1. Given that $\frac{z}{z+2} = 2 - i$, $z \in \mathbb{C}$, find z in the form a + ib.

(Total 4 marks)

- 2. The complex numbers $z_1 = 2 2i$ and $z_2 = 1 i\sqrt{3}$ are represented by the points A and B respectively on an Argand diagram. Given that O is the origin,
 - (a) find AB, giving your answer in the form $a\sqrt{b-\sqrt{3}}$, where $a,b\in\mathbb{Z}^+$; (3)
 - (b) calculate \hat{AOB} in terms of π .

(3) (Total 6 marks)

(2)

- 3. Given that $z = \cos\theta + i \sin\theta$ show that
 - (a) $\operatorname{Im}\left(z^{n} + \frac{1}{z^{n}}\right) = 0, n \in \mathbb{Z}^{+};$

(b) $\operatorname{Re}\left(\frac{z-1}{z+1}\right) = 0, z \neq -1.$ (5) (Total 7 marks)

- **4.** Consider the complex number $\omega = \frac{z+i}{z+2}$, where z = x+iy and $i = \sqrt{-1}$.
 - (a) If $\omega = i$, determine z in the form $z = r \operatorname{cis} \theta$.
 - (b) Prove that $\omega = \frac{(x^2 + 2x + y^2 + y) + i(x + 2y + 2)}{(x + 2)^2 + y^2}$.
 - (c) **Hence** show that when $Re(\omega) = 1$ the points (x, y) lie on a straight line, l_1 , and write down its gradient. (4)
 - (d) Given $\arg(z) = \arg(\omega) = \frac{\pi}{4}$, find |z|.

 (6)

 (Total 19 marks)

5.	Consider the complex numbers $z = 1 + 2i$ and $w = 2 + ai$, where $a \in \mathbb{R}$.		
	Find a when		
	(a)	w = 2 z ;	(3)
	(b)	Re (zw) = 2 Im(zw).	(3)
_	16 :		otal 6 marks)
6.	11 Z 18	s a non-zero complex number, we define $L(z)$ by the equation	
		$L(z) = \ln z + i \arg(z), 0 \le \arg(z) \le 2\pi.$	
	(a)	Show that when z is a positive real number, $L(z) = \ln z$.	(2)
	(b)	Use the equation to calculate	
		(i) $L(-1)$;	
		(ii) $L(1-i)$;	
		(iii) $L(-1 + i)$.	(5)
	(c)	Hence show that the property $L(z_1z_2)=L(z_1)+L(z_2)$ does not hold for all values of z_1 and z_2 .	(2) 'otal 9 marks)
7.	Find,	, in its simplest form, the argument of $(\sin \theta + i (1 - \cos \theta))^2$ where θ is an acute angle (T	'otal 7 marks)
8.	(a)	Use de Moivre's theorem to find the roots of the equation $z^4 = 1 - i$.	(6)
	(b)	Draw these roots on an Argand diagram.	(2)
	(c)	the form $a + ib$.	$\frac{72}{71}$ in (4) otal 12 marks)
		(10	un 12 mai KS)

9. Given that $(a + bi)^2 = 3 + 4i$ obtain a pair of simultaneous equations involving a and b. Hence find the two square roots of 3 + 4i.

(Total 7 marks)

10. (a) Factorize $z^3 + 1$ into a linear and quadratic factor.

(2)

Let
$$\gamma = \frac{1+i\sqrt{3}}{2}$$
.

- (b) (i) Show that γ is one of the cube roots of -1.
 - (ii) Show that $\gamma^2 = \gamma 1$.
 - (iii) Hence find the value of $(1 \gamma)^6$.

(9)

(Total 11 marks)

11. Given that $|z| = \sqrt{10}$, solve the equation $5z + \frac{10}{z^*} = 6 - 18i$, where z^* is the conjugate of z.

(Total 7 marks)

12. Solve the simultaneous equations

$$iz_1 + 2z_2 = 3$$

 $z_1 + (1 - i)z_2 = 4$

giving z_1 and z_2 in the form x + iy, where x and y are real.

(Total 9 marks)

13. (a) Write down the expansion of $(\cos \theta + i \sin \theta)^3$ in the form a + ib, where a and b are in terms of $\sin \theta$ and $\cos \theta$.

(2)

(b) Hence show that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$.

(3)

(c) Similarly show that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$.

(3)

(d) **Hence** solve the equation $\cos 5\theta + \cos 3\theta + \cos \theta = 0$, where $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

(6)

(e) By considering the solutions of the equation $\cos 5\theta = 0$, show that

$$\cos\frac{\pi}{10} = \sqrt{\frac{5+\sqrt{5}}{8}}$$
 and state the value of $\cos\frac{7\pi}{10}$.

(8)

(Total 22 marks)