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Intro

We will revise all necessary information concerning lines in 2 dimensions.
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Slope-intercept form

The slope(gradient)-intercept form is an equation of the form:

y = mx + c

where m is the slope (gradient) of the line and c is the y -intercept.

The slope represents the rate of change of the function - the ratio of the
change in the y -coordinates (rise) to the change of the x-coordinates
(run).

slope =
rise

run

c represents the y -intercept, ie. the second coordinate of the point of the
intersection of the line with the y -axis.
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Finding equation of a line through two points

We need to be able to find an equation of the line through two points. We
will go through two methods of doing this.
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Example 1, method 1

Find the equation of the line passing through A(1, 3) and B(3,−1).

We will calculate the gradient first. We have:

m =
rise

run
=
−1− 3

3− 1
= −2

So we know that the equation will be of the form y = −2x + c. Now we
need to substitute one of the points to calculate c . We will substitute
A(1, 3), xA = 1 and yA = 3, so we have:

3 = −2 · 1 + c

we get c = 5. The equation of the line is y = −2x + 5.
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Example 1, method 2

Find the equation of the line passing through A(1, 3) and B(3,−1).

Since both points lie on the line we substitute the coordinates of the
points to form two equations with two unkowns:{

3 = m · 1 + c

−1 = m · 3 + c

We can solve this system algebraically or use GDC and we get m = −2
and c = 5, so the equation of the line is y = −2x + 5.
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Example 2, method 1

Find the equation of the line passing through C (3,−2) and D(1, 1).

We will calculate the gradient first. We have:

m =
rise

run
=

1− (−2)

1− 3
= −3

2

Now we know that the equation will be of the form y = −3
2x + c. We

substitute one of the points to calculate c . We will substitute C (3,−2),
xC = 3 and yC = −2, so we have:

−2 = −3

2
· 3 + c

we get c = 5
2 . The equation of the line is y = −3

2x + 5
2 .

Tomasz Lechowski Batory 1IB Studies April 8, 2019 7 / 25



Example 2, method 1

Find the equation of the line passing through C (3,−2) and D(1, 1).

We will calculate the gradient first. We have:

m =
rise

run
=

1− (−2)

1− 3
= −3

2

Now we know that the equation will be of the form y = −3
2x + c . We

substitute one of the points to calculate c . We will substitute C (3,−2),
xC = 3 and yC = −2, so we have:

−2 = −3

2
· 3 + c

we get c = 5
2 . The equation of the line is y = −3

2x + 5
2 .

Tomasz Lechowski Batory 1IB Studies April 8, 2019 7 / 25



Example 2, method 1

Find the equation of the line passing through C (3,−2) and D(1, 1).

We will calculate the gradient first. We have:

m =
rise

run
=

1− (−2)

1− 3
= −3

2

Now we know that the equation will be of the form y = −3
2x + c . We

substitute one of the points to calculate c . We will substitute C (3,−2),
xC = 3 and yC = −2, so we have:

−2 = −3

2
· 3 + c

we get c = 5
2 . The equation of the line is y = −3

2x + 5
2 .

Tomasz Lechowski Batory 1IB Studies April 8, 2019 7 / 25



Example 2, method 1

Find the equation of the line passing through C (3,−2) and D(1, 1).

We will calculate the gradient first. We have:

m =
rise

run
=

1− (−2)

1− 3
= −3

2

Now we know that the equation will be of the form y = −3
2x + c . We

substitute one of the points to calculate c . We will substitute C (3,−2),
xC = 3 and yC = −2, so we have:

−2 = −3

2
· 3 + c

we get c = 5
2 . The equation of the line is y = −3

2x + 5
2 .

Tomasz Lechowski Batory 1IB Studies April 8, 2019 7 / 25



Example 2, method 1

Find the equation of the line passing through C (3,−2) and D(1, 1).

We will calculate the gradient first. We have:

m =
rise

run
=

1− (−2)

1− 3
= −3

2

Now we know that the equation will be of the form y = −3
2x + c . We

substitute one of the points to calculate c . We will substitute C (3,−2),
xC = 3 and yC = −2, so we have:

−2 = −3

2
· 3 + c

we get c = 5
2 . The equation of the line is y = −3

2x + 5
2 .

Tomasz Lechowski Batory 1IB Studies April 8, 2019 7 / 25



Example 2, method 1

Find the equation of the line passing through C (3,−2) and D(1, 1).

We will calculate the gradient first. We have:

m =
rise

run
=

1− (−2)

1− 3
= −3

2

Now we know that the equation will be of the form y = −3
2x + c . We

substitute one of the points to calculate c . We will substitute C (3,−2),
xC = 3 and yC = −2, so we have:

−2 = −3

2
· 3 + c

we get c = 5
2 . The equation of the line is y = −3

2x + 5
2 .

Tomasz Lechowski Batory 1IB Studies April 8, 2019 7 / 25



Example 2, method 2

Find the equation of the line passing through C (3,−2) and D(1, 1).

We substitute the coordinates of the points to form two equations with
two unknowns: {

−2 = m · 3 + c

1 = m · 1 + c

We can solve this system algebraically or use GDC and we get m = −3
2

and c = 5
2 , so the equation of the line is y = −3

2x + 5
2 .
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Horizontal and vertical lines

Horizontal lines have a constant y -coordinates, the slope is 0 (the rise is 0,
the line does not rise at all). Horizontal lines have equations of the form
y = c .

Vertical lines have a constant x-coordinate, the slope is undefined (the run
is 0). Vertical lines have equations of the form x = d .
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Horizontal and vertical lines

Find a horizontal and vertical lines through the point A(1,−3).

The horizontal line has the equation y = c and since the y -coordinate of
the point is −3, the horizontal line will have the equation y = −3.

The vertical line has the equation x = d and since the x-coordinate of the
point is 1, the vertical line will have the equation x = 1.
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Parallel and perpendicular lines

Parallel lines

Given lines

l1 : y = m1x + c1 and l2 : y = m2x + c2

l1 is parallel to l2 (denoted by l1||l2) if both lines have the same gradient,
that is m1 = m2.

Perpendicular lines

Given lines

l1 : y = m1x + c1 and l2 : y = m2x + c2

l1 is perpendicular to l2 (denoted by l1 ⊥ l2) if the product of the gradients
is -1, that is m1 ·m2 = −1.
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Example 3

a) Find the equation of the line l1 through A(−2, 3) and B(1, 2).

b) Find the equation of the line l2 through C (1, 5) and parallel to l1.

c) Find the equation of the line l3 through D(−2,−3) and
perpendicular to l1.
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Example 3

a) Find the equation of the line l1 through A(−2, 3) and B(1, 2).

We calculate the gradient m1 = 2−3
1−(−2) = −1

3 . So we have

y = −1
3x + c1. We substitute the point A(−2, 3), to get:

3 = −1

3
· (−2) + c1

and we solve for c1 to get c1 = 7
3 . So the equation l1 is y = −1

3x + 7
3 .
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Example 3

b) Find the equation of the line l2 through C (1, 5) and parallel to l1.

Since l2 is parallel to l1 we have m2 = m1 = −1
3 . So the equation of

l2 will be of the form y = −1
3x + c2. Now we use the point C , to get

the equation:

5 = −1

3
· 1 + c2

this gives c2 = 16
3 . So the equation of the line l2 is y = −1

3x + 16
3
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Example 3

c) Find the equation of the line l3 through D(−2,−3) and
perpendicular to l1.

Since l3 is perpendicular to l1 we have m3 ·m1 = −1, so m3 = 3 So
the equation of l3 will be of the form y = 3x + c3. Now we use the
point D, to get the equation:

−3 = 3 · (−2) + c3

this gives c3 = 3. So the equation of the line l2 is y = 3x + 3
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Lines in standard form

The standard form of a line is an equation:

Ax + By + D = 0

if possible the coefficient A,B,D should be integers and A > 0.

In order to turn an equation in the slope-intercept form into a standard
form, we simply move all terms to one side of the equation and multiply
both sides by a common denominator of all coefficients.
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Example 4

Find an equation of a line perpendicular to y = −2x + 3 and passing
through (1, 5). Write the equation in the standard form.

We start by finding the equation in the slope-intercept form. Since the line
has to be perpendicular to y = −2x + 3, we must have m · (−2) = −1 and
we get m = 1

2 . The equation has the form y = 1
2x + c . We will use the

point (1, 5) to find c . We get the equation:

5 =
1

2
· 1 + c

We get c = 9
2 . So the equation in the slope-intercept form is y = 1

2x + 9
2 .
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Example 4

Now we need to turn this form into the standard form. We move all terms
to one side to get:

1

2
x − y +

9

2
= 0

Now we multiply both sides by 2 to cancel the denominators and we get:

x − 2y + 9 = 0
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Mid-point

Mid-point of a line segment has coordinates that are averages of the
corresponding coordinates of the endpoints:

Mid-point

Let A(xA, yA) and B(xB , yB), the midpoint M of the line segment AB has
coordinates M( xA+xB

2 , yA+yB
2 ).
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Example 5

Find the equation of the perpendicular bisector of the line segment AB,
where A(2, 5) and B(−1, 3). Write the equation in the standard form.

The perpendicular bisector is the line that bisects (divides into two equal
parts) a line segment and is perpendicular to that line segment.

We start by finding the gradient of the line through A and B.

mAB =
3− 5

−1− 2
=

2

3
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Example 5

Now our line has to be perpendicular to the line segment AB, so the
gradient has to satisfy m · 23 = −1, so m = −3

2 .

So the line will be of the form y = −3
2x + c . Now the line will pass

through the mid-point of the line segment AB. The midpoint MAB will
have coordinates M(2−12 , 5+3

2 ), so we have M(12 , 4).

We can now use the point M and substitute into the equation of the line,
to find c :

4 = −3

2
· 1

2
+ c

so c = 19
4 . This means that the perpendicular bisector will have the

equation y = −3
2x + 19

4 .
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Example 5

We now need to turn the equation y = −3
2x + 19

4 into standard form. We
move all the terms to one side to get:

3

2
x + y − 19

4
= 0

Now we just need to multiply both sides by 4 and we get:

6x + 4y − 19 = 0
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Distance between two points

Given two points we can find the distance between them using
Pythagorean Theorem

Distance

Given points A(xA, yA) and B(xB , yB), the distance between these points
is given by the formula

|AB| =
√

(xB − xA)2 + (yB − yA)2

We simply calculate the horizontal distance (xB − xA) and the vertical
distance (yB − yA) and apply the Pythagorean Theorem.
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Example 6

Consider the triangle with vertices A(1, 3),B(3, 4) and C (−1, 7). Show
that this is a right triangle and calculate its area.

We will calculate the gradients of all line segments:

mAB =
4− 3

3− 1
=

1

2

mBC =
7− 4

−1− 3
= −3

4

mAC =
7− 3

−1− 1
= −2

Now we note that mAB ·mAC = 1
2 · (−2) = −1, so the lines AB and AC

are perpendicular and the triangle is right-angled.
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Example 6

Consider the triangle with vertices A(1, 3),B(3, 4) and C (−1, 7). Show
that this is a right triangle and calculate its area.

Now we need to calculate the area. We will calculate the lengths of the
arms AB and AC :

|AB| =
√
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5

|AC | =
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So the area of the triangle is equal to:
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1

2
· |AB| · |AC | = 5
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