Assignment 8

COMPLEX NUMBERS

Name:

- 1. (2 points) If w is a complex cube root of 1, find the value of $w^4 + w^8$.
- 2. (3 points) Show that 2 + i is a root of the equation

$$3x^3 - 14x^2 + 23x - 10 = 0$$

Find the other two roots of the equation. State the value of the sum and the value of the product of these roots.

3. (3 points)

- (a) Find the roots of the equation $z^2 + 4z + 7 = 0$, giving your answers in the form $p \pm i\sqrt{q}$, where p and q are integers.
- (b) Show these roots on an Argand diagram.
- (c) Find for each root the modulus and the argument (in radians).
- 4. (5 points) Let $z_1 = -30 + 15i$.
 - (a) Find $arg(z_1)$, giving your answer in radians to two decimal places.

The complex numbers z_2 and z_3 are given by $z_2 = -3 + pi$ and $z_3 = q + 3i$, where p and q are real constants and p > q.

- (b) Given that $z_2z_3 = z_1$, find the value of p and the value of q.
- (c) Using your values of p and q, plot the points corresponding to z_1, z_2 and z_3 on an Argand diagram,
- (d) Verify that $2z_2 + z_3 z_1$ is real and find its value.
- 5. (3 points) Solve the equation

 $z^5 = 4 + 4i$

giving your answers in the form $z = re^{ik\pi}$, where r is the modulus of z and k is a rational number with $0 \le k \le 2$. Show your solutions on an Argand diagram.

- 6. (6 points) Find each of the roots of the equation $z^5 1 = 0$ in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $-\pi < \theta \le \pi$.
 - (a) Given that α is a complex root of this equation with the smallest positive argument, show that the roots of $z^5 1 = 0$ can be written as $\alpha^0, \alpha^1, \alpha^2, \alpha^3, \alpha^4$.
 - (b) Show that $\alpha^4 = \alpha^*$ and hence, or otherwise, write $z^5 1$ as a product of real linear and quadratic factors, giving the coefficients in terms of integers and cosines.
 - (c) Show also that:

$$z^{5} - 1 = (z - 1)(z^{4} + z^{3} + z^{2} + z + 1)$$

and hence, or otherwise, find $\cos(\frac{2\pi}{5})$, giving your answer in terms of surds.

7. (4 points) Show that $e^{\pi i/6}$ is a root of the equation $z^3 = i$. Find the other two roots and mark on an Argand diagram the points representing the three roots. Show that these three roots are also roots of the equation:

$$z^6 + 1 = 0$$

and write down the remaining three roots. Hence, or otherwise, express $z^6 + 1$ as the product of three quadratic factors each with coefficients in integer or surd form.

- 8. (6 points) Let $z = \cos \theta + i \sin \theta$.
 - (a) Use the binomial theorem to show that the real part of z^4 is

$$\cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta$$

- (b) Obtain a similar expression for the imaginary part of z^4 in terms of θ .
- (c) Use de Moivre's theorem to write down an expression for z^4 in terms of 4θ .
- (d) Use your answers to parts **a** and **c** to express $\cos 4\theta$ in terms of $\cos \theta$ and $\sin \theta$.
- (e) Hence show that $\cos 4\theta$ can be written in the form $k(\cos^m \theta \cos^n \theta) + p$, where k, m, n and p are integers to be determined.
- 9. (3 points) Find the roots of the equation $(z 4)^3 = 8i$ in the form a + bi, where a and b are real numbers. Mark, on an Argand diagram, the points A, B and C representing these three roots and find the area of $\triangle ABC$.
- 10. (3 points) The equation $z^3 + pz^2 + 40z + q = 0$, where p and q are real, has a root 3 + i. Write down another root of the equation. Hence, or otherwise, find the values of p and q.

- 11. (6 points) Write down the fifth roots of unity in the form $\cos \theta + i \sin \theta$, where $0 \le \theta \le 2\pi$.
 - (a) Hence, or otherwise, find the fifth roots of i in a similar form.
 - (b) By writing the equation $(z-1)^5 = z^5$ in the form

$$\left(\frac{z-1}{z}\right)^5 = 1$$

show that its roots are

$$\frac{1}{2}(1+i\cot\frac{1}{5}k\pi) \qquad k = 1, 2, 3, 4$$

12. (6 points) Derive expressions for the three cube roots of unity in the form $re^{i\theta}$. Represent the roots on an Argand diagram.

Let ω denote one of the non-real roots. Show that the other non-real root is ω^2 . Show also that:

$$1 + \omega + \omega^2 = 0$$

Given that:

$$\alpha = p + q$$
 $\beta = p + q\omega$ $\gamma = p + q\omega^2$

where p and q are real.

- (a) Find, in terms of p, $\alpha\beta + \beta\gamma + \gamma\alpha$.
- (b) Show that $\alpha\beta\gamma = p^3 + q^3$.
- (c) Find a cubic equation, with coefficients in terms of p and q, whose roots are α, β, γ .