Example 2

50 is the last term = u_n

Example 3

: ; 	Here is a sequence of numbers 6 a Write down the common differe b Find the number of terms in the	10 14 50 nce. sequence.
	Answers a $d = 4$ b $u_n = 50 \Rightarrow u_1 + (n - 1)4 = 50$ 6 + (n - 1)4 = 50 (n - 1)4 = 44 (n - 1) = 11 n = 12 So the sequence has 12 terms.	Use the formula for the nth term with $u_1 = 6$, $d = 4$. Solve for n.

Exercise 7A

EXAM-STYLE QUESTIONS

- **1** The first four terms of an arithmetic sequence are 3 7 11 15
 - **a** Write down the eighth term in the sequence.
 - **b** Find the 150th term.
- **2** The third term of an arithmetic sequence is 8 and the ninth term is 26.
 - **a** Write down two equations in u_1 and d to show this information.
 - **b** Find the values of u_1 and d.

EXAM-STYLE QUESTIONS

3 The first term of an arithmetic sequence is -12 and the ninth term is 16.

Calculate the value of the common difference.

- **4** The first four terms of an arithmetic sequence are
 - 3, 7, 11, 15, ...
 - **a** Write down the *n*th term of this sequence.
 - **b** Calculate the 50th term of this sequence.
- 5 The *n*th term of an arithmetic sequence is $u_n = 42 3n$.
 - **a** Calculate the values of the first two terms of this sequence.
 - **b** Which term of the sequence is –9?
 - **c** Two consecutive terms of this sequence, u_k and u_{k+1} , have a sum of 33. Find k.
- **6** The sixth term of an arithmetic sequence is 34. The common difference is 6.
 - **a** Calculate the first term of the sequence.

The *n*th term is 316.

- **b** Calculate the value of *n*.
- 7 The first term of an arithmetic sequence is 8 and the common difference is 7. The *n*th term is 393. Find the value of *n*.
- 8 Here is a finite sequence.

-5 -1 3 7 11 ... 75

- a Write down the value of the common difference.
- **b** Find the 13th term.
- **c** Find the number of terms in the sequence.
- **9** Here is a finite sequence.
 - 8 10.5 13 15.5 ... 188
 - a Write down the value of the common difference.
 - **b** Find the 12th term.
 - **c** Find the number of terms that the sequence has.
- **10** The *n*th term of a sequence is given by the formula u = 12 + 7d
 - $u_n = 12 + 7d.$
 - **a** Write down the first two terms.
 - **b** Write down the common difference.
 - **c** Find the 25th term.

The sum of the first *n* terms of an arithmetic sequence

The sum of the first *n* terms of an arithmetic sequence is called an **arithmetic series** and is written as S_n .

 $S_n = u_1 + u_2 + u_3 + u_4 + \dots + u_n$

Consecutive means the two terms are next to one another.

Carl Friedrich

Gauss (1777–1855) is often said to have been the greatest mathematician of the 19th century. Find out how Gauss worked out the sum of the first 100 integers.