Exercise 8C

1 Consider these sets:

 $M = \{x \mid 2 \le x < 5, x \in \mathbb{Z}\}$ $N = \{x \mid 0 < x \le 5, x \in \mathbb{Z}\}$ $P = \{x \mid -2 \le x < 6, x \in \mathbb{Z}^+\}$ $S = \{(x, y) \mid x + y = 5, x \in \mathbb{Z}^+, y \in \mathbb{Z}^+\}$ $T = \{(x, y) \mid x + y = 5, x \in \mathbb{Z}, y \in \mathbb{Z}\}$ $V = \{p \mid p \text{ is a prime number and a multiple of } 4\}$ $W = \{x \mid x \text{ is a factor of } 20\}$ $X = \{x \mid x < 200, x \in \mathbb{R}\}$

State whether each statment is true or false:

a $N \subset M$ **b** $S \subset T$ **c** $P \subset M$ **d** $W \subset X$ **e** $M \subset P$ **f** $P \subset N$ **g** $\emptyset \subset T$ **h** $V \subset W$

- **2 a** List all the subsets of
 - i $\{a\}$ ii $\{a, b\}$ iii $\{a, b, c\}$ iv $\{a, b, c, d\}$
 - **b** How many subsets does a set with *n* members have?
 - **c** How many subsets does $\{a, b, c, d, e, f\}$ have?
 - d A set has 128 subsets. How many elements are there in this?
- **3** a List all the proper subsets of
 - i $\{a\}$ ii $\{a, b\}$ iii $\{a, b, c\}$ iv $\{a, b, c, d\}$
 - **b** How many proper subsets does a set with *n* members have?
 - **c** How many proper subsets has $\{a, b, c, d, e, f\}$?
 - d A set has 254 subsets. How many elements are there in this?

Intersection

→ The intersection of set M and set N (denoted $M \cap N$) is the set of all elements that are in **both** M and N.

 $M \cap N$ is the shaded region on the Venn diagram:

Example 4

Given the sets: $A = \{1, 2, 3, 4, 5\}$ $B = \{x \mid 0 < x \le 5, x \in \mathbb{Z}\}$ $C = \{p \mid p \text{ is a prime number and a multiple of 10}\}$ $D = \{4, 5, 6, 7\}$ $E = \{x \mid x \text{ is a square number less than 50}\}$ write down the sets a $A \cap D$ b $A \cap B$ c $D \cap E$ d $C \cap D$		
Answers a $A \cap D = \{4, 5\}.$	First, list the elements of each set: $A = \{1, 2, 3, 4, 5\}$ $B = \{1, 2, 3, 4, 5\}$ $C = \emptyset$ $D = \{4, 5, 6, 7\}$ $E = \{1, 4, 9, 16, 25, 36, 49\}$ Compare the sets $A = \{1, 2, 3, 4, 5\}$ and	
 b A ∩ B = {1, 2, 3, 4, 5}. c The element 4 lies in both sets, hence D ∩ E = {4}. d C ∩ D = Ø. 	$D = \{4, 5, 6, 7\}.$ Sets A and B are identical. $D = \{4, 5, 6, 7\}$ and $E = \{1, 4, 9, 16, 25, 36, 49\}.$ C does not contain any elements; hence there is no element that lies in both sets.	Is it always true that for any set X: $\emptyset \cap X = \emptyset$ and $X \cap X = X$?

Union

→ The union of set M and set N (denoted $M \cup N$) is the set of all elements that are in **either** M or N or **both**.

 $M \cup N$ is the shaded region on the Venn diagram:

 $M \cup N$ includes those elements that are in **both** *M* and *N*. This is important!

Example 5

Given the sets: $A = \{1, 2, 3, 4, 5\}$ $B = \{1, 2, 3, 4, 5\}$ $C = \emptyset$ $D = \{4, 5, 6, 7\}$ $E = \{1, 4, 9, 16, 25, 36, 49\}$ Write down the sets a $A \cup D$ b $A \cup B$ c $C \cup D$			
Answers a $A \cup D = \{1, 2, 3, 4, 5, 6, 7\}$ b $A \cup B = \{1, 2, 3, 4, 5\}$ c $C \cup D = \{4, 5, 6, 7\}$	$A = \{1, 2, 3, 4, 5\} and$ $D = \{4, 5, 6, 7\}.$ To write down $A \cup D$ list every element of each set, but only once . A and B are identical. $C = \emptyset and D = \{4, 5, 6, 7\}.$ $C \cup D = D, since there are no extra elements to list from C.$		

Complement

→ The **complement** of set M, denoted as M', is the set of all the elements in the universal set that **do not** lie in M.

M' is the shaded part of this Venn diagram:

U

Ν

→ The complement of the universal set, U', is the empty set, \emptyset .

We can use Venn diagrams to represent different combinations of set complement, intersection and union. For example, $M \cap N'$ is shown here:

To see this in more detail, look at at the separate diagrams of M and N':

М

Is it always true that for any set X: $\emptyset \cup X = X$ and $X \cup X = X$? Combining these for the intersection $M \cap N'$ gives shading only in the area common to both diagrams.

This diagram shows the set $M \cup N'$. Since it is the region that satisfies **either** M **or** N', it includes the shading from both diagrams.

Exercise 8D

- Copy the Venn diagram for sets *P* and *Q*. Shade the region that represents
 - a $P \cup Q'$ b $P \cap Q'$ c $P' \cup Q'$ d $P' \cap Q'$ e $(P \cup Q)'$ f $(P \cap Q)'$
- **2** Copy the Venn diagram for sets *H* and *N*. Shade the region that represents
 - a H' b $H \cap N'$ c N'
 - d $H' \cup N'$ e $H' \cap N'$ f $H \cup N'$
- **3** Copy the Venn diagram for sets *W* and *R*. Shade the region that represents
 - a W' b $W' \cap R'$ c $W' \cap R$ d $W' \cup R'$ e $(W \cup R)'$ f $(W' \cap R)'$
- 4 *U* is defined as the set of all integers. Consider the following sets:

 $A = \{1, 2, 3, 4, 5\}$ $B = \{x \mid 0 \le x \le 5, x \in \mathbb{Z}\}$ $C = \{p \mid p \text{ is an even prime number}\}$ $D = \{4, 5, 6, 7\}$ $E = \{x \mid x \text{ is a square number less than } 50\}$ Write down the sets: a $A \cap B$ **b** $B \cap E$ c $C \cap D$ d $C \cap E$ e $B \cap D$ h $\mathcal{C} \cup D$ i $C \cup A$ i $B \cup D$ **f** $A \cup B$ g $B \cup A$ Decide whether each statment is true or false. **n** $C \subset D$ **o** $(C \cap D) \subset E$ **k** $A \subset B$ **l** $B \subset A$ **m** $C \subset A$

0 ^U

U

Venn diagrams can show individual set elements as well.

Example 6

You can use Venn diagrams to work out the **number of elements** in each set without writing them all down.

Example 7

The statements in e and **f** help you decide whether statements g and h are true or false.

Exercise 8E

1 Is each statement true or false?

a
$$F \subset G$$

b $n(F \cup G) = 6$
c $n(G') = 8$
d $n(F \cup H) = 6$
e $H \cup F = G'$
f $F' \subset H$

d
$$n(F \cup H) = 6$$

f $F' \subset H$
h $n(F' \cap G) = 5$

g $n(G' \cap H) = 5$

- a U
- **b** *R*
- **c** *R*′
- **d** T
- **e** T'
- **3** List the elements of
 - a A
 - **b** A'
 - c $A \cup B'$
 - **d** $A \cap B'$
 - e $A' \cup B'$

G

U

Н

