- **a** If ABCD is a square, then ABCD is a quadrilateral.
- **b** If ABCD is a rectangle, then ABCD is a parallelogram.
- **c** If an integer is divisible by four then it is divisible by two.
- **d** If an integer is divisible by three then it is an odd integer.
- e If an integer is divisible by two then it is an even integer.
- **f** If an integer is divisible by both four and three then it is divisible by twelve.
- **g** If an integer is divisible by both four and two then it is divisible by eight.
- **h** If the sum of two integers is even, then the two integers are both even.
- i If the product of two integers is even, then the two integers are both even.
- **j** If the sum of two integers is odd, then one of the integers is odd and the other is even.
- **k** If the product of two integers is odd, then the two integers are both odd.
- I If triangle ABC is right-angled, then $a^2 + b^2 = c^2$.
- **m** The square of an odd integer is odd.
- **n** If triangle ABC has three equal angles, then triangle ABC has three equal sides.
- If quadrilateral ABCD has four equal sides, then ABCD has four equal angles.
- **p** If $x^2 = 25$, then x = 5.
- **q** If $x^3 = 27$, then x = 3.
- **r** If $x^2 > 25$, then x > 5.
- **s** If $x^3 < 27$, then x < 3.

Review exercise

Paper 1 style questions

EXAM-STYLE QUESTION

- **1 a** Copy and complete the truth table to show that
 - $\neg (p \lor q) \Rightarrow \neg p \land \neg q$ is a valid argument.

р	q	p∨q	$\neg(p \lor q)$	¬ p	¬q	$\neg p \land \neg q$	$\neg(p \lor q) \Rightarrow \neg p \land \neg q$
Т	Т			F	F		
Т	F			F	Т		
F	Т			Т	F		
F	F			Т	Т		

b Using the results of **a**, rewrite the following statement without using the phrase 'It is not true . . .'

'It is not true that she dances well, or sings beautifully.'

Extension material on CD: Worksheet 9 - De Morgan's Laws

EXAM-STYLE QUESTIONS

- **2** The following propositions are given.
 - *p*: The train leaves from gate 2.
 - *q*: The train leaves from gate 8.
 - *r*: The train does not leave today.
 - **a** Write a sentence, in words, for the following logic statement:

 $p \Longrightarrow (\neg r \land \neg q).$

b Write the following sentence as a logic statement using *p*, *q*, *r* and logic notation:

'The train leaves today if and only if it leaves from gate 2 or from gate 8.'

3 a Copy and complete the truth table.

р	q	$p \Rightarrow q$	<i>p</i>	¬q	$\neg q \lor p$	$\neg p \lor q$
Т	Т					
Т	F					
F	Т					
F	F					

- **b** What identity is shown by the truth table?
- 4 a Copy and complete the following truth table for

p: x > 3*q*: $x^2 > 9$

р	q	¬ <i>p</i>	$\neg p \lor q$
Т	Т		
Т	F		
F	Т		
F	F		

- **b** Using the results of part **a**, and explaining your reasoning, is $\neg p \lor q$ true, or false, when
 - *i* x > 3 and $x^2 \neq 9$?
 - ii $x \ge 3$ and $x^2 > 9$?

[Note: the symbol ≯ denotes '**not** greater than'.]

5 *p* and *q* are two statements:

p: Ice creams are vanilla flavored.

q: Ice creams are full of raisins.

- **a** Draw a Venn diagram to represent the statements above, carefully labeling all sets including the universal set. Shade the region that represents $p \lor q$.
- **b** On the Venn diagram, show
 - i a point *x*, representing a vanilla flavored ice cream full of raisins
 - **ii** a point *y*, representing a vanilla flavored ice cream not full of raisins.

EXAM-STYLE QUESTIONS

- c Write each of the following using logic symbols.
 - i If ice creams are not full of raisins, they are not vanilla flavored.
 - ii Ice creams are not vanilla flavored or they are full of raisins.
 - iii If ice creams are not full of raisins, they are vanilla flavored.
 - iv Ice creams are vanilla flavored and they are not full of raisins.
- **d** State which one of the propositions in part **c** above is logically equivalent to:

'If ice creams are vanilla flavored, they are full of raisins.' Give a reason.

- **6** The following propositions are given.
 - p: Picasso painted picture A.
 - *q*: Van Gogh painted picture A.
 - a Write a sentence in words to define the logic statements

i $p \lor \neg q$ ii $\neg p \land q$.

b Copy and complete the following truth table.

р	q	¬p	<i>¬q</i>	<i>p</i> ∨¬ <i>q</i>	$\neg p \land q$
Т	Т				
Т	F				
F	Т				
F	F				

- **c** Draw two Venn diagrams and shade the area represented by $p \lor \neg q$ on the first diagram and $\neg p \land q$ on the second diagram.
- d Deduce the truth values of the logic statement

 $(p \lor \neg q) \Leftrightarrow (\neg p \land q)$

i using the truth table

ii using the Venn diagrams.

Explain your answers clearly in words.

- Write down the name given to a logic statement such as $(p \lor \neg q) \Leftrightarrow (\neg p \land q)$.
- **7** The following propositions are given.

```
p: x is a multiple of 5.
```

```
q: x is a multiple of 3.
```

- r: x is a factor of 90.
- **a** Write a sentence, in words, for the statement: $(q \lor r) \land \neg p$.
- **b** Write the following sentence as a logic statement using *p*, *q*, *r* and logic notation:

If *x* is a factor of 90 then *x* is either a multiple of 5 or *x* is not a multiple of 3.

c Use truth tables to determine the truth values of each of the following two statements:

 $(q \lor r) \land \neg p$ and $r \Rightarrow (p \lor \neg q)$.

EXAM-STYLE QUESTION

- d List the combinations of truth values of *p*, *q* and *r* that make the statement (*q* ∨ *r*) ∧ ¬*p* true.
 Write down a possible value of *x* for each of these combinations of truth values.
- e Construct a truth table to determine the conditions for equivalence between the two statements (q ∨ r) ∧ ¬p and r ⇒ (p ∨ ¬q)
 When the equivalence is true, describe in words the

conditions on the value of *x*.

CHAPTER 9 SUMMARY

Introduction to logic

• A (simple) **statement** has a truth value of **true** or **false** (but not both).

Compound statements and symbols

- A **compound statement** is made up of simple statements joined together by **connectives.**
- The five connectives have these names and symbols:

NOT	Negation	
AND	Conjunction	\wedge
OR	Inclusive disjunction	\vee
OR	Exclusive disjunction	$\underline{\vee}$
IF THEN	Implication	\Rightarrow

Truth tables: negation

• The **negation** of a statement *p* is written ¬*p* (read as 'not-*p*'). The relation between any statement *p* and its negation ¬*p* is shown in a **truth table**.

Truth tables: conjunction (and)

• The conjunction of any two statements *p* and *q* is written $p \land q$. This compound **statement** is defined by this truth table.

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Continued on next page

Truth tables: resolving an ambiguity - the 'or' connective

• The **disjunction** of any two statements *p* and *q* is written $p \lor q$. This is '**inclusive or**' and it is defined by this truth table.

р	q	p∨q
Т	Т	Т
Т	F	т
F	Т	Т
F	F	F

 $p \lor q$ is true if either p or q or possibly both are true.

• **Exclusive disjunction** is written $p \lor q$ and is defined by this truth table.

р	q	<i>p</i> ⊻ q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Logical equivalence, tautologies and contradictions

The statements ¬p ∧ ¬q and ¬(p ∨ q) are said to be (logically) equivalent.
 Equivalence is shown by the symbol ⇔ so we write

 $\neg p \land \neg q \Leftrightarrow \neg (p \lor q)$

- $\neg p \lor \neg q$ is **not** equivalent to $\neg (p \lor q)$.
- A **tautology** is a compound statement which is **true whatever** the truth values of the simple statements it is made up from.
- A (logical) **contradiction** is a compound statement which is **false whatever** the truth values of its simple statements.

Compound statements made up from three simple statements

• $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

Arguments

- A compound statement that includes **implication** is called an **argument**.
- The truth table for implication is:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- If the compound statement that represents an argument is a **tautology**, then the argument is **valid**.
- There are four important types of argument:
 - (last column of truth table all Fs)
 - A **tautology** is always true.
- (last column of truth table all Ts)
- A valid argument is always true.

• A contradiction is always false.

- (last column of truth table all Ts)
- An invalid argument is not always true. (last column of truth table has

at least one F)

These definitions mean that an invalid argument may (or may not) be a contradiction. A contradiction, however, is always an invalid argument.

• The truth table for **equivalence** $(p \Leftrightarrow q)$ is:

р	q	p⇔q	
ТТ		Т	
Т	F	F	
F	Т	F	
F	F	Т	

 There are three commonly used arguments that are formed from the direct statement *p* ⇒ *q*:

$q \Rightarrow p$	the converse of the direct statement
$\neg p \Rightarrow \neg q$	the inverse of the direct statement
$\neg q \Rightarrow \neg p$	the contrapositive of the direct statement.

• This table summarizes the truth values for the direct argument, $p \Rightarrow q$, and the related conditionals.

р	q	Statement	Converse	Inverse	Contrapositive
		$p \Rightarrow q$	$q \Rightarrow p$	$\neg p \Rightarrow \neg q$	$\neg q \Rightarrow \neg p$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	F	F	Т
F	F	Т	Т	Т	Т