Converse, inverse, contrapositive

In this presentation we will take a look at conditional statements of the form $p \to q$ and introduce the converse, the inverse and the contrapositive of such conditional statements.

Definition

Given a conditional statement $p \rightarrow q$:

the **converse** of this statement is $q \rightarrow p$,

the **inverse** of this statement is $\neg p \rightarrow \neg q$,

the **contrapositive** of this statement is $\neg q \rightarrow \neg p$.

Consider the statement:

If it rains, then
$$2 + 2 = 4$$
.

This statement is of the form ho o q, where:

- p it rains
- q 2 + 2 = 4

Consider the statement:

If it rains, then
$$2+2=4$$
.

This statement is of the form $p \rightarrow q$, where:

- p it rains
- q 2 + 2 = 4

The **converse** of this statement will be $q \rightarrow p$,

If 2+2=4, then it rains.

The **inverse** of this statement will be $\neg
ho
ightarrow \neg g$, so it will be:

If it doesn't rain, then $2+2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

If $2+2 \neq 4$, then it doesn't rain

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If
$$2 + 2 = 4$$
, then it rains.

The **inverse** of this statement will be $\neg
ho
ightarrow \neg g$, so it will be

If it doesn't rain, then $2+2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

If $2+2 \neq 4$, then it doesn't rain.

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If
$$2 + 2 = 4$$
, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$,

If it doesn't rain, then
$$2+2 \neq 4$$
.

The **contrapositive** of this statement will be $\neg g \rightarrow \neg p$, so it will be:

If $2+2 \neq 4$, then it doesn't rain.

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If
$$2 + 2 = 4$$
, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then
$$2 + 2 \neq 4$$
.

The **contrapositiv**e of this statement will be $\neg g \rightarrow \neg p$, so it will be:

If $2+2 \neq 4$, then it doesn't rain.

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If
$$2 + 2 = 4$$
, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$,

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If
$$2 + 2 = 4$$
, then it rains.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If it doesn't rain, then $2 + 2 \neq 4$.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

If $2 + 2 \neq 4$, then it doesn't rain.

Consider the statement:

If a number is divisible by 4, then it is divisible by 2.

This statement is of the form $p \rightarrow q$, where:

p a number is divisible by 4

q a number is divisible by 2

Consider the statement:

If a number is divisible by 4, then it is divisible by 2.

This statement is of the form $p \rightarrow q$, where:

- p a number is divisible by 4
- q a number is divisible by 2

The **converse** of this statement will be $q \rightarrow p$,

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg
ho
ightarrow \neg g$, so it will be::

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If a number is divisible by 2, then it is divisible by 4.

I he **inverse** of this statement will be eg p
ightarrow
eg q, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$,

If a number is not divisible by 4, then it is not divisible by 2:

The **contrapositive** of this statement will be eg q
ightarrow
eg p, so it will be:

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q
ightarrow
eg p$, so it will be:

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$,

The **converse** of this statement will be $q \rightarrow p$, so it will be:

If a number is divisible by 2, then it is divisible by 4.

The **inverse** of this statement will be $\neg p \rightarrow \neg q$, so it will be:

If a number is not divisible by 4, then it is not divisible by 2.

The **contrapositive** of this statement will be $\neg q \rightarrow \neg p$, so it will be:

Exercise

Construct truth tables for the statement $p \to q$, its converse, its inverse and its contrapositive. Hence decide which pairs of statements are equivalent.