1. The following diagram shows a straight line *l*.

- (a) Find the equation of the line l.
- (b) The line *n* is parallel to *l* and passes through the point (0, 8). Write down the equation of the line *n*.
- (c) The line *n* crosses the horizontal axis at the point P. Find the coordinates of P.

(Total 4 marks)

2. In the diagram, the lines L_1 and L_2 are parallel.

- (a) What is the gradient of L_1 ?
- (b) Write down the equation of L_1 .
- (c) Write down the equation of L_2 in the form ax + by + c = 0.

3. The following diagrams show six lines with equations of the form y = mx + c.

In the table below there are four possible conditions for the pair of values m and c. Match each of the given conditions with one of the lines drawn above.

Condition	Line
m > 0 and $c > 0$	
m < 0 and $c > 0$	
m < 0 and $c < 0$	
m < 0 and $c < 0$	

(Total 6 marks)

4. The straight line,
$$L_1$$
, has equation $y = -\frac{1}{2}x - 2$.

(a) Write down the *y* intercept of L_1 .

(1)

(1)

(1)

(b) Write down the gradient of L_1 .

The line L_2 is perpendicular to L_1 and passes through the point (3, 7).

- (c) Write down the gradient of the line L_2 .
- (d) Find the equation of L_2 . Give your answer in the form ax + by + d = 0 where $a, b, d \in \mathbb{Z}$.

(3) (Total 6 marks) 5. The diagram below shows the line PQ, whose equation is x + 2y = 12. The line intercepts the axes at P and Q respectively.

diagram not to scale

- (a) Find the coordinates of P and of Q.
- (b) A second line with equation x y = 3 intersects the line PQ at the point A. Find the coordinates of A.

(3) (Total 6 marks)

(3)

(2)

(2)

- 6. The straight line L passes through the points A(-1, 4) and B(5, 8).
 - (a) Calculate the gradient of *L*.
 - (b) Find the equation of *L*.

The line *L* also passes through the point P(8, y).

(c) Find the value of y. (2) (Total 6 marks)

- 7. A straight line, L_1 , has equation x + 4y + 34 = 0. (a) Find the gradient of L_1 . (2) The equation of line L_2 is y = mx. L_2 is perpendicular to L_1 . (b) Find the value of *m*. (2) Find the coordinates of the point of intersection of the lines L_1 and L_2 . (c) (2)(Total 6 marks) 8. The mid-point, M, of the line joining A(s, 8) to B(-2, t) has coordinates M(2, 3). Calculate the values of *s* and *t*. (a) (2) (b) Find the equation of the straight line perpendicular to AB, passing through the point M. (4) (Total 6 marks) 9. Consider the line *l*: 2x + y + 4 = 0. Write down the gradient of *l*. (a)
 - (b) Find the gradient of a line perpendicular to *l*.
 - (c) Find the equation of a line perpendicular to *l*, passing through the point (5, 3). Give your answer in the form ax + by + d = 0, where $a, b, d \in \mathbb{Z}$.

(Total 6 marks)

10. The following diagram shows the points P, Q and M. M is the midpoint of [PQ].

- (a) Write down the equation of the line (PQ).
- (b) Write down the equation of the line through M which is perpendicular to the line (PQ).

(Total 4 marks)

IB Questionbank Mathematical Studies 3rd edition

- 11. A line joins the points A(2, 1) and B(4, 5).
 - (a) Find the gradient of the line AB.

Let M be the midpoint of the line segment AB.

- (b) Write down the coordinates of M. (1)
- (c) Find the equation of the line perpendicular to AB and passing through M.

(3) (Total 6 marks)

(2)

12. P(4, 1) and Q(0, -5) are points on the coordinate plane.

- (a) Determine the
 - (i) coordinates of *M*, the midpoint of *P* and *Q*;
 - (ii) gradient of the line drawn through *P* and *Q*;
 - (iii) gradient of the line drawn through *M*, perpendicular to *PQ*.

The perpendicular line drawn through *M* meets the *y*-axis at R(0, k).

(b) Find *k*.

(Total 6 marks)

13.	(a)	Write down the gradient of the line $y = 3x + 4$.	
			(1)
	(b)	Find the gradient of the line that is perpendicular to the line $y = 3x + 4$.	(1)
	(c)	Find the equation of the line that is perpendicular to $y = 3x + 4$ and that passes through the point (6, 7).	
			(2)
	(d)	Find the coordinates of the point of intersection of these two lines.	(2)
		(Total 6 ma	rks)

14. A student has drawn the two straight line graphs L_1 and L_2 and marked in the angle between them as a right angle, as shown below. The student has drawn one of the lines incorrectly.

Consider L₁ with equation y = 2x + 2 and L₂ with equation $y = -\frac{1}{4}x + 1$.

- (a) Write down the gradients of L_1 and L_2 using the given equations.
- (b) Which of the two lines has the student drawn incorrectly?
- (c) How can you tell from the answer to part (a) that the angle between L_1 and L_2 should not be 90°?
- (d) Draw the correct version of the incorrectly drawn line on the diagram.

(Total 8 marks)

15.	Thre	e points are given A(0, 4), B(6, 0) and C(8, 3).	
	(a)	Calculate the gradient (slope) of line AB.	(2)
	(b)	Find the coordinates of the midpoint, M, of the line AC.	(2)
	(c)	Calculate the length of line AC.	(2)
	(d)	Find the equation of the line BM giving your answer in the form $ax + by + d = 0$ where a , b and $d \in \mathbb{Z}$.	(5)
	(e)	State whether the line AB is perpendicular to the line BC showing clearly your working and reasoning.	
			(3)
		(Total 14 ma	rks)

- 16. The coordinates of the vertices of a triangle ABC are A (4, 3), B (7, -3) and C (0.5, p).
 - (a) Calculate the gradient of the line AB.
 - (b) Given that the line AC is perpendicular to the line AB
 - (i) write down the gradient of the line AC;
 - (ii) find the value of p.

(4) (Total 6 marks)

(2)

17. The diagram shows the straight lines L_1 and L_2 . The equation of L_2 is y = x.

(a) Find

- (i) the gradient of L_1 ;
- (ii) the equation of L_1 .
- (b) Find the area of the shaded triangle.

(3) (Total 6 marks)

(3)

(2)

- **18.** The equation of the line R_1 is 2x + y 8 = 0. The line R_2 is perpendicular to R_1 .
 - (a) Calculate the gradient of R_2 .

The point of intersection of R_1 and R_2 is (4, k).

- (b) Find
 - (i) the value of k;
 - (ii) the equation of R_2 .

- **19.** Two points are given as A (4, 3) and B(5, 7).
 - (a) Plot these points on the grid below.

- (b) Join the points with a straight line.
- (c) Calculate the gradient of the line AB.

(Total 8 marks)