677

Converse: False Inverse: False Contrapositive: True ii Implication: True Converse: True Inverse: True Contrapositive: True

iii Implication: False Converse: True Inverse: True Contrapositive: False

- No weak students are in Year 11.
 - ii No Year 11 students are weak.
 - i If $x \in W$ then $x \notin E$. ii If $x \in E$ then $x \notin W$.
 - They are contrapositives.

EXERCISE 8F.1

1	a	$p \Leftrightarrow q$
		$\neg q$

p

C	p	q	$p \Leftrightarrow q$	$\neg q$	$(p \Leftrightarrow q) \land \neg q$	$\neg p$	$(p \Leftrightarrow q) \land \neg q \Rightarrow \neg p$
	Т	Т	T	F	F	F	T
	Т	F	F	Т	F	F	T
	F	Т	F	F	F	Т	T
	F	F	Т	Т	T	Т	T

We have a tautology, : argument is valid.

2 a i
$$(p \Rightarrow q) \land \neg q \Rightarrow \neg p$$

$$(p \lor q) \land \neg p \Rightarrow q$$

$$iii \quad (p \lor q) \Rightarrow p$$

iv
$$(p \Rightarrow q) \land \neg p \Rightarrow \neg q$$

$$(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow p$$

b	i

p	q	$p \Rightarrow q$	$\neg q$	$(p \Rightarrow q) \land \neg q$	$\neg p$	$ (p \Rightarrow q) \land \neg q \\ \Rightarrow \neg p $
Т	T	T	F	F	F	T
Т	F	F	Т	F	F	T
F	T	T	F	F	Т	T
F	F	T	Т	T	Т	T

: argument is valid.

ii	p	q	$p\vee q$	$\neg p$	$(p \vee q) \wedge \neg p$	$(p \lor q) \land \neg p \Rightarrow q$
	T	T	T	F	F	T
	Т	F	T	F	F	T
	F	Т	T	T	T	T
	F	F	F	T	F	T

: argument is valid.

III	p	q	$p \lor q$	$(p \lor q) \Rightarrow p$
	Т	Т	T	T
	Т	F	T	T
	F	T	T	F
	F	F	F	T

: argument is not valid.

iv	p	q	$q \mid p \Rightarrow q \mid \neg$		$(p \Rightarrow q) \land \neg p$	$\neg q$	$ \begin{array}{c} (p \Rightarrow q) \land \\ \neg p \Rightarrow \neg q \end{array} $
	Т	Т	T	F	F	F	T
	Т	F	F	F	F	T	T
	F	Т	T	Т	T	F	F
	F	F	T	Т	T	T	T

: argument is not valid.

V	p	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$	$ \begin{array}{c} (p \Rightarrow q) \land (q \Rightarrow p) \\ \Rightarrow p \end{array} $
	Т	T	T	T	T	T
	Т	F	F	T	F	T
	F	T	T	F	F	T
	F	F	T	T	T	F

: argument is not valid.

- a valid
- b not valid
- valid
- d not valid

- Don has visited Australia and New Zealand.
 - valid
- b not valid
- valid
- d not valid
 - valid
- f not valid

EXERCISE 8F.2

- a It is sunny and I am warm. Hence, I feel happy.
 - **b** It is sunny and I am not warm. Hence, I do not feel happy.
 - I am warm and I feel happy. Hence, it is sunny.
- **b** p, q, r are all true.
- p: I do not like the subject. q: I do not work hard. r: I fail.
 - $(p \Rightarrow q) \land (q \Rightarrow r) \land \neg r \Rightarrow \neg p$
 - Argument is valid, : conclusion is a result of valid reasoning.
- not valid (he can be tall and fast, but not on the team)

REVIEW SET 8A

- a proposition, true
- b not a proposition
- proposition, indeterminate
- d not a proposition
- not a proposition
- proposition, true
- g not a proposition
- h proposition, false proposition, true
- proposition, indeterminate
- a x is not an even number.
 - **b** x is an even number or is divisible by 3.
 - x is an even number or is divisible by 3, but not both.
 - d If x is an even number, then x is divisible by 3.
 - \boldsymbol{e} x is not an even number and is divisible by 3.
 - f x is not an even number or x is divisible by 3, but not both.
 - **g** If x is an even number then x is not divisible by 3.
 - **h** If x is not an even number then x is not divisible by 3.
- $p \Rightarrow q, 7$
- $b \neg p$, 4
- $q \wedge \neg p$, 14
- d $p \vee q$, 2 $\neg p \land \neg q, 6$

Note: There are other numbers that satisfy these statements.

a Implication: If I love swimming, then I live near the sea. $p \Rightarrow q$

> Inverse: If I do not love swimming, then I do not

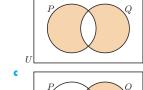
live near the sea. $\neg p \Rightarrow \neg q$

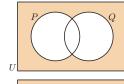
Converse: If I live near the sea, then I love swimming. $q \Rightarrow p$

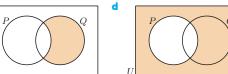
Contrapositive: If I do not live near the sea, then I do not $\neg q \Rightarrow \neg p$ love swimming.

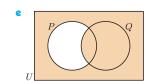
b Implication: If I like food, then I eat a lot.

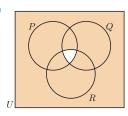
 $p \Rightarrow q$


Inverse: If I do not like food, then I do not eat a lot.


 $\neg p \Rightarrow \neg q$


Converse: If I eat a lot, then I like food.

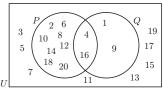

 $q \Rightarrow p$


Contrapositive: If I do not eat a lot, then I do not like food. $\neg q \Rightarrow \neg p$

- **6 a** {1, 2, 3, 4, 6, 12}
- **b** {1, 3, 5, 7, 9}
- **c** {1, 3}
- **d** {1, 2, 3, 4, 5, 6, 7, 9, 12}
- 7 a invalid
- invalid
- invalid

REVIEW SET 8B

- 1 a $P = \{20, 24, 28\}, Q = \{1, 2, 3, 4, 6, 8, 12, 24\}$ $R = \{20, 22, 24, 26, 28\}$
 - **b** i {24} ii {24}
 - iv $P \cap Q \cap R = \{24\}$
- 2 a Eddy is not good at football.
 - **b** The maths class includes 10 or less boys.
 - The writing is legible. d Ali does not own a new car.
- 3 a If a creature is a bird, then it has two legs.
 - **b** If a creature is a snake, then it is not a mammal.
 - If a polygon is a rectangle, then it does not have five sides.
 - **d** If this equation has solutions, then they are not real solutions.
- 4 a It is neither. b x is zero or positive.
- 5 a $\neg (p \lor q)$
- $b p \land \neg q$
- $p \wedge q \wedge r$


- 6 a logically equivalent
- logically equivalent
- not logically equivalent
- d logically equivalent

iii {20, 24, 28}

- a p: The sun is shining. $(m \rightarrow a) \land n \rightarrow a$
- q: I will wear my shorts.
- $(p \Rightarrow q) \land p \Rightarrow q$
- The argument is valid.
- **b** p: Marty is a teacher. q: Marty works hard. $(p \Rightarrow q) \land \neg p \Rightarrow \neg q$
 - The argument is not valid.

REVIEW SET 8C

- **1 a** x > 3 for $x \in \mathbb{Z}$ **b** $x \in \{\text{brush, hairclip, bobby pin}\}$ **c** x is a woman, but is not tall.
- 2 a

- **b** i {4, 16} ii {1, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19} iii {3, 4, 5, 7, 11, 13, 15, 16, 17, 19}
- 3 Inverse: If a parallelogram is not a rhombus, then its diagonals are not equal in length.

Converse: If the diagonals of a parallelogram are equal in length, then the paralellogram is a rhombus.

Contrapositive: If the diagonals of a parallelogram are not equal in length, then the parallelogram is not a rhombus.

 $q \wedge \neg p$

- 4 a $\neg p \Rightarrow \neg q$ b $\neg p \Rightarrow q$
- **5** a If the plane leaves from gate 5, then it leaves this morning and it does not leave from gate 2.
 - $r \Leftrightarrow q \lor p$

- $p \Rightarrow q$ $(p \Rightarrow q) \land q$ $(p \Rightarrow q) \land q \Rightarrow p$ Τ F F F Τ Τ F T Τ Т F F F Τ F Τ
 - : it is neither

Ь	p	q	$p \wedge q$	$p \lor q$	$\neg (p \lor q)$	$(p \land q) \land \neg (p \lor q)$
	Т	T	T	T	F	F
	Т	F	F	T	F	F
	F	T	F	T	F	F
	F	F	F	F	T	F

: logical contradiction

C	p	q	$\neg p$	$\neg p \Leftrightarrow q$
	Т	Т	F	F
	Т	F	F	T
	F	T	Т	T
	F	F	T	F

: it is neither

	_				
1	p	q	$\neg q$	$p \lor \neg q$	$(p \vee \neg q) \Rightarrow q$
	T	T	F	T	T
	Т	F	T	T	F
	F	Τ	F	F	T
	F	F	Т	T	F

: it is neither

2	p	q	r	$\neg p$	$\neg p \lor q$	$(\neg p \lor q) \Rightarrow r$
	Т	T	Т	F	T	T
	Т	Т	F	F	T	F
	Т	F	Т	F	F	T
	Т	F	F	F	F	T
	F	T	Т	Т	T	T
	F	T	F	T	T	F
	F	F	Т	T	T	T
	F	F	F	T	T	F

: it is neither

p	q	$p \wedge q$	$(p \land q) \Rightarrow q$
T	T	T	T
Т	F	F	T
F	T	F	T
F	F	F	T

- 7 a p: Fred is a dog. q: Fred has fur.
 - r: Fred has a cold nose.
 - $(p \Rightarrow q) \land (q \Rightarrow r) \land p \Rightarrow r$
 - The argument is valid.
 - **b** p: Viv is a judge. q: Viv wears a robe.
 - r: Viv wears a wig.
 - $(p \Rightarrow q \vee r) \wedge (\neg r \wedge \neg p) \Rightarrow \neg q$
 - Argument is not valid.

EXERCISE 9A.1

- 1 **a** 0.78 **b** 0.22 **2 a** 0.487 **b** 0.051 **c** 0.731
- **a** 43 days **b** i 0.0465 ii 0.186 iii 0.465
- **4 a** 0.0895 **b** 0.126

EXERCISE 9A.2

- **a** 0.265 **b** 0.861 **c** 0.222
- **2 a** 0.146 **b** 0.435 **c** 0.565
- **3 a i** 0.189 **ii** 0.55 **b** 0.381 **c** 0.545

EXERCISE 9B

 $d \neg p \lor q$

- 1 **a** {A, B, C, D}
- **b** {BB, BG, GB, GG}

: tautology