Of the two critical points, only $\sqrt{200}$ lies in the domain of c(x). The critical point value of the average daily cost is

$$c(\sqrt{200}) = \frac{5000}{\sqrt{200}} + 25\sqrt{200} = 500\sqrt{2} \approx \$707.11.$$

We note that c(x) is defined over the open interval $(0, \infty)$ with $c''(x) = 10000/x^3 > 0$. Thus, an absolute minimum exists at $x = \sqrt{200} \approx 14.14$ days.

The cabinetmaker should schedule a delivery of 5(14) = 70 units of wood every 14 days.

EXERCISES 4.5

Mathematical Applications

Whenever you are maximizing or minimizing a function of a single variable, we urge you to graph it over the domain that is appropriate to the problem you are solving. The graph will provide insight before you calculate and will furnish a visual context for understanding your answer.

- **1. Minimizing perimeter** What is the smallest perimeter possible for a rectangle whose area is 16 in², and what are its dimensions?
- **2.** Show that among all rectangles with an 8-m perimeter, the one with largest area is a square.
- **3.** The figure shows a rectangle inscribed in an isosceles right triangle whose hypotenuse is 2 units long.
 - **a.** Express the *y*-coordinate of *P* in terms of *x*. (*Hint:* Write an equation for the line *AB*.)
 - **b.** Express the area of the rectangle in terms of *x*.
 - **c.** What is the largest area the rectangle can have, and what are its dimensions?

- 4. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y = 12 x^2$. What is the largest area the rectangle can have, and what are its dimensions?
- **5.** You are planning to make an open rectangular box from an 8-in.-by-15-in. piece of cardboard by cutting congruent squares from the corners and folding up the sides. What are the dimensions of the box of largest volume you can make this way, and what is its volume?

- 6. You are planning to close off a corner of the first quadrant with a line segment 20 units long running from (a, 0) to (0, b). Show that the area of the triangle enclosed by the segment is largest when a = b.
- **7. The best fencing plan** A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. With 800 m of wire at your disposal, what is the largest area you can enclose, and what are its dimensions?
- 8. The shortest fence A 216 m^2 rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of the sides. What dimensions for the outer rectangle will require the smallest total length of fence? How much fence will be needed?
- **9. Designing a tank** Your iron works has contracted to design and build a 500 ft³, square-based, open-top, rectangular steel holding tank for a paper company. The tank is to be made by welding thin stainless steel plates together along their edges. As the production engineer, your job is to find dimensions for the base and height that will make the tank weigh as little as possible.
 - a. What dimensions do you tell the shop to use?
 - **b.** Briefly describe how you took weight into account.
- 10. Catching rainwater A 1125 ft^3 open-top rectangular tank with a square base *x* ft on a side and *y* ft deep is to be built with its top flush with the ground to catch runoff water. The costs associated with the tank involve not only the material from which the tank is made but also an excavation charge proportional to the product *xy*.
 - **a.** If the total cost is

$$c = 5(x^2 + 4xy) + 10xy,$$

what values of x and y will minimize it?

- **b.** Give a possible scenario for the cost function in part (a).
- **11. Designing a poster** You are designing a rectangular poster to contain 50 in² of printing with a 4-in. margin at the top and bottom and a 2-in. margin at each side. What overall dimensions will minimize the amount of paper used?

www.ebook3000.com

12. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.

- **13.** Two sides of a triangle have lengths *a* and *b*, and the angle between them is θ . What value of θ will maximize the triangle's area? (*Hint:* $A = (1/2)ab\sin\theta$.)
- **14. Designing a can** What are the dimensions of the lightest open-top right circular cylindrical can that will hold a volume of 1000 cm³? Compare the result here with the result in Example 2.
- **15. Designing a can** You are designing a 1000 cm^3 right circular cylindrical can whose manufacture will take waste into account. There is no waste in cutting the aluminum for the side, but the top and bottom of radius *r* will be cut from squares that measure 2r units on a side. The total amount of aluminum used up by the can will therefore be

$$A = 8r^2 + 2\pi rh$$

rather than the $A = 2\pi r^2 + 2\pi rh$ in Example 2. In Example 2, the ratio of *h* to *r* for the most economical can was 2 to 1. What is the ratio now?

T 16. Designing a box with a lid A piece of cardboard measures 10 in. by 15 in. Two equal squares are removed from the corners of a 10-in. side as shown in the figure. Two equal rectangles are removed from the other corners so that the tabs can be folded to form a rectangular box with lid.

- **a.** Write a formula V(x) for the volume of the box.
- **b.** Find the domain of *V* for the problem situation and graph *V* over this domain.
- **c.** Use a graphical method to find the maximum volume and the value of *x* that gives it.
- **d.** Confirm your result in part (c) analytically.
- **T 17. Designing a suitcase** A 24-in.-by-36-in. sheet of cardboard is folded in half to form a 24-in.-by-18-in. rectangle as shown in the accompanying figure. Then four congruent squares of side length x are cut from the corners of the folded rectangle. The sheet is unfolded, and the six tabs are folded up to form a box with sides and a lid.

- **a.** Write a formula V(x) for the volume of the box.
- **b.** Find the domain of *V* for the problem situation and graph *V* over this domain.
- **c.** Use a graphical method to find the maximum volume and the value of *x* that gives it.
- **d.** Confirm your result in part (c) analytically.
- **e.** Find a value of x that yields a volume of 1120 in^3 .
- f. Write a paragraph describing the issues that arise in part (b).

- 18. A rectangle is to be inscribed under the arch of the curve $y = 4 \cos(0.5x)$ from $x = -\pi$ to $x = \pi$. What are the dimensions of the rectangle with largest area, and what is the largest area?
- **19.** Find the dimensions of a right circular cylinder of maximum volume that can be inscribed in a sphere of radius 10 cm. What is the maximum volume?
- **20. a.** The U.S. Postal Service will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 108 in. What dimensions will give a box with a square end the largest possible volume?

b. Graph the volume of a 108-in. box (length plus girth equals 108 in.) as a function of its length and compare what you see with your answer in part (a).

21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you have a box with square sides so that its dimensions are h by h by w and the girth is 2h + 2w. What dimensions will give the box its largest volume now?

- **T b.** Graph the volume as a function of *h* and compare what you see with your answer in part (a).
- **22.** A window is in the form of a rectangle surmounted by a semicircle. The rectangle is of clear glass, whereas the semicircle is of tinted glass that transmits only half as much light per unit area as clear glass does. The total perimeter is fixed. Find the proportions of the window that will admit the most light. Neglect the thickness of the frame.

- **23.** A silo (base not included) is to be constructed in the form of a cylinder surmounted by a hemisphere. The cost of construction per square unit of surface area is twice as great for the hemisphere as it is for the cylindrical sidewall. Determine the dimensions to be used if the volume is fixed and the cost of construction is to be kept to a minimum. Neglect the thickness of the silo and waste in construction.
- **24.** The trough in the figure is to be made to the dimensions shown. Only the angle θ can be varied. What value of θ will maximize the trough's volume?

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is placed on a flat surface. One of the corners is placed on the opposite longer edge, as shown in the figure, and held there as the paper is smoothed flat. The problem is to make the length of the crease as small as possible. Call the length *L*. Try it with paper.

a. Show that
$$L^2 = 2x^3/(2x - 8.5)$$
.

- **b.** What value of x minimizes L^2 ?
- c. What is the minimum value of *L*?

- **26.** Constructing cylinders Compare the answers to the following two construction problems.
 - **a.** A rectangular sheet of perimeter 36 cm and dimensions *x* cm by *y* cm is to be rolled into a cylinder as shown in part (a) of the figure. What values of *x* and *y* give the largest volume?
 - **b.** The same sheet is to be revolved about one of the sides of length *y* to sweep out the cylinder as shown in part (b) of the figure. What values of *x* and *y* give the largest volume?

27. Constructing cones A right triangle whose hypotenuse is $\sqrt{3}$ m long is revolved about one of its legs to generate a right circular cone. Find the radius, height, and volume of the cone of greatest volume that can be made this way.

- **28.** Find the point on the line $\frac{x}{a} + \frac{y}{b} = 1$ that is closest to the origin.
- **29.** Find a positive number for which the sum of it and its reciprocal is the smallest (least) possible.
- **30.** Find a positive number for which the sum of its reciprocal and four times its square is the smallest possible.
- **31.** A wire *b* m long is cut into two pieces. One piece is bent into an equilateral triangle and the other is bent into a circle. If the sum of the areas enclosed by each part is a minimum, what is the length of each part?
- **32.** Answer Exercise 31 if one piece is bent into a square and the other into a circle.

www.ebook3000.com

33. Determine the dimensions of the rectangle of largest area that can be inscribed in the right triangle shown in the accompanying figure.

h

r = 3

- **34.** Determine the dimensions of the rectangle of largest area that can be inscribed in a semicircle of radius 3. (See accompanying figure.)
- **35.** What value of *a* makes $f(x) = x^2 + (a/x)$ have
 - **a.** a local minimum at x = 2?
 - **b.** a point of inflection at x = 1?
- **36.** What values of *a* and *b* make $f(x) = x^3 + ax^2 + bx$ have
 - **a.** a local maximum at x = -1 and a local minimum at x = 3?
 - **b.** a local minimum at x = 4 and a point of inflection at x = 1?
- **37.** A right circular cone is circumscribed in a sphere of radius 1. Determine the height *h* and radius *r* of the cone of maximum volume.
- **38.** Find the point on the graph of $y = 20x^3 + 60x 3x^5 5x^4$ with the largest slope.
- **39.** Among all triangles in the first quadrant formed by the *x*-axis, the *y*-axis, and tangent lines to the graph of $y = 3x x^2$, what is the smallest possible area?

40. A cone is formed from a circular piece of material of radius 1 meter by removing a section of angle θ and then joining the two straight edges. Determine the largest possible volume for the cone.

Physical Applications

41. Vertical motion The height above ground of an object moving vertically is given by

$$s = -16t^2 + 96t + 112$$

with s in feet and t in seconds. Find

- **a.** the object's velocity when t = 0;
- b. its maximum height and when it occurs;
- **c.** its velocity when s = 0.
- **42. Quickest route** Jane is 2 mi offshore in a boat and wishes to reach a coastal village 6 mi down a straight shoreline from the point nearest the boat. She can row 2 mph and can walk 5 mph. Where should she land her boat to reach the village in the least amount of time?
- **43. Shortest beam** The 8-ft wall shown here stands 27 ft from the building. Find the length of the shortest straight beam that will reach to the side of the building from the ground outside the wall.

- **44.** Motion on a line The positions of two particles on the *s*-axis are $s_1 = \sin t$ and $s_2 = \sin (t + \pi/3)$, with s_1 and s_2 in meters and t in seconds.
 - **a.** At what time(s) in the interval $0 \le t \le 2\pi$ do the particles meet?
 - **b.** What is the farthest apart that the particles ever get?
 - **c.** When in the interval $0 \le t \le 2\pi$ is the distance between the particles changing the fastest?
- **45.** The intensity of illumination at any point from a light source is proportional to the square of the reciprocal of the distance between the point and the light source. Two lights, one having an intensity eight times that of the other, are 6 m apart. How far from the stronger light is the total illumination least?
- **46. Projectile motion** The *range R* of a projectile fired from the origin over horizontal ground is the distance from the origin to the point of impact. If the projectile is fired with an initial velocity v_0 at an angle α with the horizontal, then in Chapter 13 we find that

$$R = \frac{v_0^2}{g} \sin 2\alpha,$$

where g is the downward acceleration due to gravity. Find the angle α for which the range R is the largest possible.