

Answer

x x
x x

3

f g

+ 2 3
( ) ( )

 
≤

1 2

(–2, –6)

(1, 3)

3–1–2–4 –3 x

y

y = x3 
+ 2

y = 3x

5

4

3

–3

–8

–7

–6

–5

–4

1

x ∈ ]–∞, –6] ∪ {3}

Split the inequality into a cubic and linear function.

Sketch the graphs of  both the cubic and linear 

functions. Identify the values of  x for which the cubic 

graph is below the linear graph.

Note: You could split the inequality: x 3x 2
f x g x

3

( ) ( )

 
≤ −

In this case the graphs would be exactly the same 

shape but shifted 2 units down.

For the algebraic 

solution of g(x) ≥ f  (x)

the syllabus restricts 

polynomials to degree 

3 or below. However, 

graphical methods on 

a GDC can be used 

for solving polynomial 

equations and 

inequalities of degree 

4 or higher.
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Exercise 3Q

1 Solve these inequalities in the set of  real numbers and check 

your answers with a GDC.

a x 3 – 6x 2 + 11x – 6 ≥ 0 b x 3 + 2x 2 – 7x + 4 ≤ 0

c x 3 + 3x 2 – 4x – 12 < 0  d 2x 3 – 5x 2 – 18x + 45 > 0 

e 12x 3 + 17x 2 + 2x – 3 ≤ 0 f x 3 – 4x 2 – 5x + 14 > 0

g 3x 3 – 13x 2 + 11x + 14 < 0 h x 4 – x3 – 11x 2 + 9x + 18 ≥ 0

2 Given the polynomials f  (x) = 4x 3 – 17x 2 + 30x + 5 and 

g (x) = –2x 3 + 8x 2 + 9x – 5, fi nd all the values of  x such that 

f  (x) > g(x). 

 Verify your solution by using a graphical method on a GDC.

3 Use a GDC to solve these inequalities.

a x7 – 2x 3 – 1 ≥ 0 b x 9 – 2x 8 + 2x 5 + x ≤ 0

4 Use simple polynomial graphs to fi nd the solutions of  these 

inequalities.

a x3 + x – 2 > 0 b –2x 3 + 3x + 1 ≥ 0  c x 4 + 2x + 1 ≤ 0

. Solving systems of equations

Systems of two linear equations with two 
unknowns with complex coe  cients

When solving simultaneous equations with complex coeffi cients the 

methods of  elimination and substitution can be very demanding. 

The method shown here will lead to general formulae for the 

solutions.

ax by e

cx dy f

+ =
+ =

⎧
⎨
⎩

Multiply fi rst equation by d and 

second equation by b to obtain equal 

coeffi cients for the variable y.

⇒
+ =
+ =

⎧
⎨
⎩

⎞

⎠
⎟

adx bdy ed

bcx bdy fb

Subtract the equations to eliminate the 

variable y.

⇒ − = −adx bcx ed fb

⇒ −( ) = −x ad bc ed fb Factorize the left hand side.

⇒ = − ≠x ad bc
ed fb

ad bc
, 0

a by e
ed fb

ad bc
× + = Substitute the value of  x in the fi rst 

equation to fi nd the value of  y.

⇒ = − ×by e a
ed fb

ad bc

For more on solving 

systems of two linear 

equations with two 

unknowns with 

real coef cients, 

see Chapter 14 

section 2.5.
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⇒ = − − −
by

e ad bc a ed fb

ad bc

( ) ( )

= − − +ead ebc aed afb

ad bc

= afb ebc

ad bc
⇒ = ×y

b af ec

ad bc b

( ) 1

= − ≠af ec

ad bc
ad bc, 0

So the general form of  the solution is 

x y ad bc
ed fb

ad bc

af ec

ad bc
, , ,( ) ⎛

⎝
⎜

⎞
⎠
⎟= − ≠ 0

Example 

Solve the simultaneous equations 

2 3 3

1 2 2

x i y

ix i y i

+ −( ) =
+ +( ) =

⎧
⎨
⎩

Answers

a b i c i d i e f i= = − = = + = =2 3 1 2 3 2, , , , ,

2 1 2 3 2 4 3 1 1× + − − × = + − − = +( ) ( )i i i i i i

3 1 2 3 2 3 6 6 2 1× + − − × = + − − =( ) ( )i i i i i

2 2 3 4 3× − × = − =i i i i i

x i
i

i

i

i
= × = = −

+

1

1

1

1

1

2

1

2

1

2

y i
i

i

i

i

i
= × = = +

+

+

1

1

1

1

2

1

2

1

2

x y i i, ,( ) = − +⎛
⎝
⎜

⎞
⎠
⎟

1

2

1

2

1

2

1

2

The same result can be obtained on a GDC, 

using Solve Systems of  Linear Equations.

Identify the coeffi cients.

Find the denominator 

ad – bc

Find ed – fb, the 

numerator for x

Find af  – ec, the 

numerator for y

Apply the formulae for 

x and y.

These formulae are 

very ef cient when 

the coef cients of the 

simultaneous liner 

equations are complex 

numbers.

Notice that we could 

have substituted 

the value of x in the 

second equation to 

 nd the value of y

For a method using 
determinants See the CD.
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Systems of three linear equations with three unknowns

You can use the methods of  substitution and elimination to reduce a 

system of  three equations with three unknowns to a system of  two 

equations with two unknowns.

Example 

Solve the system of  equations: 

2 4 5

3 5 4

6

x y z

x y z

x y z

+ + =
− − =
+ − =

⎧

⎨
⎪

⎩
⎪

Use:

a the method of  substitution

b the method of  elimination.

Answers

a x y z
x y x y

x y x y
+ − = ⇒

+ + + − =
− − + − =

( )
( )

⎧
⎨
⎪

⎩⎪
6

2 4 6 5

3 5 6 4

Use the third equation to express z in terms of  x and y 

and substitute for z in the first two equations.

Use z because the coeffi cients of  z are simpler.

⇒
+ =

− = −

⎧
⎨
⎪

⎩⎪

3 5 11

2 6 2

x y

x y

⇒
− + =

= −

( )⎧
⎨
⎪

⎩⎪

3 3 1 5 11

3 1

y y

x y

⇒
− + =

= −

⎧
⎨
⎪

⎩⎪

9 3 5 11

3 1

y y

x y

⇒
=

= −

⎧
⎨
⎪

⎩⎪

14 14

3 1

y

x y

⇒
=

= ⋅ − =

⎧
⎨
⎪

⎩⎪

y

x

1

3 1 1 2

 ⇒ z = 2 + 1 – 6 = –3

 ⇒ (x, y, z ) = (2, 1, –3)

Use 2x  6y = 2 to express x in terms of  y and 

substitute for x in 3x + 5y = 11

If you use substitution 

to obtain a system of 

two equations with two 

unknowns, you don't 

have to use the same 

method to solve for 

the unknowns in this 

new system – you can 

use elimination.

b 


 
 

 
 
 

  


    


   


  

2 4 5

3 5 4 5 9

3 5 112 4 5

6

x y z

x y z x y

x yx y z

x y z

25 5 45

3 5 11

x y

x y

 
 

 

 
 

 

 ⇒ 28x = 56 

 ⇒ x = 2

 ⇒ 5 · 2 – y = 9 ⇒ 1 = y

 ⇒ 2 + 1 – z = 6 ⇒ –3 = z

 ⇒ (x, y, z) = (2, 1, –3)

To eliminate z,add the fi rst and second equations and the 

fi rst and third equations.

You must eliminate the same unknown from both pairs 

of  equations. Eliminate z because z has the simplest 

coeffi ecients.

To eliminate y, multiply 5x − y = 9 by 5 and 

then add 3x + 5y = 11.

To fi nd y substitute x = 2 in 5x − y = 9

To fi nd z substitute x = 2 and y = 1 in x + y − z = 6
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Linear systems with three unknowns can also be solved using a GDC.

When solving systems of  three simultaneous linear equations with 

three unknowns there are again three possible types of  solution:

i  A unique triplet of  numbers (the three variables) that satisfi es all 

three equations.

ii No triplet of  real numbers that satisfi es all the equations.

iii Infi nitely many triplets of  real numbers that satisfy all the equations.

To solve three linear equations in three unknowns a special method of  

elimination was invented by Johann Carl Friedrich Gauss (1777–1855). 

The method, called the Gaussian method, is more suitable to use when 

the coeffi cients of  the system are in matrix form. It involves eliminating 

variables in order until you reach the last variable. Consequently you 

fi nd the variables in reverse order to the order of  elimination. 

Example 

Use the Gaussian method to solve the simultaneous equations 

x y z

x y z

x y z

+ − =

− + =

+ − =

⎧

⎨
⎪

⎩
⎪

3 2 3

2 4 3 5

4 6

Answer

x y z

x y z

x y z

+ − =

− + =

+ − =

⎧

⎨
⎪

⎩
⎪

3 2 3

2 4 3 5

4 6

1

2

3

( )

( )

( )

x y z

y z

y z

+ − =

− =

− =

⎧

⎨
⎪

⎩
⎪

3 2 3

10 7 1

11 7 6

1

4

5

( )

( )

( )

x y z

y z

z

z

+ − =

− =

− = −

=

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

3 2 3

10 7 1

1

4

7

10

49

10
7

7

( )

( )

( )

Eliminate x from equations (2) and (3)

To obtain equation (4) subtract (2) from 2  (1)

To obtain equation (5) subtract (3) from 4  (1)

To obtain equation (7) subtract (5) from 
11

10
(4)

Use equation (7) to fi nd z 

The geometrical 

interpretation of a 

linear equation in 

three variables as a 

plane is developed in 

Chapter 11.

For a method using 
determinants see the CD

{ Continued on next page
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x y z

y

y

+ − =
− =

=

⎧

⎨
⎪

⎩
⎪

3 2 3

10 7 7 1

5

x

x

x

+ − ≠
+ ≠

=

⎧

⎨
⎪

⎩
⎪

3 5 2 7 3

1 3

2

The solution is    , , 2, 5, 7x y z

Substitute z = 7 in equation (4) to fi nd y

Substitute y = 5 and z = 7 in equation (1) to fi nd the 

value of  x

Example 

Discuss all the possible types of  solution of  this system of  equations with respect to 

the real parameter a

ax y z

x y z

x y z

+ + =
+ + =
+ − =

⎧

⎨
⎪

⎩
⎪

3

1

2 2

Answer

ax y z

x y z

x y z

a x

x y

+ + =
+ + =
+ − =

⇒
− =
+ =

⎧

⎨
⎪

⎩
⎪

( )
3 1

1 2

2 2 3

1 2 4

2 3 3 5

( )

( )

( )

( )

( ))

⎧
⎨
⎪

⎩⎪

⇒
=

⋅ + =
⇒

=

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎧

⎨
⎪⎪

⎩
⎪
⎪

x

y

x

y

a

a

a

a

a

2

1

2

1

2

1

3 7

3 3
2 3 3








  



 

  

2

1

3 7

3 3

2 3 7

1 3 3
1

a

a

a

a

a a

x

y

z

⇒ = ≠( )
−

−
−

−
−

⎛
⎝
⎜

⎞
⎠
⎟x y z a

a

a

a a
, , , , ,

2

1

3 7

3 3

2

3 3
1

If  a = 1 ⇒ 0 ⋅ x = 2 ⇒ 0 = 2

⇒ (x, y, z) ∈ ϕ

Eliminate z

To obtain equation (4) subtract (2) from (1).

To obtain equation (5) add (2) and (3).

To fi nd a unique solution assume that a ≠ 1.

To fi nd y substitute for x in (5).

To fi nd z substitute for x and y in (2).

The unique solution when a ≠ 1

Equation (4) gives a false statement therefore there 

is no solution when a=1.

Exercise 3R

1 Solve the following simultaneous equations and check your 

answers with a GDC.

a 
2 2 3 1

1 2 3

ix i y

i x y

+ + =

+ + =

⎧
⎨
⎪

⎩⎪

( )

( )
b

1 3 2 6

2 4 3 4 3

+ + = +

− − + = −

( )⎧
⎨
⎪

⎩⎪

i x iy i

i x i y i( ) ( )
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2 Solve these systems of  equations.

a 

x y

x z

y z

+ = −

+ =

+ =

⎧

⎨
⎪

⎩
⎪

1

4

1

b

x y z

x y z

x y z

− + = −

− + =

+ − =

⎧

⎨
⎪

⎩
⎪

5 3 1

3 2 4

2 2

c 

2 2 0

6 4 5 2

4 3 2

x y z

x y z

x y z

+ + =

− − = −

+ − =

⎧

⎨
⎪

⎩
⎪

d

3 4 3 2

2 6 6

2 6 3 8

x y z

x y z

x y z

− + = −

+ + =

− − = −

⎧

⎨
⎪

⎩
⎪

e 

x y z

x y z

x y z

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

2 4

2 2 5

3 2 3 12

f

2 3 5 1

9 7 16 0

2 3 9

x y z

x y z

x y z

− + = −

− + =

− + =

⎧

⎨
⎪

⎩
⎪

3 Find the value(s) of  a real parameter k so that each system of  

equations has no unique solution.

a 

x y z

x y z

x y kz

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

2 0

2 2 1

2 2

 b 

x y z

x ky z

x y kz

+ + =

+ + = −

+ + = −

⎧

⎨
⎪

⎩
⎪

1

2 3 2

3 5 1

4 Find the value(s) of  a real parameter k so that each system of  

equations has infi nitely many solutions. Find the solutions.

a 

x y z

kx y z

x y z

+ + =

+ + =

+ − =

⎧

⎨
⎪

⎩
⎪

2 3 1

4 3 2

3 6 2 3

b 

x y z

x ky z

x y kz

+ + =

+ + = −

+ + = −

⎧

⎨
⎪

⎩
⎪

1

2 3 2

3 5 1

5 Find the values of  a real parameter m so that the 

system of  equations has a unique solution.

x y z m

x my z m

x y mz

+ + =

+ + =

+ + = −

⎧

⎨
⎪

⎩
⎪

2

1

 Hence, find the solution in terms of  m

For more challenging 
systems of simultaneous 
equations see the CD
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Review exercise

EXAM-STYLE QUESTIONS

1  When the polynomial f  (x) = x 4 – 3x 3 + ax 2 – 4x + 7 is divided by 

(x + 2) the remainder is 7. Find the value of  a

2  Solve the simultaneous equations:

3 2 2

4 1 3 3

x y i

y i x i

− = −
− − = +( )

⎧
⎨
⎪

⎩⎪

3  Find the value of  m in the quadratic function 

f  (x) = m – 2 + (2m + 1)x + mx2 if  f  (x) ≤ 0 for all real x

4  Given that 1 – 2i is a complex root of  the equation 

z  4 –2z  3 + 14z  2 – 18z + 45 = 0, fi nd the remaining roots.

5  Find the value of  m such that this system of  equations has no 

unique solution.
mx y

x m y

+ =
+ + =( )

⎧
⎨
⎪

⎩⎪

2 1

4 2 4

6  Find the value of  a such that the roots α and β of  the quadratic 

equation x 2 + ax + a + 1 = 0 satisfy α 3 + β 3 = 9

7  Given that z
i= +1

2
, use mathematical induction to show that 

z nn
n

n

i2

2
= ∈ +, 

8 Show that the imaginary part of  the number 
1

1

2011+⎛
⎝
⎜

⎞
⎠
⎟

i

i
 is −1.

9  The cubic equation x 3 – 5x 2 + 6x – 3 = 0 has solutions α, β and γ. 

Find the value of
  

 
2 2 2

1 1 1

10 a Show that 7 50 7 503 3− + +  satisfi es the equation 

x3 + 3x – 14 = 0

 b  Factorize the polynomial f  (z) = z3 + 3z – 14, z ∈  and fi nd all 

the possible zeros.

 c Hence, fi nd the value of  7 50 7 503 3− + +

✗
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CHAPTER 3 SUMMARY

Zero factor property

a b = 0 ⇒ a = 0 or b = 0 

Quadratic formula

ax bx c x
b b ac

a

2
2

0
4

2
+ + = ⇒ =

− ± −

Discriminant

Δ = b2 – 4ac

i Ιf  Δ > 0 there are two distinct real roots.

ii Ιf  Δ = 0 there is one repeated real root.

iii  Ιf  Δ < 0 there are no real roots (conjugate complex pair of  

solutions.)

Review exercise
EXAM-STYLE QUESTIONS

1 Solve the inequality x 3 + 5x 2 + 2x – 22 ≥ 0

2  Find all the values of  the real parameter m for which the 

equation (mx)2 + 3x + 1 – m = 0 has no real solution.

3  Solve these simultaneous equations and write your answers as 

fractions.







   

  

  

2 14 9 7

4 3 4 7

10 28 5 6

x y z

x z y

x y z

4  Given that α, β and γ are solutions of  the equation 

3x3 + 2x = 5x2 + 4, fi nd the value of  α3 + β 3 + γ 3

5  Find the smallest zero of  the polynomial 

f  (x) = x 7 + 35x 6 – 97x 5 + 33x 2 + 4

Continued on next page
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Operations with complex numbers

Given that z
1
 = a

1
 + ib

1
, z

2
 = a

2
 + ib

2
, a

1
, b

1
, a

2
, b

2
∈ 

(z
1
 = z

2
) ⇔ (a

1
 = a

2
 and b

1
 = b

2
) 

z
1
± z

2
 = (a

1
± a

2
) + i(b

1
± b

2
)

λz = λ(a + ib) = (λa) + i(λb), λ ∈ 

z
1

z
2
 = (a

1
a

2
 – b

1
b

2
) + i(a

1
b

2 
+ a

2
b

1
)

|z| = |a + ib| = a2 + b2

z

z

a a b b i a b a b

a b

z z

z

1

2

1 2 1 2 2 1 1 2

2

2

2

2

1 2

2

= =
+( ) + −( )

+

*

Axioms of complex numbers

A For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 is a complex 

number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 = z

2
 + z

1

(Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then 

(z
1
 + z

2
) + z

3
 = z

1
 + (z

2
 + z

3
) (Associativity)

A  There exists a complex number 0 = 0 +0i such that for every 

complex number z, 0 + z = z + 0 = z (Additive identity)

A  For every complex number z there exists a complex number –z

such that z + –z = –z + z = 0 (Additive inverse)

A  For every complex numbers z
1
 and z

2
 then z

1
 · z

2
 is a complex 

number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
z

2
 = z

2
z

1

(Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then 

(z
1

z
2
) z

3
 = z

1
 (z

2
z

3
) (Associativity)

A  There exists a complex numbers 1 = 1 +0i such that for every 

complex numbers z, 1 z = z · 1 = z (Multiplicative identity)

A  For every complex numbers z, z ≠ 0, there exists a 

complex numbers z–1 such that z · z–1 = z–1 · z = 0 

(Multiplicative inverse)

A  For every complex numbers z
1
, z

2
 and z

3
 then 

z
1

 (z
2
 + z

3
) = z

1
z

2
 + z

1
z

3
 (Distributivity of  multiplication 

over addition)
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Viète’s formulae for quadratic equations

ax bx c2 0+ + = ⇒ x x x x
b

a

c

a
1 2 1 2+ = − ⋅ =and 

Viète’s formulae for cubic equations

ax3 + bx2 + cx + d = 0 ⇒

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3

+ + = −

⋅ + ⋅ + ⋅ =

⋅ ⋅ = −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Viète’s formula for equations of 
the nth degree

a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x2 + a

1
x + a

0
= 0 ⇒

x x x k ni i i

i i i n

k n k

n
k

k

a

a1 2

1 21

1 1⋅ ⋅ ⋅ = − ≤ ≤( ) ( )
≤ < < < ≤
∑ ... ,

Degree of polynomials

The degree of  a polynomial, f  (x) = a
n
x n + an–1 xn–1 + ... + a

1
x + a

0
, 

is the largest power of  x appearing: deg(f  ) = n

For a liner combination of  two polynomials, af  (x) + bg(x) 

with a, b ∈ , or the product of  two polynomials, f  (x) g(x), 

the degree is given by

deg(af + bg ) = max{deg( f  ), deg( g)}

deg( f g) = deg( f  ) + deg( g)

Unique decomposition

For any two polynomials f  and g there are unique polynomials 

q and r such that f  (x) = g (x) q (x) + r (x), for all real values of  x

Remainder theorem

Given a polynomial 

f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x2 + a

1
x + a

0
, a

k
∈ , 

k = 0, 1, 2, ..., n, a
k
≠ 0 and a real number p, then the 

remainder when f  (x) is divided by a linear expression 

(x – p) is f  (p).
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Factor theorem

A polynomial f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x 2 + a

1
x + a

0 
with 

real coeffi cients (a
n 
≠ 0) has a factor (x –  p), p ∈, if  and only 

if  f  ( p) = 0.

Fundamental theorem of algebra (FTA)

A polynomial f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x 2 + a

1
x + a

0 
with 

real or complex coeffi cients (a
n 
≠ 0) has at least one zero.

Each polynomial f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x 2 + a

1
x + a

0

with real coeffi cients can be written in a factor form 

f  (x) = a
n
(x – ω

1
) (x – ω

2
) ... (x – ω

n 
) such that ω

k
∈ , k, ..., n. 

Given a polynomial  

f  (x) = a
n

x n + a
n – 1

x n –1 + ... + a
2
x 2 + a

1
x + a

0
, a

k
∈ , a

n
≠ 0 

and an integer p such that f  (p) = 0, then p is a factor of  a
0

Given a polynomial 

f  (x) = a
n

x n + a
n–1

x n–1 + ... + a
2
x 2 + a

1
x+ a

0
, a ∈  a

n
≠ 0 and a rational 

number 

p

q
, gcd( , )where p q = 1 that is 

p

q

⎛

⎝
⎜

⎞

⎠
⎟ is in its simplest form, such that 

f
p

q

⎛

⎝
⎜

⎞

⎠
⎟ = 0, then p is a factor of a

0
 and q is a factor of a

n

All the possible zeros of the polynomial

f  (x) = a
n
x n + a

n–1 
x n–1 + ... + a

1
x + a

0
 are in the interval 

− + +⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

M

a

M

an n

1 1,  where M = max {|a
n
|, |a

n–1
|, . . . |a

1
|, |a

0
|}
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