B . In this chapter you
aSIC will learn:
® how to find the

differentiation | swedensoreines

from first principles,
a process called

aln d itS : differentiation

how to differentiate x

¢ how to differentiate

applications sin x, cos x and tan x

® how to differentiate ex
and In x

® to find the equations of

Introductory problem tangents and normals
124 12 to curves at given
The cost of petrol used in a car, in £ per hour, is e points
where v is measured in miles per hour and v > 0. e to find maximum and
minimum points on
If Daniel wants to travel 50 miles as cheaply as possible, at P
curves.
what speed should he travel?
In real life, things change. Planets move, babies grow and
prices rise. Calculus is the study of things that change, and )
one of its important tools is differentiation; the ability to ‘
find the rate at which the y-coordinate of a curve is changing
when the x-coordinate changes. For a straight-line graph this N
is determined by the gradient, but it requires more work to ~ /0
apply the same idea to curves, where the gradient is different at '
different points. (7
P y = fz)

Sketching derivatives [

Our first task is to establish exactly what is meant by the
. . tangent at P y

gradient of a curve. We are clear on what is meant by the

gradient of a straight line and we can use this idea to make a

more general definition: the gradient of a curve at a point P is

the gradient of the tangent to the curve at that point.

T X i
A tangent is a straight line which touches the curve without .
crossing it. i
1
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L Iread Note that when we say that the tangent at P does not cross the
<1 We have a r;la y met Q curve we mean that this is only the case locally (close to the
tangents in chapter 3. point P). The tangent might also intersect a different part of the
curve.

The derivative of a function, f(x), is another function that gives
the gradient of y = f(x) at any point in the x domain.
It is often useful to be able to roughly sketch the derivative.

Worked example 16.1

Sketch the derivative of this function.
Y
A
0
: x
' 3
T
.‘ll Imagine we are tracking a point moving along the curve from left to right; we will
n track the tangent to the curve at the moving point and form the graph of its gradient
| v \
)
s b T X
[ The curve is increasing from left to right, ... 60 the gradient is positive and falling
but more and more slowly... -
528 Topic 6: Calculus © Cambridge University Press 2012
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' D
continued . . .
Y / \
T 4
4
The tangent is horizontal... ... 60 the gradient is zero f
<
Yy / \ 4
a5
/\/ T < (
d
The curve is now decreasing. ... ... 60 the gradient is negative j
| {
<
é
@ = z
The tangent is horizontal again... ... 60 the gradient is zero
Y
/ g
T I~ v f
The curve is increasing, and does so faster ... 60 the gradient is positive and
and faster... getting larger ]
WMHMJAWMMMWMWJJ‘A
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We can also apply the same reasoning backwards.

Worked example 16.2

You are given the derivative of a function. Sketch a possible graph of the original function.
Y
€T

Y Y ?

{

<
<
.*
' {

x f

\

b
The gradient is negative... ... 60 the curve is decreasing. 4;
Y Y /

4

«
<
$
: {

x f

\

i
The gradient is zero... ... 60 the tangent is horizontal. j
1

—
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continued . . .

b

The gradient is positive...

Y

/\/ :

The gradient is zero...

Y

The gradient is zero...

8

... 60 the curve is increasing.

.... 80 the tangent is horizontal.

Y

8

... 60 the tangent is horizontal.

 J
8

© 8c|rqbrio|ge University Press 2012
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continued . . .

N

|\

The gradient is positive... ... 60 the curve is increaaw
i Y SOV . SO I TR S SN S

8
A e e r A A

Notice in this example that there was more than one possible
graph we could have drawn, depending on where we started the
sketch. In chapter 17 you will learn more about this ambiguity
when you ‘undo’ differentiation.

The relationship between a graph and its derivative can be
summarised as follows:

KEY POINT 16.1
When the curve is increasing the gradient is positive.
When the curve is decreasing the gradient is negative.

When the tangent is horizontal the gradient is zero; a point
on the curve where this happens is called a stationary
point or turning point.

. Exercise 16A

1. Sketch the derivatives of the following showing intercept with the x-axis:

(a) (i) y

A

(ii) Yy

532 Topic 6: Calculus
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1 Byt

(b) @) y

(c) (i) Y 5 )
T xX
R \
(d) (i)
(1, 25)
(2/@)// .
(e) (i) y
(-3, 1) (1,1) (5,1)
X

(=5, =1) (-1, -=1) (3, -1)

© IL.(_:’L<:1m}3ri¢:lge University Press 2012
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‘ )
T
(ii) y

/ (3.2)

[

(i) y f_
(—1, 16) h
.) |
Y f xr
-3 1 )
(ii) Y
(—2,2) (o1 2)




_, ’P'ir‘ ‘ : _ -_ r 1_h :! = -1. o+ - 'I;r-'l" = i l n

() (D) y (ii) y

2. Each of the following represents a graph of a function’s derivative. Sketch a possible graph
for the original function, indicating any stationary points.

(a) y (b) y

J\

-

() y (d) y
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For each of the following statements decide if they are always 7
true, sometimes true or always false.

L

(a) Ata point where the derivative is positive, the original
function is positive.

(b) If the original function is negative then the derivative is also
negative.

LR

(c) The derivative crossing the axis corresponds to a stationary
point on the graph. 3

(d) When the derivative is zero, the graph is at a local -
maximum or minimum point.

(e) If the derivative function is always positive then part of the
original function is above the x-axis.

(f) At the lowest value of the original function, the derivative is
Z€ero.

You will probably find that drawing a tangent to a graph is very

difficult to do accurately, and that your line actually crosses -
the curve at two points. The line segment between these two

intersection points is called a chord. If the two points are close -
together, the gradient of the chord is very close to the gradient
of the tangent. We can use this to establish a method for
calculating the derivative for a given function.

Self-discovery worksheet 3 ‘Investigating derivatives of y,
polynomials’ on the CD-ROM leads you through several
examples of this method. Here we summarise the general
procedure.

Consider a point P (x, f(x)) on the graph of the function
= f(x) and move a distance h away from x to the point

Qx+h, fx+h)).

y = f(z)

Qé—kluf(;r—!—h))

[ @+ h) = @) /
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I/ ) ()
- (x+h)—x
_ f(x+h)-f(x)
h

As the point Q becomes closer and closer to P, the gradient of
the chord PQ becomes a closer and closer approximation to the
gradient of the tangent at P.

y = flz)

To denote this idea of the distance / approaching zero, we use
lhim, which reads as ‘the limit as 4 tends to 0’ This idea of a limit
—0

is very much like that encountered for asymptotes on graphs in
chapters 2 and 4, where the graph tends to the asymptote (the
limit) as x tends to oo,

-~

The process of finding £1rr(} of the gradient of the chord PQ
is called differentiation from first principles and with this

notation, we have the following definition:

KEY POINT 16.2

l\l\M/mNl Differentiation from first principles
Differentiation from , (o) £
first principles MORTS ST
finding the derivative
using this definition, d
.1 rather than c:xuomeet f'(x) is the derivative of f(x). It can also be written as f’, y"or Ey
- the rules we W
[ in the later sections: where y = f(x). The process of finding the derivative is
called differentiation.
1
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We can use this definition to find the derivative of simple
polynomial functions.

Worked example 16.3

For the function y = 2, find % from first principles.

d x+h)" —x?
—‘y—lim—(WL ) X

@ =] 4
Use the formula piaLY p ]

[
. d . X?+2xh+h?—-x2  2xh+h?-
We do not want to let the denominator tend «* d_i; = lim . = lim —
to zero so first simplify the numerator and 1

hope the h in the denominator will cancel

.l
-

Divide top and bottom by h* = lim (2x + h) ]
Finally leth—0 . =>12_x' e e ]
\ V.

We can use the same method with other functions too, but it
may require more complicated algebraic manipulation.

Worked example 16.4

Differentiate f(x)= Jx from first principles.
#(x) = lim Vath—+x
h—0 h {
Jx+h—Jx Nx+th-x _Jx+h /
We do not want fo let the denominator tend ** T p v — T p J X \/ZJF =4
to zero so manipulate the numerator to get (x +H) - (x) SR
a factor of h = " /
We can get rid of the square roots by h( VE+h +\/;) y
multiplying top and bottom of the fraction B h ;
by Vx+h ++/x and using the difference of h(\’x +h+ \/E) ]
two squares {
: :
We can now divide top and bottom by h... .” - b
P y Jh+x + \/; {
[
—
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. Exercise 16B

—1
¥

1. Find the derivatives of the following functions from first
principles:

(@) () flx)=x
(b) (i) f(x)=—-4x
(c) (1) f(x) =x2-6
Prove from first principles that the derivative of x” +1 is 2x.

(i) f{x)=x*
(i) f (x) 3x?
(ii) f(x):x2—3x+4

[4 marks]
Prove from first principles that the derivative of 8 is zero.
[4 marks]
1 1
Prove from first principles that the derivative of — is — —
X X
[4 marks]
If k is a constant prove that the derivative of kf (x) is kf"(x).
[4 marks]
1 1
Prove from first principles that the derivative of ——= is ———.
a \/; 2x\/;
[5 marks]
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Rules of differentiation

From Exercise 16B, and the results of Self-discovery worksheet 3
‘Investigating derivatives of polynomials’ on the CD-ROM, some
properties of differentiation are suggested:

KEY POINT 16.3

o If y=x"then:

—>

© Cambridge University Press 2012
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KEY POINT 16.3 continued...

o If we differentiate kf(x) where k is a constant we get

kf'(x).

« Differentiation of the sum of various terms can proceed
term by term.

Fill-in proof sheet 15 ‘Differentiating polynomials’ on the CD-
ROM proves these results for positive integer values; however,
this result holds for all rational powers.

A special case is when n = 0. Since x° =1, we can say that

d

d—y =0x""' =0. This is because the gradient of the graph y =1 is
X

zero everywhere; it is a horizontal line. In fact, the derivative of

any constant is zero.

You often have to simplify an expression before differentiating,
using the laws of algebra, in particular the laws of exponents.

If you need to review

<[ rules of exponents, <[

see chapter 2.

Worked example 16.5

Find the derivative of the following functions:

@ flx)=xVx  ©)  gx)=

-

First rewrite the function in the forme
x" using the laws of exponents

5
==

f'(x)==x2
(=2

Differentiate

Cube root can be written as a powers®

P i

K Y

(a) f(x):xzﬁ = x2x2 :x2+2 =x

= —Xx2
2

v) g<x>:% —x®

()= — L x5
g'(x) =

1 1 5
2

Note that you cannot differentiate products by
differentiating each of the factors and multiplying them
together — we will see in chapter 18 that there is a more
. complicated rule for dealing with products.

© Cambridge University Press 2012

4

16 Basic differentiation and its applications 539

. Notforprining, sharing or distribution. -

[T sy =

Ll ot [}

W

L)u

[|[Ba



/ Y.! 3

M

Worked example 16.6

(a) f(x):Sx3
(b) g(x)=x4—§x2+5x—4
_2(2x-7)

(C) h(X) = T
Differentiate x3 then multiply«®
by 5

Differentiate each terms®
separately

We need to write this as a sums®
of terms of the form x

Now differentiate each terms®
separately

Find the derivative of the following functions:

a) f(x)=5x3x2 =15x2
(a)

(b) g'(x)=4x° —§x2x+5 =4x%-3x+5

2(2x—7)

(c) h(x) = \/E

_4x-14
- 1
¥z

1
—4x"2 14y 2

1

1

1

=4x2 —14x 2

11
()= 4x—x? ’—14(—

1

2]

=2x 24+7x 2

'I) 1y
— X 2
2

P
v "1_1;_....‘_"_\ POV St T W

"A_“ MM‘W&M_“_'Jr‘%»_J

. Exercise 16C

1. Differentiate the following:

540 Topic 6: Calculus

L\

[\

(a) ()
(b) ()
(©) ()
(d) ()
(e) (1)

(f) 1)

Ot 10 nﬁ-ﬁ,.;ro,

y=x
y=3x7
y=10

y=4x*-5x*+2x-8

1
= x6
4 3

=7x——x’
4 2

ing or distri

(ii) y=x
(i) y=—4x°
(i) y=-3

(ii) y=2x*"+3x*—x
oo 3,
(i) y= 4x

1
(ii) y=2-5x* +§x5

© Cambridge University Press 2012
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2
(g () y=x (i) y==x>
4 5
(h) (i) y=6x3 (ii) y=>x6
2 > 5 1
(1) (1) y=3x4—x2+15x5—2 (11) y:x3—gx3+§x2

0)ﬁ)y=x1 ﬁDy=—f:
(k) () y=x2 (i) y=—8x 4

i — _i _g ii =__ 7; é -6
() (1) y=5x 15x (ii) y 3x +3x

2. Find % for the following:

@ () y=Yx (i) y=3x*
(®) @) )’:% (i) y=- 210
X 5x
: 1 3 8
© © y=7 (i) y =5
(d) () y=x*(3x—4) (i) y=x(x*-2x+8)

© (@) y=(x+2)(x-1) (ii)y:(x+%J

3x°—2x 9x2+3

O O y==73 Wy ="
3. Findd—yif:
dx
(@) (i) x+y=8 (ii) 3x—2y=7
(b) (i) y+x+x*=0 (ii) y—x*=2x

Interpreting derivatives and second
derivatives

d . .
d—y has two related interpretations:
X

o Itis the gradient of the graph of y against x.

X NT
o It measures how fast y changes when x is changed - this is l‘\AM/“h

called the rate of change of y with respect to x. We can 0\59
dy write this using
Remember that i is itself a function - its value changes with x. function notation:
x

If f(x)=x" then
f (3)=6 and
f, (,1) =-2

For example, if y = x> then j—y is equal to 6 when x =3, and it
X

is equal to -2 when x = -1. This corresponds to the fact that the

gradient of the graph of y = x> changes with x, or that the rate of

change of y varies with x.

© Cambridge University Press 2012 16 Basic differentiation and its applications 541 4
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To calculate the gradient (or the rate of change) at any particular
point, we simply substitute the value of x into the equation for
the derivative.

Worked example 16.7

Find the gradient of the graph y = 4x at the point where x = 2.
The gradient is given by the .'. j_y =12x2 1
x «
derivative, so find oy }
dx {
i
y {
Substitute the value for x & When x =2 d—y =12X2? =48 1
X 4
So the gradient is 45 )
"N W A,p,_/"' i Y ISPy _f/n-‘ S ,Av-rl
& — .

‘,w If we know the gradient of a graph at a particular point, we

can find the value of x at that point. This involves solving an

ulator
-\ Your cale equati
quation.

an find the gradien!

can int, but
at a given pomh

it cannot find the
expression for the

derivative. See
Calculator sheet 8 on

fhe CDROM.

Worked example 16.8

5
o=
C

The sign of the gradient tells us whether the function is
increasing or decreasing.

Find the values of x for which the graph of y=x?>—7x+1 has gradient 5.
o . W _ 527
The gradient is given by the derivative ¢ P ;"
dy W 50 _7-5 y
We know the value of g, SO wecan form ane J
2 —
x equation = x* =12
=>x*=4 ,
= x=20r-2 “
o e i SNV P f/"“ - 4‘»_‘,‘
\ W,
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KEY POINT 16.4 )
In Section 16H we

dy . . o : will discuss what
if L is positive the function is increasing — as x gets

dx happens when
larger so does y. 3 dy _ 0
. s

dy . . o .
if L s negative the function is decreasing - as x gets
X

larger y gets smaller.

Worked example 16.9

Find the range of values of x for which the function f{x)=2x*—6x is decreasing.

A decreasing function has negative grodient‘. f(x)<0 ’
= 6x? —6<0 ;
= x?-1<0 §

This is a quadratic inequality, so we need to<®
look at the graph of x2— 1

=

\ )

There is nothing special about the variables y and x. We can just
B
as easily say that (Cil_Q is the gradient of the graph of B against Q

d(bananas)

or that
d(monkeys)

measures how fast bananas change when
you change the variable monkeys. To emphasise which variables

dy

we are using, we call ax the derivative of y with respect to x.
X
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The rate of change is given by the «® a=5z
derivative da 1

1
Substitute the value for S<° "5 NI ;

b ""‘\T—N1 b S |'1 —-._r:_ - 49,y - . r

You may wonder why it is so important to emphasise
that we are differentiating with respect to x (or Q or @
monkeys). In this course we are only considering
functions of one variable, but it is possible to generalise
caleulus to include functions which depend on several
variables. This has many applications, particularly in
physics and engineering.

y

Worked example 16.10

Given that a = /S, find the rate of change of a when §=09.

Wy,

544  Topic 6: Calculus
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d . . . .
4 called an operator - it acts on functions to turn them into
x

other functions. So when we differentiate y = 3x* what we are

really doing is applying the 4 operator to both sides of the
identity: dx

So Ll is just 4 applied to .
dx dx

The di operator can also be applied to things which have already
X

been differentiated. This is then called the second derivative.

KEY POINT 16.5

d2
%(j—ij is given the symbol d_x)zl or f”(x) and it refers to

the rate of change of the gradient.

We can differentiate again to find the third derivative

3 4
d_y or f” (x) |, fourth derivative d_y or f@(x) |, and so on.
dx? dx*

© Cambridge University Press 2012
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Worked example 16.11

Given that f(x)=>5x>—4x: ==

(a) Find f”(x). 3

(b) Find the rate of change of the gradient of the graph of y = f(x) at the point where x = -1. N
{ L

i -

Differentiate f(x) and then .'. (a) f(x) =15x2 -4
differentiate the result (x) = 30x ( E :
The rate of change of the gradient

.0. (b) £/(=1) = =30
means the second derivative

We can use the second derivative to find out more about the -3
shape of the graph. Remember that the second derivative is the

rate of change of the gradient. So when the second derivative is

positive, the gradient is increasing. This means that the graph is i
curving upwards; we say that it is concave up. When the second = 0
derivative is negative, the gradient is decreasing so the graph

curves downwards; we say that it is concave down.

1. Write the following rates of change as derivatives:

W

concave down

(a) The rate of change of z as ¢ changes.
(b) The rate of change of Q with respect to P.

LJ"MJ

(c) How fast R changes when m is changed.
(d) How quickly balloon volume (V) changes over time (¢). )

(e) The rate of increase of the cost of apples (y) as the &
weight of the apple (x) increases.

(f) The rate of change of the rate of change of z as y changes.

(g) The second derivative of H with respect to m.
1

= =

2. (a) (i) If f =5x3 what is the derivative of f with respect to x?
(i) If p=3g°> whatis the derivative of p with respect to q?
(b) (i) Differentiate d =3t+ 7t with respect to t.
(ii) Differentiate r=c+ ! with respect to c.

c
(c) (i) Find the second derivative of y = 9x2 + x* with respect to x. /

3
(ii) Find the second derivative of z = B with respect to t.
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You may think that it is *’

contradictory to talk “*

about the rate of

change of y as x

changes if we are fixing x to
have a certain value. Think
about x passing through this
point.

—— W
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@ () Ify=5¢, find Y whenx=3,

dx

(ii) Ify:x3+l, ﬁndd—ywhenx:I.S.
X dx
. dA
(b) (1) IfA=7b+3,ﬁnd£whenb=—l.

(ii) If f=6*+ 673, find % when #=0.1.

(c) (i) Find the gradient of the graph of A = x* when x =2.

(ii) Find the gradient of the tangent to the graph of
z=2a+a*whena=-6.

(d) (i) How quickly does f = 4T change as T changes when T = 3?
(ii) How quickly does g = y* change as y changes when y = 2?
(e) (i) What is the rate of increase of W with respect to p when
pis=3if W=—p*
(ii) What is the rate of change of L with respect to ¢ when
c=6if L=7c -8
dy

. (@) () Ify=ax*+ (1 - a)x where a is a constant, find —=.

X
(ii) If y = x*+b* where b is a constant, find j—y
X

(b) () Q= Jab + b where b is a constant, find d—Q

da

(ii) If D= 3(av)2 where a is a constant, find d—D

dv

2
. (a) (1) Ify:x3—5x,ﬁndd—ywhenx:9.

dx?
d?y
(ii) If y=8+2x*, find —= when x = 4.
dx?
2

) () IfS:3A2+%, find 3

when A=1.

2

2
(ii) IfJ=v—+/v, ﬁnd%whenvﬂ.
v

(c) (i) Find the second derivative of B with respect to n if

B=8nandn=2.
(ii) Find the second derivative of g with respect to rif g =r7
andr=1.

. (a) (i) Ify=3x*and j—y =36, find x.
x

(ii) Tf y = x* +2x andj_y _s, find x.
X
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(b) (i) Ify= 2x+§ andd—y =-31, find y.
X dx

(i) y=vx+3and ¥ =L find
dx 6

7. (a) (i) Find the interval in which x* —4x is an increasing function.
(ii) Find the interval in which x* — 3x* is a decreasing function.

(b) (i) Find the interval in which 3x + 2 is a decreasing function.

X
(ii) Find the interval in which x — Jx isan increasing
function.

(c) (i) Find the interval in which the graph of y =x* -4x+3
is concave up.
(ii) Find the interval in which the graph of y = x* +6x? - 1
is concave up.
(d) (i) Find the set of values of x for which the graph of
f(x) =x* —6x> +12x? is concave down.
(ii) Find the set of values of x for which the graph of
f(x) =x* - 54x? is concave down.

a Find all points of the graph of y = x*> —2x? +1 where the
gradient equals the y-coordinate. [5 marks]

g In what interval on the graph of y =7x —x* —x? is the gradient
decreasing? [5 marks]

4 1 1
~ In what interval on the graph of y = Zx‘* +x——x?>-3x+61is

the gradient increasing? [6 marks]

d
= (x).

Find an alternative expression for

In  Section 18C
Using the techniques from Section 16A we can sketch the ]> we will prove the ]>

derivative of tan x
using the quotient
rule.

derivative of the graph of y = sinx. The result is a graph that
looks just like y = cosx. On Fill-in proof sheet 17 ‘Differentiating
trigonometric functions’ on the CD-ROM you can see why this
is the case. Results for y = cosx and y = tanx can be established
in a similar manner giving these results:

KEY POINT 16.6

Reciprocal
Differentiating trigonometric functions gives: <l trigonometric func-
a tions were covered
——(sinx) = cos x ] i
dx in Section 12D.
i(cosx) =—sinx
dx B
i(tan x)=sec® x
dx
© Cambridge University Press 2012 16 Basic differentiation and its applications 547
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Whenever you are
doing calculus you

rqdions.

MUST work in

‘¥,

It is possible to do
calculus using
degrees, or any
other unit for
measuring angles,
but using radians gives the
simplest rules, which is why
they are the unit of choice
for almost all
mathematicians.

£P

J

Differentiate using the rules in key
point 16.6. Note that sec?x can also

be written as

— 4,y

These rules only work if x is measured in radians since they are
based upon the result that sinx = x for very small values of x.
You can check on your calculator that sin x = x for radians but
not for degrees. The result can also be seen on the graph and is
proved on Fill-in proof sheet 16 “The small angle
approximations’ on the CD-ROM.

All rules of differentiation from Section 16C still apply.

Worked example 16.12

Differentiate y = 3tanx —2cosx.

.‘ll dy =3(sec” x) —2(—sinx) ‘

= JBsec? X +2sinx L b

L. 7
\ cos? x D
g,_ . 1. Differentiate the following:
| (a) (i) y=3sinx (ii) y=2cosx
(- (b) (i) y=2x-5cosx (i) y=tanx+5
© () y= sinx+2cosx (ii) y=ltanx—lsinx
5 2 3 -
Y Find the gradient of f(x)=sinx+ x at the point X = >
[5 marks]
by
Find the gradient of g(x)= itanx —3cosx —x? at the
point x = g [5 marks]
Given h(x) =sinx+cosx 0< x <2T,
find the values of x for which h’(x)=0. [6 marks]
Giveny:ltanx+L 0<x<2m
4 x?
ZL . dy 2
solve the equation —=1-—. [6 marks]
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The exponential and natural
logarithm functions

Use your calculator to plot the graphs of y =2*and y =3* and
their derivatives. The results looks like another exponential
function.

Y
Gradient

y=3"

Gradient

/ T / T

It appears that there is a number somewhere between two and

three where the derivative of the graph would be exactly the

same as the original exponential. It turns out that this is the

graph of y = e* where e =2.718... It is the same as the base of ]>
the natural logarithm defined in Section 2E.

We will see how
to differentiate
exponential]>
functions with bases
other than e in

Section 20D.
KEY POINT 16.7

Le=e i‘

The natural logarithm function y = Inx behaves in a surprising
way, having a derivative of a completely different form.

KEY POINT 16.8

d 1
S
dx(nx) X

This result is proved on Fill-in proof sheet 18 ‘Differentiating
logarithmic functions graphically’ on the CD-ROM.
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1. Differentiate the following:

2e*
(@) (i) y=3e" (i) y= s
() (i) y=-2Inx (if) y=§lnx

© 0 y="E-sxrae () y=4-S +3hnx

(i) Find the exact value of the gradient of the graph of
f(x)= %e* —7Inx at the pointx = In4.

(ii) Find the exact value of the gradient of the graph

f(x)=¢e* —ln—xwhenlen.’a. [4 marks]
Find the value of x where the gradient of f(x)=5—2e* is -6.
[4 marks]
n Find the value of x where the gradient of g(x)= x> —12Inx is 2.
There is an easier [4 marks]
way to do some parts . .
of Question 5 usinga 5. Differentiate:
]> method from Section ]> (@) () y=Inx® (ii) y=In5x
18A. For now, you (b) (i) y=e? (i) y=e3
will have tf) use your © (i) y=en (i) y= el
algebra skills! ' -
(d) (i) y=log,x (ii)) y=4logsx

Tangent

The tangent to a curve at a given point is a straight line which
touches the curve and has the same gradient at that point.
Finding the equation of the tangent at a point relies on knowing
the gradient of the function at that point. This can be found by
differentiating the function. We then have both the gradient of
the line and a point on it and we can use the standard procedure

Normal

J T for finding the equation of a straight line.
Normals are lines which pass through the graph and are
See Prior learning perpendicular to the tangent. They have many uses, such as
section W on the <l finding centres of curvature of graphs and working out how light
CD-ROM. is reflected from curved mirrors. However, in the International

Baccalaureate® you are only likely to be asked to calculate their
equations. To do this you use the fact that if two lines with
gradients m, and m, are perpendicular, mm, = —1.
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Worked example 16.13

(a) Find the equation of the tangent to the graph of the function fx) = cosx + e*

at the point x = 0.

3
(b) Find the equation of the normal to the graph of the function g(x) = x* - 5x* - x2 + 22

at (4, -2).

In each case give your answer in the form ax + by +c = 0, where a, b and c are integers.

We need the gradient, which is f'(0)

To find the equation of a straight line we also &

need coordinates of one point
The tangent passes through the point on the
graph where x = 0. lts y-coordinate is f(0)

Put all the information into the equation
of aline

The normal is perpendicular to the tangent, so
we need the gradient of the tangent first

Find the gradient at x = 4

For perpendicular lines, mm, =-1

We are given both x and y<oordinates of
the point, so put all the information into the
equation of a line

(a) f{x)=—sinx +¢*
= f(0)=-sinO+e° =1

When x =0,
y=f(0)=cos0+¢°
={<p]
=2
i Y=Y =m(x—x1)
y—2=1(x-0)
=Sy=x+2
=>y—-x-2=0

1

K (b) f(x)=3x%—-10x— %xE

o F(4) = B(4) —10(4)—2(4)%

=48 -40-3=5

Therefore gradient of hormal,

-
m=—

o

)

.‘ll y—yi=m(x—x)
—1

y(2)= (x4

= by+10=-x+4
=>x+5y+6=0

SR

1 4

gy f‘*..um_‘
WY, ' & et aand f aalks

W
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The procedure for finding the equations of tangents and
normals can be summarised as follows:

KEY POINT 16.9

EXAM HINT
N

¢%Q Your co\cu\ri\’totr
" may be able to
find the equation ©
a tangent at a given

For the point on the curve y = f(x) with x = a:

« the gradient of the tangent is f*(a)

o the gradient of the normal is —

’

(a)

point. o the coordinates of the point are’x, =a, y, = f(a).

To find the equation of the tangent or the normal use
y—y, = m(x —x,) with the appropriate gradient.

You may not be given the coordinates of the point where
the tangent touches the curve, but asked to find them given
another point.

Worked example 16.14

The tangent at point P on the curve y = x*+1 passes through the origin. Find the possible
coordinates of P.

We want to find the equation of the tangent&. Let P have coordinates (p, q)

3
at P, so use unknowns for its coordinates j
Er) As P lies on the curve, (p, g) satisfies .0‘ Then g = p? +1 }
; y=x%+1 ¢
4
{ ® J

).; The gradient of the tangent is given by j—y‘. P 2x

x
when x = p -y dy _ 2
When x=p X p
fle Lm=2p

Equation of the tangent:

AAM
S P -

. . ..
Write the eguohon of the tangent, y—gq= 2p(x _ P)
remembering it passes through (p, g = y—(p? +1)=2p(x—p)
—_—
T o
II? -
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continued . . .
Tangent passes through the origin, & Passes through (0,0):
soset x=0,y=0 0—(p? +1)=2p(0-p)
= —p? —1=-2p?
=p?=1
=p=Tlor—1
We can now find q." When p=1, q=2
When p=-1, g=2 .
So the coordinates of Fare (1, 2) or (-1, 2) .
N ‘ ‘ | _/

1. Find the equations of the tangent and normal to the following:
x*+4
Jx
. T
(b) y= 3tanx —2+/2sinx at x = n

atx=4

(@) y=

1
(c) y:3—ge" atx=2In5
Find the coordinates of the point on the curve y = Jx +3x
where the gradient is 5. [4 marks]

Find the equation of the tangent to the curve y = e* +x
which is parallel to y = 3x. [4 marks]

n Find the x-coordinates of the points on the curve
y = x* —3x? where the tangent is parallel to the normal of

the point at (1, -1). [6 marks]
Find the coordinates of the point where the tangent to the
curve y = x> —3x? at x = 2 meets the curve again. [6 marks]
[ Find the coordinates of the point on the curve y = (x 1)’
where the normal passes through the origin. [5 marks]
Points P and Q lie on the graph of f (x) = 2sin x and have
. T L
x-coordinates — and —.
6 4

(a) Evaluate f ’(g)

(b) Find the angle between the tangent at P and the chord
PQ, giving your answer to the nearest tenth of a degree.
[11 marks]

e A tangent is drawn on the graph y = K at the point where
X

x =a, (a>0). The tangent intersects the y-axis at P and
the x-axis at Q. If O is the origin show that the area of the
triangle OPQ is independent of a. [8 marks]
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Show that the tangent to the curve y = x*> — x at the
point with x-coordinate a meets the curve again at a
point with x-coordinate -2a. [6 marks]

In real life people are interested in maximising their profits, or
minimising the drag on a car. We can use calculus to describe
such things mathematically as points on a graph.

The gradient at both the maximum and minimum point on the
above graph is zero and therefore:

KEY POINT 16.10

To find local maximum and local minimum points, we

solve the equation Y 0.
dx

We use the phrase local maximum and local minimum
because it is possible that the largest or smallest value of the
whole function occurs at the endpoint of the graph, or that there
are other points which also have gradient of zero. The points
that we have found are just the largest or smallest values of y in
that part of the graph.

Points which have a gradient of zero are called stationary
points.

(' Worked example 16.15

Stationary points have d_y =

dx

Find the coordinates of the stationary points of y =2x* —15x? +24x +8.

0 sowe® dx
need to differentiate

' d
Then form an equation & For stationary points Y _ o

0. d—y=6x2—50x+24

6x° —30x+24=0 P

= x?-5x+4=0
= (x-4)(x-1)=0
>x=lorx=4
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continued . .. .
i i When x =1:

Remember to find the y-coordinate &
for each point y=2(12 —15(1)? + 24()+ & =19

When x = 4

y=2(4)7 —15(4)7 +24(4)+ &=-8

Therefore,

stationary points are (1, 19) and (4, —8)

L

LR

The calculation in Worked example 16.15 does not tell us
whether the stationary points we found are maximum or
minimum points.

It can be seen from the diagrams that one way of testing for the
nature of a stationary point is to look at the gradient either side
of the point. You can do this by substituting nearby x-values

into the expression for " For a minimum point the gradient
Y

moves from negative to positive. For a maximum point the
gradient moves from positive to negative.
We can also interpret these conditions by looking at the sign

of the second derivative. Around a minimum point the curve is
2

d’y

concave up, so ) is positive. Around a maximum point the
2

d’y

curve is concave down and o is negative.
X

See the end of <l

This leads to the following test. Section 16D

KEY POINT 16.11

Given a stationary point (x,, y,) of a function y = f(x), if: i

2

d’y
dx?
2

d’y

~ >0, at X, then(x,, y,) is a minimum )

<0, at x,, then(x,, y,) is a maximum

d?y
dx?

=0, at x,, then no conclusion can be drawn, so

test the gradient either side of (x,, y,)

© Cambridge University Press 2012 16 Basic differentiation and its applications 555
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Worked example 16.16

Classify the stationary points of the function y =2x*—15x+24x+8 from
Worked example 16.15.

~(1.19) is a maximum

We have already found the stationary points & Stationary points are (1,19) and (4, —8)%
4
. 2
The nature of stationary points is determined by & d—z =12x - 30
> the value of the second derivative dx
Atx=1: 3
2
9Y oy —50=—18<0
dx?
d
4

3 At x=4:
1
d?y
- 2 —12(4)-30 =18>0
v dx2
! o ~(4 .-8) is a minimum
’ S T e P NP
All local maximum points and local minimum points have
d d
d—y =0, but the reverse is not true: A point with d—y =0 does
X X

not have to be a maximum or a minimum point. There are two
other possibilities:

556 Topic 6: Calculus © Cambridge University Press 2012
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These possibilities are called points of inflexion, and are
labelled (x,, y,) on the above diagrams. Note that at those points "
the line with zero gradient actually crosses the curve. The

gradient is either positive on both sides of a point of inflexion

n .

In UK English, ‘inflexion’
“* may be spelt ‘inflection’.

(positive point of inflexion), or negative on both sides (a

negative point of inflexion).

Worked example 16.17

Find the coordinates and nature of the stationary points of y =3+ 4x3 —x*.

Stationary points have d_y =04
dx

Find y-coordinates

The nature of the stationary points
is determined by the second
derivative

2
As % =0 we need to check the*®
X

gradient either side of the stationary
point

ay
dx

=12x? — 4x°

For stationary points j—i =0;:
12x2 —4x>=0

= 4x2(3-x)=0
=x=0o0rx=2

When x=0:
y=3+4(0) -(0)" =3
When x=23:

y=3+4(3)° -(3)" =30
Therefore, stationary points are:
(0, 3) and (3, 20)

Find the nature of these points:

2
9Y _ oax—tox
dx?
At x=0:
dZ
2 24(0)-12(0) =0
dx?
)
Therefore, examine —y:
dx
At x=-1:
dy .
L — 12172 = 4(—1? =16 >0
dx
At x=1
d
X _ 1201 — 40P =8>0
dax

~.(0, 3) is a positive point of inflexion.
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Y.;r’? 2 ¥ =D AT TR
continued . .. f
(B 5e=Br
{
. 1
9Y _ ou3)-12(3) =36 <0 {
dx? f
: ~(3.30) is a maximum J
N e

E 2
N When % =0, the stationary point is NOT always a point
X

of inflexion.

1 Worked example 16.18

i Find the coordinates and nature of the stationary points of f{x)=x*:

PO

A f'(x)=4x°

Stationary points have f’(x)=0 .0. For stationary points f'(x)=0
M 4x® =0
|': =x=0

.‘ £(0)=0

Therefore, stationary point is:
(0. 0)

Find the y-coordinate

v ' The nature is determined by f”(x) .” Find the nature of this point:
f7(x)=12x2
#(0)=0

As f7(0)=0, we need to check the,o. Therefore, examine £/(x)
J gradient on either side F(=N)=4(=1)° =—4<0
2 (=41 =4>0
Therefore (O, O) is a minimum.

E AN~
P B~ = P e

- W P e T,
N SNIY o Y

N EEEEEEEEEEE———————
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. Exercise T6H

1. Find and classify the stationary points on the following curves:

(a) (i) y=x*->5x? (ii) y=x*—8x?
) (i) y:sinx+§, —m<x<m
(i) y=2cosx+1, 0<x<2m
(o) () y:lnx—\/; (ii) y=2e*—5x
Give an example to illustrate that the following statement is
incorrect:

If y = f(x) has exactly two stationary points, at x;, and x,, and
f(xl) > f(x,) then (x;, f(x;)) must be a local maximum’

Under what conditions is the statement true?

Find and classify the stationary points on the curve

y=x>+3x? —24x+12. [6 marks]
Find and classify the stationary points on the curve y = x — Jx.
[6 marks]

Find and classify the stationary points on the curve
y=sinx+4cosx in the interval 0 < x < 2m. [6 marks]

1
a Show that the function f(x)=Inx+ pry has a stationary point

Ink+1

with y-coordinate [6 marks]

Find the range of the function f:x > 3x* —16x* +18x*+6.

[5 marks]
m Find the range of the function f:x+>e* —4x+2.
[5 marks]
g Find and classify in terms of k the stationary points on the curve
y=kx*+6x2 [6 marks]
© Cambridge University Press 2012 : 16 Basic differentiation and its applications 559




General points of inflexion

In the previous section we met stationary points of inflexion,
but the idea of a point of inflexion is more general than this.

One definition is that the tangent to the curve at a point of

inflexion crosses the curve at the same point. This does not
require the point to be a stationary point.

EXAM HINT
Although the red line

actually crosses ’rh_e
graph af p, it s sfil
referred tg as the )

use
tangent, eca '
has the same gradient
as the curve of P.

Geometrically, this can be interpreted as an ‘S-bend;, a curve

which goes from decreasing gradient to increasing gradient (or

<1 See the end of <l vice versa). This means that the curve is concave down on one
Section 16D. side of the point of inflexion and concave up on the other. We

know that this corresponds to the second derivative changing
from negative to positive (or vice versa).

KEY POINT 16.12

oo Ay
At a point of inflexion e 0.

EXAM HINT
If o question stafes tho't c:
curve does have @ poin
of inflexion and ’fherehls
only one solution fo the

2
has d—); =0 it is not necessarily a point of inflexion. We have to
X

determine the gradient on either side to be sure.

Unfortunately, as in Worked example 16.18, just because a point

. Y _ ou
equchon 55 0y

can then assume you :
have found the point O

inflexion.
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Worked example 16.19

Find the coordinates of the point of inflexion on the curve y = x*> —3x* +5x —1.

[Ty

. d2 d e
F|nd—);.°‘ —y=5x2—6x+5 B
dx dx —
d2
d—{zex—e e
%
N .
At a point of inflexion — =0, -
dx?
6x—6=0
=1

When x=1,y=1-3+5-1=2 ¢
So point of inflexion is at (1, 2) P

Remember the other coordinate!

s N
- Iy, -

N . ) "

-
Find the coordinates of the point of inflexion on the —
curve y =e* —x2 [5 marks] =
The curve y = x* —6x2 +7x +2 has two points of
inflexion. Find their coordinates. [5 marks]
Show that all points of inflexion on the curve y =sinx 1‘3
lie on the x-axis. [6 marks] '
Find the coordinates of the points of inflexion on the !
curve y =2cosx + x for 0 < x < 2x. Justify carefully that '
these points are points of inflexion. [5 marks]
The point of inflexion on the curve y = x* —ax* —bx+c¢
is a stationary point of inflexion. Show that b = 8a’.
[6 marks] y P

a The graph shows y = f(x).
On a copy of the diagram:

(a) mark any point corresponding to a local minimum
of f(x) withan A

(b) mark any point corresponding to a local maximum \// v /

of f(x) withaB

(c) mark any point corresponding to a point of
inflexion of f(x) witha C. [4 marks] i
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3 We can now start to use differentiation to maximise or minimise
quantities. In Section 16H we saw how to find stationary points
(the points with zero gradient) and how to decide whether they

= are local maximum or local minimum points. We also noted
that a stationary point does not necessarily give the largest
or smallest value of the function over the whole domain. For
example, on the diagram, points B and D are local maximum

- points, but the largest value of the function occurs at point F,
' which is an end point of the domain.

Y
A

1 TN L w
| T

Some functions do not have maximum or minimum values

at all. This can happen when the graph has an asymptote. We
say that the function is not continuous throughout its domain.
For example, the value of tan x increases without a limit as x

=

N

. T .

increases towards =, so tan x does not have a maximum value.
2

If we wish to minimise or maximise A by changing B we do so

in four stages:

( y=tanx

1. Find the relationship between A and B.

M — — — — — — — — — —

A
2. Solve the equation da_ 0.
dB

3. Decide whether it is a maximum, minimum or point of
L d?A
inflexion by considering

dB*’

4. Check whether the end points of the domain are actually
global maximum or minimum points, and check that there
are no vertical asymptotes.

Often the first stage of this process is the most difficult and there

. are many questions where we have to use a geometric context to

| make this link. Thankfully in many questions this relationship is
?L given to you.
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Worked example 16.20

Find stationary points

Classify stationary points

Check end points
Check there are no vertical asymptotes

.

The height of a swing (/) in metres at a time ¢ seconds is given by h=2—1.5sint for 0 <t <3.
Find the minimum and maximum height of the swing.

dh
p =-15cost =0 at a stationary point

=cost=0

O<t<d . t= g (only one solution)

2
ﬂ=1.55int
dat?
d4°h
thntzE,—=1.5>O aotzE is a
2 dt? 2

local minimum. This minimum height is

h=2—1.55ing=0.5 metres |

When t=o0, h =2m
When £ =23, h =1.79m (35F) y
So maximum height is 2 m. _ f

s I - A £ v
. A s a s

’ A

n What are the minimum and maximum values of the

[T sy =

= Y R

B

W =

expression e* for 0 < x <17 [4 marks] 5
A rectangle has width x metres and length 30 — x metres.
(a) Find the maximum area of the rectangle. ) '

(b) Show that as x changes the perimeter stays constant and

find the value of this perimeter. [5 marks]
Find the maximum and minimum values of the function P
y=x*-9xif -2<x<5. [5 marks]
What are the maximum and minimum values of
f(x)=e*—3xif0<x<27? [5 marks]
What are the minimum and maximum values of /
y=sinx+2x for0< x <2m? [5 marks] !
. . iy 2
a Find the minimum value of the sum of a positive real _
number and its reciprocal. [5 marks]
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A paper aeroplane of weight w >1 will travel at a constant

speed of 1— % ms™! for a time of > s. What weight will
w w

achieve the maximum distance travelled? [6 marks]

: g The time in minutes (#) taken to melt 100 g of butter depends
upon the percentage of the butter which is made of saturated
fats (p) as in the following function:
S S
10000 100
Find the maximum and minimum times to melt 100 g
of butter. [6 marks]

g The volume of water in millions of litres (V) in a new tidal lake
- is modelled by V' =60cost +100 where t is the time in days
1 after being completed.

(a) What is the smallest volume of the lake?

(b) A hydroelectric plant produces an amount of electricity
proportional to the rate of flow of water. In the first 6 days
b when is the plant producing maximum electricity? [6 marks]

10. The owner of a fast-food shop finds that there is a relationship
between the amount of salt s (g/tray) added to the fries and his
weekly sales of fries F (100s of portions):

L F(s)=4s+1-s*, 0<5<4.2
Find the amount of salt he should put on his fries to
g maximise his sales.

F The total cost C ($ per tray) associated with the sales of
fries is given by:
( C(s)=0.3+0.2F(s)+0.1s

() Find the amount of salt he should put on his fries to
minimise his costs.

The profit made on his fries is given by the difterence
between the sales and the costs.
How much salt should he add to maximise
his profit? [8 marks]

11. A car tank is being filled with petrol such that the volume in
the tank in litres (V) over time in minutes (¢) is given by
V' =300(t>—1)+4 for 0<t<0.5
How much petrol was initially in the tank?

After 30 seconds the tank was full. What is the capacity of
the tank?

At what time is petrol flowing in at the greatest rate? [8 marks]
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12. xis the surface area of leaves on a tree in m?. Because leaves may be E

shaded by other leaves, the amount of energy produced by the tree

L

is given by 2 — % k] per square metre of leaves.

Find an expression for the total energy produced by
the tree.

What area of leaves provides the maximum energy for the
tree?

"o TT SRR

Leaves also use energy. The total energy requirement is
given by 0.01x°. The net energy produced is the difference
between the energy produced by the leaves and the energy
used by the leaves. For what range of x do the leaves
produce more energy than they use?

Show that the maximum net energy is produced when the —

10(v/7 -1)

tree has leaves with a surface area of . [12 marks]

Summary

 The gradient of a function at the point P is the gradient of the tangent to the function’s graph
at that point.

« To find the gradient of a function we can differentiate from first principles: -

£/(x)=1 M (also denoted by di f(x))
0 X

«  For the point on the curve y = f(x) w1th X=a

h—>

— the gradient of the tangent is f”(a)

— the gradient of the normal is —

1
f'(a) 1
o If f(x)=x" then f'(x)=nx""

o The derivative of a sum is the sum of the derivatives of each term.

o If we differentiate kf (x) where k is a constant we get kf "(x). )
 The derivatives of the trigonometric functions are:
d
—(sinx)=cosx —(cosx)=—sinx —(tanx) =sec® x
dx dx
« The derivatives of the exponential and natural logarithm functions are:
d d 1
_ X} = X _ lnx e
dx (e)=e dx (In) X /I
 Stationary points of a function are points where the gradient is zero, i.e.
d
Y, 3
dx
© C sa" m b dr «i=—d 16 Basic differentiation and its applications 565
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Stationary points can be one of four types:

- local maximum

- local minimum

- positive point of inflexion
- negative point of inflexion.

| &%
r

.« The second derivative can be used to test which of these occurs. At a stationary point (x,, ¥, ), if
il 2
] d : :
- - E); <0 at x, then (xo, yo) is a maximum
b ’ . -
- EZ >0 at x, then (x,, ,) is a minimum
d’y . : N
T e 0 at x, then no conclusion can be drawn, so check the sign of the gradient either

side of (xo , Yo )

Points of inflexion can also have a non-zero gradient.

PSR o
At a point of inflexion £ _
de
Global maximum or minimum points may also occur at the endpoint of a graph.

Introductory problem revisited

12+v?

The cost of petrol used in a car, in £ per hour, is where v is measured in

miles per hour and v > 0. If Daniel wants to travel 50 miles as cheaply as possible, at
what speed should he travel?

If we have the cost per hour and we want the total cost we must find the total time. But the

50 2
time taken is — hours, so the total cost is C = @(12 + V—] = 600 + v

4 v 100 v o2
If we wish to find a minimum value of C by changing v we can do this by setting — =0:
L6001
v:o2
= v?=1200

v = 34.6 mph (3SF) (Taking the positive root since v > 0)
{ d>C
To see if we have found a minimum we find —=1200v" which is positive for any positive

dv
v, so the point is a local minimum.

Next, to see if it is global minimum we must consider the end points. Although v is never

1%

600
actually zero as it gets close to it, the — term gets very large. When v gets very large the %
4 term gets very large. Therefore we have found the global minimum.
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Find the equation of the tangent to the curve y = e + 2sinx at the point

where x = T [5 marks]
2

Find the equation of the normal to the curve y =(x— 2)3 when x=2. [5 marks]

f(x) is a quadratic function taking the form x* + bx +c. If f(1)=2 and
f’(2)=12 find the values of b and c. [5 marks]

e Find the coordinates of the point of inflexion on the graph of
3

y=%—x2+x. [6 marks]
. . . . 4x
Find and classify the stationary points on the curve y = tanx — ER [6 marks]

a Let f be a cubic polynomial function. Given that f(0)=2, f’(0)=-3,
f=f'1) and f”(-1)=6, find f(x). [2 marks]
(© IB Organization 2005)

The graph shows y = f’(x): y
On a sketch of this graph:

(a) Mark points corresponding to a local minimum
of f(x) with an A.

(b) Mark points corresponding to a local maximum

of f(x) with a B. /\

(c) Mark points corresponding to a point of oo S
inflexion of f(x) with a C. [6 marks]

On the curve y = x* a tangent is drawn from the point (4, 4?), a> 0 and
a normal is drawn from the point (—a, —a?). The tangent and the normal
meet on the y-axis. Find the value of a. [6 marks]

1. The line y =24(x —1) is tangent to the curve y = ax* + bx* + 4 at x =2.
Use the fact that the tangent meets the curve to show that 2a+b=5.

Use the fact that the tangent has the same gradient as the curve to find
another relationship between a and b.

© Cambridge University Press 2012
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e SRR L — g, R —
Hence find the values of a and b.
The line meets the curve again. Find the coordinates of the other point
of intersection. [12 marks]
2. The graph shows part of y = x> —x? —x+3.
The point A is a local maximum and the point Bis a
point of inflexion.
A
(i) Find the coordinates of A. /-\,_/
B
(ii) Find the coordinates of B. .
(i) Find the equation of the line containing both /
A and B.
(ii) Find the x coordinate of the points on the
curve at which the tangent is parallel to this line. [10 marks]
1
3. Sketch and label the curves y= x> for 2< x< 2, and y=——Inx
for 0< x< 2. 2
Find the x-coordinate of P, the point of intersection of the two curves.
If the tangents to the curves at P meet the y-axis at Q and R, calculate
the area of the triangle PQR.
Prove that the two tangents at the points where x=a,a > 0, on each
curve are always perpendicular.
[14 marks]
(© IB Organization 2000)
4. The population of bacteria (P) in thousands at a time ¢ in hours is modelled by:
P=10+e -3t,t=20
(i) Find the initial population of bacteria.
(ii) At what time does the number of bacteria reach
14 million?
dp
5)) (i) Find —.
(ii) Find the time at which the bacteria are growing at a rate of 6
million per hour.
N 4P , o , ,
(i) Find i and explain the physical significance of this quantity.
(ii) Find the minimum number of bacteria, justifying that it is a minimum.
[12 marks]
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Basic
Integration
and its
applications

Introductory problem

The amount of charge stored in a capacitor is given by the
area under the graph of current (I) against time (¢). When
it contains alternating current the relationship between I
and ¢ is given by I =sint. When it contains direct current
the relationship between I and ¢ is given by I = k. What
value of k means that the amount of charge stored in the
capacitor from ¢ = 0 to t = 7 is the same whether
alternating or direct current is used?

As in many areas of mathematics, as soon as we learn a new
process we must then learn how to undo it. However, it turns
out that undoing the process of differentiation opens up the
possibility of answering a seemingly unconnected problem:
what is the area under a curve?

Reversing differentiation

We saw in the last chapter how differentiation gives us the
gradient of a curve or the rate of change of one quantity with
another. What then if we already know the function describing
a curve’s gradient, or the expression for a rate of change, and
wish to find the original function? Our only way of proceeding
is to ‘undo’ the differentiation that has already taken place and
this process of reverse differentiation is known as integration.

© Cambridge University Press 2012
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In this chapter you
will learn:

to reverse the process
of differentiation (this
process is called
integration)

to find the equation

of a curve given its
derivative and a point
on the curve

to integrate sin x, cos x
and tan x

fo infegrate ex and ]

to find the area
between a curve and
the x- or y-axis

to find the area
enclosed between two
curves.

(o

-
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The integration symbol "’
comes from the old “*
English way of

writing the lefter ‘S’.
Originally it stood for the
word ‘Sum’ (or rather, Jum).

As you will see in later
sections, the integral does
indeed represent a sum of
infinitesimally small quantities.

J

You may have heard
of the term ‘differential '\

equation’. These are
the simplest types of
differential equation.

1.

() B
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Let us look at two particular cases to get a feel for this process.

dy

Each time we will be given i and need to answer the question
X

‘What was differentiated to give this?’

d
If <
dx
x* as we know that differentiation decreases the power by 1.
Differentiating x? gives exactly 2x, so we have found that if

=2x then the original function y must have contained

d
d—zZZx then y=x2.
3

d 1 2
If d_y = x2 then the original function y must have contained x2.
X

3 3.1
Differentiating x2 will give y = ExZ and we do not
3.2
want the 2. However, if we multiply the x2 by 3 then when we
2

1
differentiate the coefficient cancels to 1, so if dy =x2

2 3 dx
then y =—x2.
3
. aedy 1L 2 3 L
Writing out ‘if e x2 then y = gxz, is descriptive but rather
X

laborious and so the notation used for integration is:
1 2 3
ledx =—x2
3

Here, the dx simply states that the integration is taking place
d

with respect to the variable x in exactly the same way that in d_y

x

it states that the differentiation is taking place with respect to x.

1 23
We could equally well write, for example, J.tZdt = 51‘2.

Find a possible expression for y in terms of x:

N dy ooy
(a) (i) o 3x (ii) A 5x

N oy 1 oo 4
® 0 F=-= @) P

© Cambridge University Press 2012

e - N.pt for printi?g, sParimL; S;des‘lc}'i%ti%n. = [ dr \ g



L ody 1 . dy _ 1
© O dx  2Jx (i) dx  33x?

Nody N oy
(d) (4) e 10x (ii) A 12x

We have seen how to integrate some functions of the form x" by
reversing the process of differentiation but the process as carried
out above was not complete.

Let us consider again the first example where we stated that:
IZx dx = x2.
Were there any other possible answers here?

We could have given J2x dx=x?+1or
3

'[2x dx=x>——
5

Both of these are just as valid as our original answer; we know
3
that when we differentiate the constant ( +1 or s ) we just

get 0. We could therefore have given any constant; without
further information we cannot know what this constant on the
original function was before it was differentiated.

Hence our complete answers to the integrals considered in
Section 17A are:

J2xdx=x2 +c

1 2 3
Jxldngxl +c

where the ¢ is an unknown constant of integration. We will see how to

]>ﬁnd the constant]>

We will see later that, given further information, we can find nteorati .
hi rant of integration in
this constant. Section 17F.

1. Give three possible functions which when differentiated
with respect to x give the following:

(a) 3x3
(b) 0

© Cambridge University Press 2012 17 Basic integration and its applications 571
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2. Find the integrals:
1
i) |7x*d i) |=x2dx
(@) (1) Jx x (i) I3x

® O [ga @ [T

572 Topic 6: Calculus

We will see how

to integrate x' in
[>>to integ >

Section 17D.

is a part o
The + C and you

the answer,
must write it every

fime.

e only works

This rul
if k is a constant-

Rules of integration

To find integrals so far we have used the idea of reversing
differentiation for each specific function. Let us now think
about applying the reverse process to the general rule of
differentiation.

We know that for y = x", j—y =nx"" or in words:
X

To differentiate x" multiply by the old power then decrease the
power by 1.

We can express the reverse of this process as follows.

To integrate x"increase the power by 1 then divide by the
new power.

Using integral notation:

KEY POINT 17.1

The general rule for integrating x" for any rational power
n#—1 is:

1
xtdx=——x""+¢
n+1

Note the condition n # —1 which ensures that we are not
dividing by zero.

It is worth remembering the formula below for integrating a
constant: jk dx = kx + ¢, which is a special case of the rule in
Key point 17.1

jkdx =jkx° dx = %xl +c

In Key point 16.3, we saw that if we differentiate kf (x) we get
kf’(x); we can reverse this logic to show that:

KEY POINT 17.2

To integrate multiples of functions:

JKf () de =k [ f(x) dx

~ © Cambridge University Press 201
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Since we can differentiate term by term (also in Key point 16.4)

then we can also split up integrals of sums. .
. EXAM HINT
KEY POINT 17.3 Be qur'\ed‘. You
cannof infegrate ients
i

roducts or quot 3
by integrating €9
J‘f (x)+ g(x)dx = I f(x)dx+ Ig(x)dx p\{lf* sepcrote\y.

For the sum of integrals:

By combining Key points 17.2 and 17.3 with k = -1, we can
also show that the integral of a difference is the difference of the

integrals of the separate parts.

These ideas are demonstrated in the following examples.

Worked example 17.1

4
Find (a) [6x~* dx (b) [(3x* —8x 3 +2)dx

o . §

Ad'd.one to the power and @) [ox 5 e I }

divide by this new power = f

i

. ()

Tidy up* 6 g

B d
=-2x?+c é

.’

Go o by 1 (60 [ S spanm 2o
adding one to the power 4+1 —z+] d
of x and dividing by this 1
new power ‘
Remember the rule for }
integrating a constant ‘}

. 1

Tidy up+® VR S ;J

5 _1 :

3 1‘
3 =4 lw
=gx5+24x >+2x+c p
-l NN Y. ,r‘-,_‘- el OV Ny »f/—‘.k‘“‘""‘—a““J

. .

Just as for differentiation, it may be necessary to change terms
into the form kx" before integrating.

17 Basic integration and its applications 573
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Worked example 17.2
. -3y
Find (a) |5x>3/x dx b (x dx
@ [ ®) [==
Write the cube root as a power ** (a) _[5x2 Yxdx = J5x2x“5dx = J5x7/5dx
K and use rules of exponents

o 10 (7 , o o) 5
Dividing by — | Z+1]is the * =5x-— ==y
ividing by 3 3+ Is the 5><1O><x5 +c 23& +c

same as multiplying by 0

x? —-6x+9

o [S = [T

x\2

1 Expand the brackets first, then
| use rules of exponents

3 1 _1
=J.x2 —0x2+9x 2 dx

Dividing by a fraction is .o.

=
_aAm . SN
Ao ‘_w‘_‘_w‘_.‘_h B A an A A

A the same as multiplying by =§x —6><§x

” its reciprocal

0 2 5 ] 1

| =—x2 —4x2 +18x2 +¢

| B

i 3

r A“‘A\‘NM_FMMH"J,“‘%MJ

. .

T
. Exercise 17C

1. Find the following integrals:

M 8 .o 11
/ EXAM HINT (@) (i) [9x°dx (i) [120 dx
F) . ‘
X In the infegral 4o n° (b) (i) [rdx (i) Jdx
forget the d)\(/\?r thg\ 1
i “ € wi s ..
e errc\J\clJJ\:\;or\:gre use of if () (@) J.9dx (ii) J.E dx
u fynction . )
\O;iri;::?ntegrd’f'lng (d) () _[3965 dx (ii) J.9x4 dx
'« gctually being . )
|;\?\;;\?ezil by dx (e) (i) J.3x/;dx (ii) J},g/} dx
ou Cou 5 5
[ Svjr'?;e question ) @ _[_de (ii) '[—3 dx
2dx X X
| 1 os 15
iy

2. Find the following integrals:

(@) (i) [3dt (i) [7de
(b) () [o°dg ) [rodr
574  Topic 6: Calculus © Cambridge University Press 2012
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() () [12¢°dg (i) [5y2dy

. dh .. (dp
@ @ Ja> @) | o

3. Find the following integrals:
(a) (1) |x?—x3+2dx (i) |x*—-2x+5dx
) 1 1
(b) (i) j—+§ t (i) ijv—2—4><v—5dv
(©) (i) [xvxdx (if) j% d
@ @) j (x+1) dx (i) [x(x+2) dx
.F dj1+x [4 marks]

Integrating x' and e~

1
When integrating Jx"dx = —1x”+1 + ¢, we were careful to exclude
n+

the case n=-1.

d 1
In Key point 16.8 we saw that d—(ln x)=—. Reversing this gives:
x x

KEY POINT 17.4

We  will  modify

J‘xil dr=Inx+c ]> this rule in Section ]>

17H.
. d .
In Key point 16.7, we saw that d—(e") = e*. We can use this to
X
integrate the exponential function:
KEY POINT 17.5
je* dx=e*+c i |
- © orqbridge University Press 012 | 1 Fq ic. integration qn@s opp|t.iqs|s i5zﬁ
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. Exercise 17D

. Find the following integrals:

@ O [Tdr i) [2x
® () [5-dv i) [5-dx
© @ | xzx_ldx (i) jx3;5 dx
d () j3’:2dx (ii) J.x;;/;dx

. Find the following integrals:

(@) (i) [se*dx
® 6 [%dx

© 0 [

(ii) j9ex dx

(ii) jielx dx

(ii) j(e”;’cg) dx

A

See Exercise 19B

I>> for establishing this >

result.

’l The integral 9‘
3 tan x is not given

. la
. in the Formul
= booklet and is wor

th
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i

Integrating trigonometric functions

We can expand the set of functions that we can integrate by
continuing to refer back to work covered in chapter 16.

d
We saw in Key point 16.6 that a(sin x)=cosx which means

that J.cosxdx =sinx+c.

Similarly, as a(cos x)=—sinx, then jsinx dx=-cosx+c.

KEY POINT 17.6

The integrals of trigonometric functions:
jsinxdx =—cosx+c

jcosxdx =sinx+c¢

We do not have a function whose derivative is tanx and so
have no way (yet) of finding J.tan x. We will meet a method that
enables us to establish this in chapter 19, but for completeness
the result is given here:

KEY POINT 17.6a

Itanx = ln‘ secx |

© Cambridge University Press 201
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1. Find the following integrals:

(@) () Jsinx —cosxdx (ii) J3 cosx+4sinxdx
b) () [1+tanxdx (i) [= sinx | fanx .
© @ J-x+s1nxdx (i) J\/_+cosxdx
(d) (3) J.l —(cosx+sinx)dx (ii) Jcosx —2(cosx —sinx)dx
+
. Find dex, [5 marks]
2cosx
2
. Find J cossx dx. [5 marks]
cosx —sinx
17F 1 Look back to Worked
We have seen how we can integrate the function ay to find the example 16.2 where,

. . given the gradient,
equation of the original curve, except for the unknown constant <1 we could draw many <1

d )
of integration. This is because the gradient, d—y, determines the different curves by
x . )
o ) changing the startin
shape of the curve, but not exactly where it is. However, if we pointg g g

are also given the coordinates of a point on the curve we can
then determine the constant and hence specify the original
function precisely.

d
If we again consider ay = 2x which we met at the start of this

chapter, we know that the original function must have equation
y = x* + ¢ for some constant value c.

If we are also told that the curve passes through the point
(1, -1), we can find ¢ and specify which of the family of curves

our function must be.
y
\%
T
b
A
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| To find ¥ from dy we need to «® y= J.5x2 —&x+5dx y
integrate (
Don't forget + ¢ S 5Y =4 TR o
g
: The coordinates of the given <® When x ? Ly 22_4’ o0
’ point must satisfy this —4=(1) —4()" +5(1)+c
I equation, so we can find c. A A4Btcm =G
L) Ly=x®>—4x2+bx-6
Y O P > — e
A \- <

R o

b -‘)-—.N" *"I'f-lz". _-""J--.\__:_\_'F' 'J'QJAI' g - - r

Worked example 17.3

The gradient of a curve is given by j—y =3x*>—8x+5 and the curve passes through the point
X

(1, -4). Find the equation of the curve.

The above example illustrates the general procedure for finding
the equation of a curve from its gradient function.

KEY POINT 17.7
To find the equation for y given the gradient ) and one
point (p, q) on the curve: dx

1. Integrate Y , remembering +c.

x
2. Find the constant of integration by substituting
=)= G

1. Find the equation of the original curve if:

(a) (4 j—y = x and the curve passes through (-2, 7)
X

(ii) j—y = 6x? and the curve passes through (0, 5)
X

(b) (3) dy = L and the curve passes through (4, 8)
dx  Jx
(ii) d = Lz and the curve passes through (1, 3)

X X

ay

L dy

(o) (3) ax =2e¢* + 2 and the curve passes through (1, 1)

x
y

(ii) j— =e* and the curve passes through (In5, 0)
X

78 Topic 6: Calculus © Cambridge University Press 2012
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(d) () j—y = x+l and the curve passes through (e, e)
x x

L

(ii) d_y = 1 and the curve passes through (e 5)
dx 2x

(e) (i) j—y = cosx +sinx and the curve passes
X

through (m, 1)

"o TT SRR

(ii) j—y =3tanx and the curve passes through (0, 4)
x

1
The derivative of the curve y = f(x) is P
(a) Find an expression for all possible functions f(x).

(b) If the curve passes through the point (2, 7), find the -
equation of the curve. [5 marks]

. The gradient of a curve is found to be dy =x>-4. 3

(a) Find the x-coordinate of the max1mum point, justifying
that it is a maximum.

(b) Given that the curve passes through the point (0, 2),
show that the y-coordinate of the maximum point

is —75 . [5 marks]

a The gradient of the normal to a curve at any point is
equal to the x-coordinate at that point. If the curve passes v
through the point (e? 3) find the equation of the curve )
in the form y =1In{g(x)) where g(x) is a rational
function, x > 0. [6 marks]

Until now we have been carrying out a process known as )
indefinite integration: indefinite in the sense that we have an

1
unknown constant each time, for example sz dx = §x3 +c.

However, there is also a process called definite integration
which yields a numerical answer without the involvement
of the constant of integration, for example

ol (52 )5

Here a and b are known as the limits of integration: a is the -
lower limit and b the upper limit.
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The square bracket notation means that the integration has
taken place but the limits have not yet been applied. To do this
we simply evaluate the integrated expression at the upper limit

and subtract the integrated expression evaluated at the lower
limit.

go%% Make sure you
knﬁw how to evaluate
definite integrals on your
calculator, s exp\mrc\e t
on Calculator skills shee
10 on the CD-RQN\
|t can save You hr\ne;,‘e
valu
and you can evat
integrals you don't knc\>\w
how to do algebraically-
are
Even when You
asked to find the ex\ctd )
value of the integra yo
can check your answer
on the calculator.

You may be wondering where the constant of integration has
gone. We could write it in as before but we quickly realise that

this is unnecessary as it will just cancel out at the upper and
lower limit each time:

b 1 b
j x2dx = §x3+c

e
1 1

=—b*--a’
3 3

The value of x is a dummy variable, it does not come into
the answer. But both a and b can vary and affect the result.

Changing x to a different variable does not change the answer.
For example:
- b 1
J u*du=

1 b
b3——a3:f x%dx
a 3 3 a

( Worked example 17.4

el
Find the exact value of Jl —+4dx.
X

o o .
Integrate and write in square ® j !
1

—+4dx =[lnx+ 4x]f
brackets X

Evaluate the integrated «* (In (&) + 4 (€)) = (In (1) + 4 (1)

expression at the upper =(1+4e)—|’0+4)= de—3%
and lower limits and )

subtract the lower from

the upper

580 Topic 6: Calculus
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. Exercise 17G

1. Evaluate the following definite integrals, giving exact answers.

@) (i) j:x3 dxe (ii) j14x2+xdx

(®) (@) J:lz cosxdx (i) Jjnsinx dx

© O [erdx @) [ 3edx

2. Evaluate correct to three significant figures:

@@ [Nrae ) [

®) @) [e’de () [Inxde

Find the exact value of the integral J: e* +sinx+1dx [5 marks]

Show that the value of the integral j:k 1 dx is independent
X

of k. [4 marks]

9 9
If_[3 f(x)dx =7, evaluate L 2f(x)+1dx. [4 marks]
a Solve the equation JTJ? dt=42. [5 marks]

Geometrical significance of definite
integration

Now we have a method that gives a numerical value for an
integral, the natural question to ask is: what does this number
mean?

On Fill-in proof sheet 20 on the CD-ROM, The fundamental
theorem of calculus, we show that, as long as f(x) is positive, y y=f(z)
the definite integral of f{(x) between the limits a and b is the
area enclosed between the curve, the x-axis and the lines x = a
and x = b.

KEY POINT 17.8

Area = th(x) dx
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Worked example 17.5

. . . . T
Find the exact area enclosed between the x-axis, the curve y = sin x and the lines x=0and x = 3

Sketch the graph and identify <*
the area required

M L7 /3
Integrate and write in square ® A= _[O sinxdx = [~ cos x|,

brackets

Evaluate the integrated = (—cosEJ —(—cos0)
expression at the upper and °
lower limit and subtract the
lower from the upper

L"“—‘k—m‘..‘\,x—m-.‘\,&—‘ M‘._‘\.A_‘

PN

L S

If you are sketching the graph on the calculator you can get it to
shade and evaluate the required area: see Calculator skills
sheet 10 on the CD-ROM. You need to show the sketch as a part
of your working if it is not already shown in the question.
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In the 17th Century, integration was defined as the
area under a curve. The area was broken down
into small rectangles, each with a height f (x) and a

width of a small bit of x, called Ax. The total area
was approximately the sum of all of these rectangles:

:Zif(x)A X

Isaac Newton, one of the pioneers of calculus, was also a
big fan of writing in English rather than Greek. So sigma
became the English letter ‘'S” and delta became the English
letter d so that when the limit is taken as the width of the
rectangles become vanishingly small then the expression
becomes:

_[: f(x) dx

This illustrates another very important interpretation of
integration — the infinite sum of infinitesimally small parts.

The Ancient Greeks
had developed ideas
of limiting processes

similar to those used
in calculus but it took nearly
2000 years for these ideas
to be formalised. This was
done almost simultaneously
by Isaac Newton and
Gottried Leibniz in the 17th
Century. Is this a coincidence
or is it often the case that a
long period of slow progress
is often necessary to get to
the stage of major
breakthroughs?
Supplementary sheet 10
looks at some other people
who can claim to have
invented calculus.

When the curve is entirely below the x-axis the integral will give

a negative value. The modulus of this value is the area.

Worked example 17.6

Find the area A in this graph.

. . ()
Write down the integral to be ®
evaluated, then use calculator

The area must be positive «*

[ x(x-1)(2-x)dx =-025 (ryGDC)

SA=025

A

\_
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Unfortunately, the relationship between integrals and areas is
not so simple when there are parts of the curve above and below
the axis. Those bits above the axis contribute positively to the
area, but bits below the axis contribute negatively to the area.
We must separate out the sections above the axis and below

the axis.

Worked example 17.7
) <

% (a) Find J-fxz —4x+3dx

(b) Find the area enclosed between the x-axis, the curve y = x? —4x + 3 and the lines
x=1and x =4.

4

A Apply standard integration o (2) J4xz A+ By = {l X5 _Dx? 4 54
: B

1

' (504 2087 +3(8))- (507 207 +30)
e

The value found above can't be * (b) y
N the correct area for (b).
y Sketch the curve to see exactly
which area we are being asked

to find

AAM
B At o A Aede o A Ao

LB

584  Topic 6: Calculus © Cambridge University Press 2012
1 v .r q F ., i /

Not for printing

sharing or distribution




continued . . .

The area is made up of two <* e

parts, so evaluate each of

3 1
L X2 —4x+3dx = [gx‘”’ —2x* + Sx]
them separately

()3

4
.. Area below the axis iag

1

4

4 1
j G2 —4x+5dx=[—x5 —2x? +5x:|
3 2)

(g0

4
.. Area above the axis isg

8

4
+ —=
B

(RN

Total area =

A““J‘h‘- fﬁf—\h‘w*‘“’j

STEN

The fact that the integral was zero in Worked example 17.7 part

(a) means that the area above the axis is exactly cancelled by the Transform 4 tions
. of graphs using the
area below the axis. .
<1 modulus  function <[
This example warns us that when asked to find an area we must were covered in
always sketch the graph and identify exactly where each part chapter 7.
of the area is. If we are evaluating the area on the calculator we
can use the modulus function to ensure that the entire graph is
above the x-axis. Using the function from Worked example 17.7:
4 8
j |x? —4x+3|dx=—
1 3
y
xT
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KEY POINT 17.9

The area bounded by the curve y = f(x), the x-axis and the
b

lines x = a and x = b is given by J | f(x)|dx.

When working without a calculator, if the curve crosses

the x-axis between a and b we need to split the area into
several parts and find each one separately.

The interpretation of integrals as areas causes one inconsistency

-1 1
with our previous work. Consider the integral J. o dx.
2x

Graphically we can see that this area should exist.

However, if we do the integration we find that:

_llde[lnx]

,Zx

—1
-2

=In(-1)-1n(-2)
-1
-5
= ln(l)
2

=—In2

This is the correct answer (which we could have found using
the symmetry of the curve) but it goes through a stage where
we had to take logarithms of negative numbers, and this is
something we are not allowed to do. We avoid this by redefining

1
the integral of — as:
x

© Combri:]ge University Pr?ss 2012 Q
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KEY POINT 17.4 AGAIN

J.x“ dx=ln[x|+c

1
With this definition we can integrate y = — over negative
X
numbers, and the integral above becomes
-11 -1
_[_2 ;dx = [ln | x |]_2
=Inl —1n2

=—1n2 as before

Notice that the answer is negative, since the required area is below
. . . . .
the x-axis. We can still not integrate — with a negative lower and

x
positive upper limit, since the graph has an asymptote at x = 0.

. Exercise 17H
1. Find the shaded areas:

(@ (1) ¥ 2 (i) ¥

(b) (1) y y:x2—4x+3

© onlbridge_ University Press 201
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= L 'ﬁ =
y=1a%—x (i) \ y=a>—3z
T
5
T
2
The area enclosed by the x-axis, the curve y = Jx and
M the line x = k is 18. Find the value of k. [6 marks]
lF'nd the aread . 3
enclosed’ means fr (@) Find [ x* - 1dx
find a closed region
" bounded b\/' the (b) Find the area between the curve y = x* —1and the
' curves mentioned, x-axis between x = 0 and x = 3. [5 marks]
then find ifs ared-
A sketch is a very
al useful tool. Between x = 0 and x = 3, the area of the graph
¢ y = x* — kx below the x-axis equals the area above the
' x-axis. Find the value of k. [6 marks]
Find the area enclosed by the curve y =7x—x?-10
and the x-axis. [7 marks]
/8
; Y The area between a curve and
the y-axis
_—
‘ Consider the diagram alongside. How can we find the shaded
area A?
d y = f(z)
. One possible strategy is to construct a box around the graph to
divide up the regions of interest. You can integrate to find the

area labelled A, and then, by adding and subtracting the areas of
the blue and red rectangles shown, calculate A.
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Happily, there is a quicker way: we can treat x as a function x
of y, effectively reflecting the whole diagram in the line y = x,
and then use the same method as in the previous section.

KEY POINT 17.10

The area bounded by the curve y = f(x), the y-axis and the x = f(y)
lines y = cand y = d is given by_[dg(y) dy, where g(») is

the expression for x in terms of y.

<1 You may have realised that this is related to inverse <l
functions from Section 5E.

Worked example 17.8

The curve shown has equation y =2+x —1. Find the shaded area.

)

Express x in terms of y<* B (y)z J
x—1=|= J
: !
2

=S x= i +1
‘ }
—
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continued . . .

Find the limits on the y-axis *®
It may help to label them on the When x =10, y=2/10-1=6
graph ’

p - .‘ i n . T
y=2/ 1
/
10 *
. . .‘ 6 yz
Write down the integral and ® Area = JO ZH dy = 24 (from GDC)
evaluate using calculator
-l M}'.’MMM“‘

When x =1, y=2J1-1=0

. Exercise 171

1. Find the shaded areas:
(@ () ¢ (i) v

y=a’
y=1°
3
1
xT T xT
.. v
11
(i) .
5
1
T xT

(© @) ¥ (i) §

y=lnzx
x
e
y =3/

A b W '»JlUit,J

(b) (@




AdAn

rr

The diagram shows the curve y = Vx _If the shaded
area is 504 find the value of a. [6 marks]

Y

T

Find the exact value of the area enclosed by the graph

of y=In(x+1), the line y = 2 and the y-axis. [6 marks]
The diagram shows the graph of y=+/x .
The shaded area is 39 units. Find the value of a. [7 marks]

Y

y=Vz
~

T

i

The diagram shows the graph of y = x?, where a €]l, o[,

The area of the pink region is equal to the area of the blue
region. Give two equations for a in terms of b, and hence
give a in exact form and determine the size of the

blue area. y [8 marks]

The area between two curves

So far we have only looked at areas bounded by a curve and one
of the coordinate axes, but we can also find areas bounded by
two curves.

The area A in the diagram can be found by taking the area
bounded by f(x) and the x-axis and subtracting the area
bounded by g(x) and the x-axis, that is:

A= th(x) dx —J.:g(x) dx

© Cambridge University Press 2012
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We can do the subtraction before integrating so that we only
have to integrate one expression instead of two. This gives an
alternative formula for the area.

KEY POINT 17.11

The area A between two curves, f(x) and g(x), is:

A =Lblf(x)—g(x)|dx

where a and b are the x-coordinates of the intersection
points of the two curves.

\ Worked example 17.9

S
% Find the area A enclosed between y=2x+1 and y=x>-3x+5.

A First find the x-coordinates of «® For intersection:

O intersection X2 Byt B=2x+]
L)
] =x2-5x+4=0

=(x-1)(x-4) =0
=x=14

Make a rough sketch to see the «®
relative positions of the two curves

Subtract the lower curve from the **

A= (2x+1)~(x* - 3x+5)d
higher before integrating —J1( x+1)—(x2 —3x+5)dx

4
=J1 —X?+5x -4 dx

Do e .
F o Attt A, St a4, et b et o p o A e faeha A e dn A, e A —

A MM*““"‘“""J’,‘“W‘-‘W

B\

\
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Subtracting the two equations before integrating is particularly
useful when one of the curves is partly below the x-axis. If f(x)
is always above g(x) then the expression we are integrating,
f(x)— g(x), is always positive, so we do not have to worry
about the signs of f(x) and g(x) themselves.

Worked example 17.10

Find the area bounded by the curves y =e* —5and y=3—x2

Sketch the graph to see the Lty GPES ) {
relative position of two e
curves
. . . . ..
Find the intersection Fljo'lms - intersections: x = —2.616 and 1.656 !
use calculator
1.658
Write down the integral «* Area = J:zm (3-x%)—(e* —5)dx
representing the area .
= (&—x* —e*)dx <
—2.818 {
\
Evaluate the integral using * }
calculator =216 (25F) J

Hﬁ"‘““a—_“‘p’ f“\’—‘r*—\wﬂﬁ-;u{f‘m»u*‘

~——
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. Exercise 17)

1. Find the shaded areas.
(a) () § (i) ¢

y=(@—1y

y=v+1

N 1 == -a.

- y y=4z‘—x2—l .

T y=4x—a1>+5

(i) v

y=x2—Tr+7

I|
: ? y =2z —a?

y=3—z—2a?
\

Find the area enclosed between the graphs of y=x>+x—-2
and y=x+2. [6 marks]

Find the area enclosed by the curve y = e, y = x?, the y-axis
and the line x =2. [6 marks]

1
Find the area between the curves y =— and y =sinx in the
region 0 < x <. x [6 marks]

9
@ Show that the area of the shaded region alongside is >
[6 marks]
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a The diagram alongside shows the graphs of y =sinx and

y = cos x. Find the shaded area. [6 marks]
Find the total area enclosed between the graphs of y = cosx y=sinz
y=x(x—4) and y = x> —7x+15. [6 marks]

e The area enclosed between the curve y =x? and the line

2
y=mx is 105 . Find the value of m if m > 0. [7 marks]

9
a Show that the shaded area in the diagram below is 5 [8 marks]

Y

Summary

o Integration is the reverse process of differentiation.

o Any integral without limits (indefinite) will generate a constant of integration.
o Forall rational n # -1 jx” dx= ﬁx"*l +c.

o If n=-1, we get the natural logarithm function: J.x’l dx=Inx+c.

o The integral of the exponential function is: J.e" dx=e*+c.

o The integrals of the trigonometric functions are:

Jsinx dx=—cosx+c¢
jcosx dx=sinx+c

J.tanx dx = ln|secx‘ +c

« The definite integral has limits. Jb f(x) dx is found by evaluating the integrated expression

at b and then subtracting the integrated expression evaluated at a.

© Cambridge University Press 2012 17 Basic integration and its applications 595
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o The area between the curve y = f (x), the x-axis and lines x =a and x =b is given by:
b
A=[ f(x) dx

If the curve goes below the x-axis, the value of this integral will be negative.

« On the calculator, we can use the modulus function to ensure we are always integrating a
positive function.

o The area between the curve, the y-axis and lines y=c and y=d is given by: A, = J ‘ g(y)dy.

o The area between two curves is given by:

A= [|fG) - g(x)]dx

where x=a and x =b are the intersection points.

Introductory problem revisited

The amount of charge stored in a capacitor is given by the area under the graph of
current (I) against time (¢). When there is alternating current the relationship between
Iand t is given by I =sint . When it contains direct current the relationship between I
and ¢ is given by I = k. What value of k means that the amount of charge stored in the
capacitor from ¢ = 0 to ¢ = 7 is the same whether alternating or direct current is used?

K
The area under the curve of I against ¢ is given by jo sint dt = [— cost];t = 2. For a rectangle of

width 7 to have the same area the height must be %
T

l
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Mixed examination practice 17

Short questions
If f’(x) =sinx and f(g) =0, find f(x). [4 marks]
Calculate the area enclosed by the curves y=Inx and y=e* —e,x>0.

[6 marks]
[© IB Organization 2003]

Find the area enclosed between the graph of y =k* —x? and the x-axis,
giving your answer in terms of k. [6 marks]

The diagram shows the graph of y=x" for n>1.

Y

=1

a b

The red area is three times larger than the blue area. Find the
value of n. [6 marks]

Find the indefinite integral:
2
_[ 1+x°vx ]

X

[5 marks]

* a (a) Solve the equation:

Joax3 —xdx=0, a>0.

(b) For this value of g, find the total area enclosed between the x-axis and
the curve y=x*—x for 0<x<a. [6 marks]
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Find the area enclosed between the graphs of y =sinx and y =1—-sinx

for 0<x<T. [3 marks]
b e (a) The function f (x) has a stationary point at (3,19) and f”(x)=6x+6.
Y :'r What kind of stationary point is (3,19)? [5 marks]
- (b) Find f(x).
Long questions
1. Find the coordinates of the points of intersection of the graphs
y=5a*+4ax—x*and y=x*-a’
Find the area enclosed between these two graphs.
Show that the fraction of this area above the axis is independent
of a and state the value that this fraction takes. [10 marks]
2. Use the identity cos® x+sin? x =1 to show that cos(arcsinx)=/1—x2.
'} () The diagram below shows part of the curve y =sinx.
y
y =sinx
P/_\
a

o e |
ey

! T
Write down the x-coordinate of the point P in terms of a.
Find the red shaded area in terms of a, writing your answer in a form
without trigonometric functions.
By considering the blue shaded area find J: arcsinx dx for 0<a<1.
[12 marks]

598 Topic 6: Calculus 'y © Cambridge University Press 2012
Q J (] L .

»




Given a cone of fixed slant height
12 cm, find the maximum volume
as apex angle 0 varies.

12 cm

In this chapter we will build on the techniques covered

in chapter 16 so that we can differentiate a wider range of
functions. Much of the work here will also be used in
chapter 19 when we learn more integration techniques.

18A

We can already differentiate functions such as y = (3x> + 5x)2
by expanding the brackets and differentiating term by term:

y=(3x2) +2(3x2)(5x) + (5x)" = 9x% +30x* +25x?

d
d—y =36x* +90x% +50x =2x(18x> +45x +25)
X
But what if the function is more complicated?

The same method would work, but it is clearly not practical to
expand, for example, y =(3x> +5x + 2)7 and then differentiate
each term. And what about functions such as y =sin3x or

y = e*’? While we can already differentiate y =sinx and y=e~,
we have no rules so far to tell us what to do when the argument

is changed to 3x or x2

© Cambridge University Press 2012
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In this chapter you
will learn:

* how to differentiate
composite functions

* how to differentiate
reciprocal trigonometric
functions: sec x,csc x and cot x

* how to differentiate
products of functions

* how to differentiate
quotients of functions

¢ how to differentiate
functions that are not in the
form y =f(x)

¢ how to differentiate
exponential functions

¢ how to differentiate inverse
trigonometric functions:
arcsinx, arccos x andarctan x,

18 Further differentiation methods
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The functions y = (3x> + 5x + 2)7, y=sin3x and y=e* may not

'\ seem related but do have something in common; they are all
s composite functions:

. y:(3x2+5x+2)7isy:u7 where u(x)=3x>+5x+2
= o y=sin3xis y =sinu where u(x)=3x
| . y= e*’ is y = e* where u(x)= x?

There is a general rule for differentiating any composite function.

-1' KEY POINT 18.1

| The chain rule

) If y = g(u) where u= f(x):

~ & _dy du
-l dx du dx
A

We will accept the chain rule without proof, as it is very
technical and requires differentiation from first principles. Let
us apply the chain rule to the three functions above.

A
h Worked example 18.1

Differentiate these functions:

(a) y= (3x2 +5x+ 2)7 (b) y= sin(3x) (c) y= e’

° <
These are all composite functions * (a) y=u’ whereu=23x?+5x+2
g so use chain rule dy _dy  du {
' a dx du dx r
1 =7u® X (6x+5)
® *
() {
Write the answer in terms of x * =7(3x2 +5x+2)° (6x +5) ;

A (b) y =sinu where u=23x
dy _ ey o s
o dx du dx i
=cosuX(3) {
*® f
Write the answer in terms of x* =3c0s(2x) ‘

(c) y=¢e" where u=x?

J A _dY AU (o)
) dx  du  dx Py

Write the answer in terms of x * = 2xe* ,
in the conventional form | —— s A

N .
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Worked example 18.1(b) illustrates a special case of the chain
rule when the ‘inside’ function is of the form ax +b.

[T sy =

KEY POINT 18.2

d =
— f(ax+b)=af (ax+b) ¢
= flax+b)=af 4
G
1
For example,
d 7 6 d oy o
—(4x+1) =4x7(4x+1)" and — (&% )=—2e**
dx dx
It is useful to remember this shortcut. In practice it is not ‘
necessary to keep specifying the function u(x) each time and 3
the chain rule calculation can be written down more directly as
can be seen in the example below, i.e. imagine brackets around :
the inner function u and differentiate the outer function first, g
as if the bracketed expression were a single argument, and then d
multiply by the derivative of the bracketed expression.
-
Worked example 18.2
Differentiate these composite functions: ==
3
(a) y=e (b) y=———
y y o5 :
& | 3
. . i dy ‘ {
differentiates to !l and (a) 2L = (2x = B) e > s
x? —3x differentiates o ‘ )
to 2x-3 : :
» . 1‘
First rewrite the square root as a* (b) y=3(x*-5) 2 s
power P
o . 5 ‘
L . 3 3¢ dy D, - - €z _B
') > differentiates to _~ () ——=——(x*-5) 2(3x%)=~ =5 /
3() ¢ difereniotes to 22" 2= P ) (a37) =~ (" -5)
and x® -5 differentiates to 3x?2 d
— |

\ po B S aa A B A e e j /

Sometimes it is necessary to apply the chain rule more than once.
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b Worked example 18.3

E \
4 Differentiate y = cos’ (In 2x).
3 Remember that cos®A means *® y = (cos(In2x))” {
/ (cos A)3 )
|
o 3
This is a composite of three * ‘
--1' functions, so use chain rule |
® ‘
d ) ) 1 1
: ( )3 differentiates to 3( ) * d—i = 3(cos(In2x)) x(—em(anx))x; )
cos( ) differentiates to —sin( ) 3 ¥
! 1 1 = —=co0s”(In2x)sin(In2x) ‘
R In2x differentiates to 2x —=— x :
2x  x y
A \ - i Y,
0 Now we can use the chain rule, we can add the derivatives of
\ ' y=secx,y=cscx and y = cotx (see Key point 18.3 on the
\ next page) to those of y =sinx, y = cos x and y = tan x already
established in chapter 16.
- Worked example 18.4
d
: Show that —(sec x) =secxtanx
g - dx
F ® 4
l Express secx in terms of cosx * y=secx=(cosx)” 4
) .. . . () dy 2 a *.J
This is a composite function, so apply ® 2 =—(cosx) (-sinx) :
chain rule e ' )
& ()" differentiates to —( ) _oinx /
"' cos( ) differentiates to —sin( ) cos® X )

)y .. 1 )

We want the answer to contain tanx, ® _ et p:

L. sinx CO05 X COS X
which is ,
cosx = secx tanx as required 4
T W e SUREIRNY ¥ VR

The proofs for the other two reciprocal trigonometric functions
follow the same pattern, giving the following results.
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KEY POINT 18.3

d

y=secx = d—y:secxtanx \i
X

y=CsCcx = d—y:—cscxcotx
X

y=cotx = Y escrx

: 1

. Exercise 18A

1. Differentiate the following using the chain rule:

(@) @ (x2=3x+1) (ii) (x* +1)
(b) (i) e’ (if) e+
© () (@2e+1)" (ii) (2—5¢*)"
(d) (i) sin(3x2+1) (ii) cos(x?+2x)
(e) (i) cos®x (ii) sin* x
) (1) In(2x—5x%) (ii) ln(4x2 —1)
(g () (4lnx—1)’ (i) (Inx+3)~

2. Differentiate the following using the short cut from -
Key point 18.2:
@ (@) (2x+3) (ii) (4x 1)’ :
®) @) (5-x)" (i) (1-x)~ /
(c) (i) cos(1—4x) (ii) cos(2 —x) ]
@ () In(5x+2) (ii) In(x—4) {;
(e) @) cot(3x) (ii) csc(Sx) f
(f) () sec(2x+1) (ii) tan(1-x)

3. Differentiate the following using the chain rule twice:
(a) (i) sec?3x (ii) tan?2x
(b) (i) e’ (ii) e
(© (i) (1-2sin2x)’ (ii) (4cos3x+1) [
(d) (i) In(1-3cos2x) (ii) In(2 —cos5x)

1 !
4. Find the equation of the normal to the curve y = at
the point where x = /2. Vax® +1
Find the exact coordinates of stationary points on the curve
y = e for x €[0,2m]. [5 marks]
© Cambridge University Press 2012 18 Further differentiation methods 603 4
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a Given that f (x) =csc?x:
? (a) Find f’(x).
(b) Solve the equation f’'(x)=2f(x)for -R < x <m. [7 marks]

2 For what values of x does the function f : x > In(x* — 35)
have a gradient of 1? [5 marks]

8. If a, b, p and q are positive with a < b find the
< x-coordinate of the stationary point of the curve
y=(x—-a)"(x—b)" in the domain a<x<b.
((5)) Sketch the graph in the case when p=2 and g=3.

I By considering the graph or otherwise, determine a
k) condition involving p and/or g to determine when
this stationary point is a maximum. [10 marks]

9. A non-uniform chain hangs from two posts. Its height (h)
satisfies the equation

; 1
Mony‘ people think that { h=e*+—for -1<x<2.
a chain hangs as a Y e

parabola but it can be The left post is positioned at x = —1. The right post is
proved that it actually hangs positioned at x =2.

in the shape of the curve in State, with reasons, which post is taller.

question 9, called a catenary. 1
To prove this requires a fopic Show that the minimum helght occurs when x = gll’l 2.
called differential geometry. y Find the exact value of the minimum

I height of the chain. [8 marks]

10. Solve the equation sin2x =sinx for 0 < x <2m.

» Find the coordinates of the stationary points of the
(' curve y=sin2x —sinx for 0 < x <2m.

Hence sketch the curve y =sin2x —sinx. [8 marks]

18B

We now look at products of two functions. We can already
differentiate some products, such as y = x*(3x> —5), by
E expanding and differentiating term by term. However, like
f composite functions, this is tricky when the function becomes

: more complicated, for example y = x*(3x? — 5)9, and expanding
is no help at all with functions such as y = x?>cosx or y=xInx.
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Just as there is a rule for differentiating composite functions,
there is a rule for differentiating products.

KEY POINT 18.4
The product rule

If y=u(x)v(x) then:
dy dv du

=y —

v —
dx dx dx

If you are interested

in the proof, see Fill-

in proof 21 on the I>
CD-ROM.

Let us apply the product rule to the first function in
the previous paragraph.

Worked example 18.5

Differentiate y = x*(3x> - 5).

-

This is a product so a Let u=x* and v=3x?-5
use the product rule. " " “m/ﬂh\"l
It dqesn t make any e 4x°, P 6x After applying the
difference which ‘oduct rule you do
function is u(x) and Fr)\ot need to simp\:'fY the
which is v(x) esulfing expression
dy du dv unless Ui queShtO: do so
U :
Apply the product rule o A clearly tells Yo

=(3x? =5)4x” + x* X 6x
=12x° —20x° + 6x°
=18x° —20x°

-
N Y A P NP L e p o e,

I e e A e a A AL Aaiia A AL A

With a more complicated function, we may need the chain rule
as well as the product rule.
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Worked example 18.6

Differentiate y = x*(3x> — 5)5 and factorise your answer.

B/ This is a product so use the product<® Let u=x* and v = (3x* -5)’
rule. It doesn't make any difference du
. . . . e i— 4-_)(::5
which function is u(x) and which Ax
is V(x)
6 v(x) is a composite function, so use ¢ dv _ 5(3x” _5)4 ©%)
\ chain rule dx
) =30x(3x% - 5"
) o A 8 D

Now apply the product rule pial L

=(3x% - 5)5 4x% +(x*) x 30x (327 — 5)4

Ao’ L Mmoottty a0 A e pa A A e an A Aear a0 A e . A

A

! o — 4 2

b We are asked to factorise the ® =2x7 5)'[2(3x* ~5)+16x7 ]
i answer, so look for common —0y? ( Bx2 —5)' (6x% —10+15x2)
o factors

=2 (3x2 - 5)" (21x% - 10)
B Y Y fhf_h—’“mp““"fr.&u“““—‘wj

< \ J

¥ . Exercise 18B
] 1. Use the product rule to differentiate the following:

). (a) (i) y=x*cosx (ii) y=x""sinx
-4 (b) (i) y=x?Inx (ii) y=xInx
. () (1) y=x*v2x+1 (i) y= xax
e (d) (1) y=e*tanx (ii) y=e*"'sec3x
2. Find f’(x) and fully factorise your answer:
@ () f)=(x+D"(x=2)° (i) fO)=(x=3) (x+5)
' ) () f(x)=02x-1)"(1-3x)" (i) f(x)=(1-x)" (4x+1)
o Differentiate y =(3x? —x+2)e’* giving your answer in the

form P(x)e* where P(x) is a polynomial. [4 marks]

B Given that f(x) = x%e**, find f”(x) in the
form (ax? +bx +c)e’~. [4 marks]
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Find the x-coordinates of the stationary points on the curve I
y=(Q2x+1) e~ [5 marks]
BFind the exact values of the x-coordinates of the stationary
points on the curve y = (3x + 1)5 (3 - x)3, [6 marks] ~
g
Given that y = xsin2x for x €[0,2n]: ko
(a) show that the x-coordinates of the points of inflexion )
satisfy cos2x = xsin2x -
(b) hence find the coordinates of the points of inflexion.
[6 marks]
a Find the derivative of sin(xe*) with respect to x. [5 marks]
B ) If f(x)=xInx, find f'(x).
(b) Hence find J-lnx dx. [5 marks] -
Find the exact coordinates of the minimum point of the curve
y=e*cosx, 0<x<T- [6 marks]
-
-
x{a+bx)
IBW Given that f(x)=x>+1+x, show that f'(x)=——="
where a and b are constants to be found. [6 marks] =
12. Write y = x* in the form y=e/®), ]
(®F Hence or otherwise find % 3
98 Find the exact coordinates of the stationary points of the |
curve y=x~. [8 marks] ] :

18C

A combination of the product rule and chain rule provides us
with a method for differentiating quotients such as:
x* —4x+12
(x=3)
We can express it as y = (x? —4x+12)(x—3) " then using the

y:

product rule and taking /

u:(x2—4x+12) and v=(x—3)_2

d -
:%=2x—4 and —V=(—2)(X—3) ’
dx dx

© Cambridge University Press 2012 18 Further differentiation methods 607
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we have:

dx

Y (x=3)? (2x— )+ (x? —dx +12)(=2)(x—3) "

After tidying up the negative powers and fractions, this

simplifies to =~ dy

—2x — 12
(x—3)°

This process 1s laborlous, but it can be applied to a

general function of the form
differentiating quotients.

The details are given in the Fill-in proof 22 on the CD-ROM,
but you only need to know how to use the result.

KEY POINT 18.5

The quotient rule

Ify=

1%

()th dy

dx y

x)

2

u(x)
v(x)

dv
udx

to produce a new rule for

Worked example 18.7

Make sure to get v and v the
right way round

substitute the appropriate values into
the quotient rule

.

Use the quotient rule to differentiate y =

This is a quotient. ©

Use chain rule to differentiate v then *®

Cancel a factor of (x - 3)*

—4x+12

. Simplify your answer as far as possible.

y=2, u=x2—4x+12, v=(x-3) {
v

d_y VT;_udx iv «

dx v :)

(x —3) (2x — 4)— (%2 — 4x +12) 2(x — 3) J

[(x 5)] |

;

_(2x-4)(x-3) - (x? —4x+12)2 '

(x-3) ]

.

_2x?—10x+12-2x2+8x—-24 —2x—12 :

(x-3)° (x=3)’ :

PNV Gy

Posnrt®

.y

608 Topic 6: Calculus

o m‘.fﬂ_ o NPt for pr'rn,tiyg, SP«&I’IFE Ktystiiﬂlti@. =

© Cambridge University Press 2012

el

| — |

I

L



T gy T e, B u
e T e

To.¥

In Section 16E we stated the result that the derivative of tan x 13

is sec’x. We can now use the quotient rule, together with the -
derivatives of sinx and cosx, to prove this result. "
Worked example 18.8 ::
B

d 2
Prove that — (tanx) = sec? x. L
dx [+

@ q
i i ° sinx .
We know how to differentiate tanx— W=, e GeBs k

sinx and cos x, so use them to cosx
express fanx

. @ du d

Use quotient rule ay _Va—Ux
dx v? p —
_ c05xcos X —sinx(—sinx) ¢

2
(cosx) 4 "
cos? x + sin® x

2
cos” X J

[)
sin?x 4+ cos?x =1 = =sec’ X

W

»
>

\ o i —

The quotient rule, like the product rule, often leads to a long
expression. You do not need to simplify this expression unless
asked to do so. However, sometimes product and quotient rule
questions are also used to test your skill with fractions and

exponents, as in the following example. ) .

Worked example 18.9 P

X x+c
Differentiate ——=, giving your answer in the form ——=== where ¢,k,peN.
Vx+1 kJ(x+1)?

)

1 L
This is a quotient *° — u=x, v=-Jx+1={(x+1)2 :
q y \/mr 7 v ( )

p
p—— r T
- -~ T At A A B et A A e e M /

> I
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continued . . .

d
. u v
_ Use quotient rule ® dy _vir—ug 4
¥ - ax v2 j
y !
= dy  (x+1)"x1—xx{x+1) " 4
ay _ .
/ dx ((e+1%) j
P
a
As we want a square root in the'. \/x+1—L
we w qu I. ~ zm
answer, turn the fractional ==
powers back into roots
4
() —
Remove ‘fractions within fractions’® = 204 -x
2(x+)Vx+1

by multiplying top and bottom
b by 2Jx+1

® xX+2

3
1 = E = 3® =
Notice that x+/x = x2 =v/x 5 ;—(x+1)5

.’ 1, . Exercise 18C

1. Differentiate using the quotient rule:

/ . x—1 .. x+2
' a 1 = — 11 =
; @ ) y=2— (i) y =22
: 2x+1 X
(b) @) y= (i) y=7—=
. 1-2x . 4 — x?
C 1 = 1 =
© Oy=25 Wr=1r
\ . In3x .. In2x
) @ @) y= (i) ==
Find the equation of the normal to the curve y = SEY at the
TT X
point where X = 2 giving your answer in the form y=mx+c
where m and c are exact. [7 marks]
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Find the coordinates of the stationary points on the graph of =

x2
= ) 5 marks
4 2x—1 L / —
The graph of y= x—_; has gradient 1 at the point (a,0) and ~
X+ i
L
a # —2. Find the value of a. [5 marks] -
-0
!
Find the exact coordinates of the stationary point on the curve 3
1
y= nx and determine its nature. [6 marks]
X
a Find the range of values of x for which the function
2
f (x) = lx is increasing. [6 marks] -
- X
2 d ax+b -
Given that y = \/% show that di/c Exfl)")’ stating clearly ¢
the value of the constants a, b and p. [6 marks]
-

m Show that if the curve y = f(x) has a maximum stationary
1 .

has a minimum

f(x) 3

stationary point at x =a as long as f(a) #0. [7 marks]

)

The functions we have differentiated so far have been of the form

point at x =a then the curve y =

= f(x), but we will also meet functions that are not expressed 4y 2 +y*=16 i
in this form. For example, the coordinates of a point on the circle (@.9)
shown in the diagram satisfy the equation x? + y? =16. Such
functions are said to be implicit (and those in the form y = f(x) Yy )

are said to be explicit).

Rather than trying to rearrange the equation, we can just
differentiate the equation term by term with respect to x:

d ., d d
—(x?)+—(y*)=—1(16
dx(x) =710
Note that care is needed when differentiating y? asitisa
composite function. We will need the chain rule:

d(y?) _d(y) &y _, dy =

dx dy dx 4 dx
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The chain rule will be needed when differentiating any terms
involving y.
KEY POINT 18.6
When differentiating implicitly, we need to use:
d d dy
R - X —
L)) Y [rn)]x3
i dy . .
- We can now find e for the equation of the circle above.
2 d d d
1 —(x2)+—(y?)=—(16
dx( ) o) dx( )
]
i =2x+2y & =0
dx
- d
=2 y—y =-2x
dx
A dy X
D ==
dx y
' d
| M Notice that the expression for é will often be in terms of both
1 x and y. Sometimes implicit differentiation may also need the
product rule.
-
- Worked example 18.10
> . . dy . .
Find an expression for i if e+ x sin y = cos 2y.
) X
: J'
! . . .
}\ leferentlotg term by term, using i(a" )+ i(x siny) = i(coe 2y) 4
chain rule on all y terms dx dx dx j
{
O, xsiny is a product, so use the * ) dy ~ Cdy 3
product rule and the chain =¢ +(x><coey5+5myx1)——25[1’123/5 !
rule on all y terms f
dy°.’ W ooy W _ i 1
r Group the terms involving Ix = Xcosys Hescy s s me Teiny }
X
:>(xcoey+25in2y)d—y=—ex—5iny J
dx
_.:. :>d_y= —e* —siny 3
f dx xcosy+2sin2y :,’
. e
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If we are only interested in the gradient at a particular
point, or we are given the gradient and need to find the x-
and y-coordinates, we can substitute given values into the
differentiated equation without rearranging it.

Worked example 18.11

Find the coordinates of the turning points on the curve y* + 3xy* — x* = 27.

d d d d
Differentiate each term with ** —(y®)+—(Bxy?) - —(x*)=—(27)

. dax dx dx dx
respect to x but notice that the
term 3xy? will
need the product rule

. K 2 dy dy 2 2 —
Use the chain rule on all y terms = 3y? —+| ¥ X2y ——+y* X3 |-3x* =0
dx dx

y y
:>5y2d—j/c+6xyd—i+5y2 —Zx2=0

dy * For stationary points, ay
= 3y? —3x2=0 dx

=0

We know the value of d_i
:>(y—x)(y+x)=0

S y=Xory=-X

We have found a relqtionship'. When x = y:
between x and y at the x° + Bax? — x° =27
stationary points, to actually = 3x°=27
find the points substitute back =>x°=9
into the original function - x=%9

(3/5 §/§) is a stationary point
When x = —y:

(—x)® + 3x(—x)? — x> =27
= X3+ 2x°—x>=27

B e o S e & a0, 0 0 2 e e B s S0 B0 b A0 A At S e A e S e B e Ane e e b d e B0t B0 e s A Jntedan i Aee 20 b Aae A, fhee

= =27
=>x=3
.% (3, -3) is a stationary point
\ - f—n_..-—‘_r‘*_\,»__,__'_" Jf‘*umqu J
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One application of implicit differentiation is to differentiate
exponential functions with a base other than e.

Worked example 18.12

d
Show that —(5%) =5 In5,
ow tha dx( )
| S |
Let y =5 )
Take In of both sides to ‘remove’ ** 0 }
Then Iny =xIn5 |
T the power {
; [ |
] We can differentiate implicitly © ﬁi(lny):i(xm@ 3
.f dx dx ;
N ) o 1dy ‘
P Remember that Ina is a constant -2 5 J
y dx
dy 1\
=—=yIn5=5"In5 _‘
A ax )
i ol j—h.f—_r‘»___\_‘p_‘_" ,ff"“““m____‘.,u,l
[ \_ v )
|
M We can use this procedure, and a similar one for y =log, x (using
. l“‘“/‘“Nl the change of base rule), to derive the following general results:
Although these results
e iven in KEY POINT 18.7
- are glVe
Formula booklet, you
could be asked fo i(ax) — o*1na
&) prove them- dx
! ) 1
—(lo X =
dx( e ) xlna

1

(a) (1) x*+3y*=7 at (2,-1) (ii) 2x* — y* =—6 at (1,2)

BEL . Exercise 18D

1. Find the gradient of each curve at the given point:

(b) (i) cosx+siny=0 at (0,m)

(ii) tanx+tany =2 at (E,E)
4 4

- () (i) x*+3xy+y*>=20 at (2,2)
(i) 3x* —xy? +3y =21 at (-1,3)

(d) (1) xe” +ye*=2e at (1,1) (ii) xlny—fz?. at (-1,1)
Y
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d
2. Find d_y in terms of x and y:
x

L

(@) (i) 3x*—y*=15 (ii) x* +3y* =20
(b) (i) xy* —4x?y=6 (ii) y2 —xy=7 3
x+ 2 t
© O=—2=2y (i) 2 —=1 =
x—y xy+1 o
(d) () xe” —4Iny=x* (ii) 3xsiny+2cosy=sinx ) |
3. Find the coordinates of stationary points on the curves given by
these implicit equations:
(i) =x*+3xy+ y* =13 (ii) 2x* —xy+ y> =28
4. Find the exact value of the gradient at the given point: 1
(@) (i) y=3at(13) (i) y=5* at (2,25) )
L%
. 1Y’ y 1Y’
(b) () y= (E) when x=-2 (i) y= (5] when x=-1
(¢) (i) y=2* when x=-1 (ii) y=4** when x —i -
(d) (i) y=3°+* when x=2 (ii) y=5"* when x=2 -
(a) On Fill-in proof 18 ‘Differentiating logarithmic functions
graphically’ on the CD-ROM we constructed an argument 3

d 1
which suggested that d—(ln x)=—. Use the fact that Inx
x X

is the inverse function of e* and implicit differentiation to
prove this result.

d 1 :
(b) Show that —(log, x)=
dx" 7" xlna’
(c) Differentiate Inkx and Inx" using chain rule. What do you
notice? Why is this the case? [6 marks] )
a Find the gradient of the curve with equation
x* =3xy+ y*+1=0 at the point (1, 2). [6 marks]
Find the equation of the tangent to the curve with equation
4x* —3xy — y* =25 at the point (2, -3). [6 marks] /
m A curve has implicit equation x2” = In y. Find an expression for E
d_y in terms of x and y. [6 marks]
X
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a Find the coordinates of the stationary point on the curve
B\ given by e* + ye™* =2e? [6 marks]

10. The line L is tangent to the curve C which has the equation
y*=x*> whenx=4and y>0.

By rearranging the curve into the form y == f(x) or
otherwise, sketch C.

Find the equation of L.

~1— ~—~
~ | — ~

Show that L meets C again at the point P with an
x-coordinate which satisfies the equation
x?—9x* +24x-16=0.

€)Y Find the coordinates of the point P. [10 marks]

18E

L i
h Implicit differentiation can also be used to find the
| derivatives of the inverse trigonometric functions
y =arcsinx, y = arccosx and y = arctanx.

Worked example 18.13

r- |

d
g If y =arcsinx, find d_y in terms of x.
X

g 3 ' . ]
| We know how to differentiate sin, ® y=arcsinx = siny =Xx d

(~ so express x in ferms of y
|
: : : o dy 3

Differentiate each term with respect® = coey—~ =1
4 to x, remembering the chain rule J
= d_‘y = 1 §
dx cosy s
.ID «
g -‘
We want th in t fx, 1 1 i
e want the answer in terms of x, = =
M_ i
so we need to change cos to sin =iy V1—x? )
e ’, . - ]
\_ W

L.,

We can establish the results for the inverse cos and tan functions
similarly giving:
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KEY POINT 18.8

=arcsinx d_y = !
4 dx J1-—x?
dy —1

= arccos x e
4 dx JV1—x2

dy 1
y=arctanx  —=
dx 1+x? 1
Worked example 18.14

Differentiate:
(a) y=arctan4x (b) y=arccosvx—3
Multiply the standard result by 4, the ® @ = 1+ (4x) X4
derivative of 4x (using chain rule) d
4 p
- 4
1+16x7 }
Again using the chain rle multiply® | ) =Ll 5y y
gain ;smg elc ain rule multiply P 1_( x—5)2 3
by E(X —3) 2, the derivative of 1 : {
x-3 JI-(x-3) 2Jx-3
- !
2\J(4=-x)(x-3) \
4
-_‘MVJ#_"#\‘-‘M“"" J/—"Nu-ﬁ.___‘»‘J
. .
. Exercise 18E
d
1. Find d_y for each of the following:
X
(a) (i) y =arccos(3x) (ii) y = arccos(2x)
(b)y () y= arctan(g) (ii) y =arctan (Z?x)
() (1) y=xarcsinx (ii) y =x*arccosx
(d) @G y= arctan(x2 + 1) (i) y=arcsin(l—x?)
Find the exact value of the gradient of the graph of
y= arccos(%] at the point where x = % [5 marks]
© Cambridge 18 Further differentiation methods 617
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3x dy 3
. Given that y = arcsm( ], show that — = ————.
2 de  V4-9x° [5 marks]

d
g Given that xarctan y =1, find an expression for d_y [5 marks]
X

d
(a) Find a(xarcsinx)_ [5 marks]

(b) Hence find J.arcsinxdx. [6 marks]

a Show that the graph of y =arcsin(x?) has no points of
inflexion. [6 marks]

Summary

o The chain rule is used to differentiate composite functions.

dy dy _d
If y= f(u) where u= g(x), then ay—d—ixd—z.
+ The product rule is used to differentiate two functions multiplied together.
Ify= )()thd—yuﬂ+%
y=ularCa then g =ug TV
o The quotient rule is used to differentiate one function divided by another.
u(x) dy v —ydv
Ify= then L =Y~ Har
v(x)’ v?
o The derivatives of the reciprocal trigonometric functions are:
d d d
—(secx)=secxtanx —(cscx)=—cscxcotx —(cotx)=—csc? x
dx dx dx

o The derivative of an exponential function is:

d
. XYy —= xl
= (a*)=a*Ina
o The derivative of a log function is:
1
=1 =
dx( o8, ) xlna

o The derivatives of the inverse trigonometric functions are:

1 d -1
—(arccosx) =
dx

d
~ —(arctanx) =

d .
—(arcsinx) =
dx 1-x dx 1+ x?

1—x?

 Inan implicit equation, differentiate each term separately noting that for functions of y the
chain rule needs to be used:

f(y) =—[f ]x%

618 Topic 6: Calculus © Cambridge University Press 2012
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Introductory problem revisited

Given a cone of fixed slant height 12 cm, find the maximum volume as apex angle 0
varies.

First we need to write an expression for the volume of the cone. Then we can differentiate

dv
with respect to 6 and solve 10 0 to find the value of 6 at which the maximum occurs.

1
V ==nr?h
3

Using the right-angled triangle highlighted in the diagram:
r=12sind
h=12cos&

Therefore, substituting into the formula for V we have: 12 em

3

1 12
V= 57:(1251n49)2 (12cosé) = Tnsin2 fcosb

‘ . dv -
For stationary points, — = 0.

dé
3
4V £1'1:[(2 sin @cos &) cos G+ sin? G(—sin )|
d¢ 3
3

12
= Tn[Zsin Hcos? B—sin® 4] =0

= 2sinfcos? #—sin®* =0

=sind=0 or 2cos?#—sin? =0

sin@=0 has no valid solutions, since for a cone, 0 < &< 90°.
2cos? @—sin? @=0=>2tan> 0 =2

= tan#=+/2 (tan#=—/2 has no solutions 0 < &< 90°)
Therefore the maximum volume occurs when tan &= +/2, which

2 1
means sin = — and cosf=—.
J3 3

123
Therefore, substituting into V = Tﬂ:sin2 &cos b

2

122 (2Y/( 1 :

V.o =g V2 (—) _122V3R _ s A —12845n
3 \V3) 3 33
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Mixed examination practice 18
Short questions
. v 4 d
.il Find ﬁ for each of the following:
¥ (a) y=x?arcsinx
B (b) xe’ =4y [7 marks]
£ Differentiate f (x) = arccos(l - x? ) [4 marks]
Find the exact value of the gradient of the curve with equation
1 1
y= e when x=5. [5 marks]
Find the equation of the normal to the curve with equation
4x% + xy* —3y* =56 at the point (-5, 2). [7 marks]
. d?y
Given that y =arctan(x?) find FER [5 marks]
'} m Find the gradient of the curve with equation 4sinxcosy+sec? y=5
' T T
at the point (g,gj [6 marks]
The graph of y = xe ™ has a stationary point when x = —.
% Find the value of k. [4 marks]
0
o |
- m A curve has equation f(x)= 2 a#0,b,c>0.
b+e=
ac*e™ (e —b)
a) Show that " (x) =
( ) f ( ) (b + eicx )3
(b) Find the coordinates of the point on the curve where f”(x)=0.
(c) Show that this is a point of inflexion. [8 marks]
(© IB Organization 2003)
a Find the coordinates of stationary points on the curve with equation
(y—2)*e"=4x. [7 marks]
{
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x2

G A curve has equation y = T
—2x
Write down the equation of the vertical asymptote of the curve.

Use differentiation to find the coordinates of stationary points on the
curve.

Determine the nature of the stationary points.
2
Sketch the graph of y =

) 15 marks
1-2x [ /

2

2. The function fis defined by f(x)= ;C—x, for x > 0.

2x —x%In2

(i) Show that f’(x)= >

(ii) Obtain an expression for f”(x), simplifying your answer as far as
possible.

(i) Find the exact value of x satisfying the equation f'(x)=0,
(ii) Show that this value gives a maximum value for f(x).

(98 Find the x-coordinates of the two points of inflexion on the graph of f.
[12 marks]

(© IB Organization 2003)
1
3. Let f(x)=arccos(~/1-9x*) for 0<x< 3

ShOW that f’(X) = ﬁ
Show that f”(x)>0 forall xe ]O,é[.

Let g(x)=arccos(kx). If g’(x)=—pf’(x) for 0<x< 1 , find
the values of p and k. [12 marks]

4. A curve is given by the implicit equation x* — xy + y* =12.

Find the coordinates of the stationary points on the curve.

2
Show that at the stationary points, (x —2 y)% =2.
Hence determine the nature of the stationary points. [16 marks]

5. If f{x)=secx,0<x<m the inverse function is f ' (x)=arcsecx.
Write down the domain of arcsec x.
Sketch the graph of y = arcsecx.
Show that the derivative of secx is secxtan x.

Find the derivative of arcsecx with respect to x, justifying
carefully the sign of your answer. [12 marks]

©CambridgeUniversityPress 2012 18 Further differentiation methods 621
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In this chapter you
will learn:

to integrate using
known derivatives

to use the chain rule
in reverse

to integrate using
trigonometric identities

to integrate using
inverse frigonometric
functions

to use the product rule
in reverse (integration
by parts)

to integrate using a
change of variable
(substitution)

to integrate using
the separation of
a fraction into two
fractions.

EXAM HINT
A

These are all
given in the
Formula booklet.

622 Topic 6: Calculus
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Introductory problem

Use integration to prove that the area of a circle of radius r
is equal to 7%

Having extended the range of functions we can differentiate,
we now need to do the same for integration. Sometimes we
will be able to use results from the previous chapter, but in
other cases we will require new techniques. In this chapter we
look at each of these in turn and then face the challenge of
selecting the appropriate technique from the list of options
we have.

Reversing standard derivatives

In chapter 17 we reversed a number of standard derivatives
that had been established in chapter 16 to give us this list of
functions we could integrate.

J.x”dx——x”+‘+c n #-1
je dx=e*+c¢
J.ldlen|x|+c

X

Jsinx dx=—cosx+¢

J.cosx dx=sinx+c¢

© Cambridge University Press 20
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In chapter 18 (Key point 18.3) we differentiated sec x, csc x and
cot x. We can now reverse these standard derivatives too and
add them to our list:

jsecz xdx=tanx+c
Jsecxtanxdx: secx+c
Icscx cotx dx=—-cscx+c
Jcscz xdx=-cotx+c

The chain rule for differentiation (chapter 18A) allows us to go
further and deal with integrals such as jz cos(2x)dx. Here we

think about integrating cos to sin and then consider what the
chain rule would give us if we differentiated back. In this case

the chain rule would give the 2 anyway as di(sian) =2c0s2x
X

(2 is the derivative of 2x) so we have the correct integration
straight away:

IZcos (2x)dx=sin2x+c

We may have a similar question in which we do not have the
exact derivative and then we need to compensate by cancelling
out any unwanted constant generated by the chain rule.

For example, in finding J(Zx —3)*dx we proceed as before

1
integrating ( )" to E( )’ but now when we differentiate back the

chain rule gives us an unwanted 2:

d 1 5) 4
—|=@x-3y |=2(2x-3
dx(s( x=3) (2x-3)
so we divide by 2 to remove it:

4 1 1 5 1
[(2x-3) dx = x—(20-3) +e=—(20-3) e

You may notice a pattern here, we always divide by the
coeficient of x. This is indeed a general rule, which follows
simply by reversing the special case of the chain rule from
Key point 18.2.

KEY POINT 19.1

The reverse chain rule
J.f(ax+ b)ydx = lF(ax+ b)+c
a

where F(x)is the integral of f(x).

© Cambridge University Press 2012
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These are nof given in
' the list of|stgr:;l:r
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|F“o‘:ngu\o booklet, but
| can be deduced from
' the list of standar
- derivatives.

This rule only OPP“eS

when the ‘inside

function is of the form

(ax + b)!
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rule every time.

With this shortcut we do not need to work through the chain

Worked example 19.1

Find the following:

(a) J.%eudx 2

5-x

dx

® |

Integrate el ) to e() and divide by *
the coefficient of x 1
=—e*+¢

1 11
(a) J§e4xdx =E><Ze4" +c

1 2 _ 1
Integrate ﬁ toln| | and divideo, (b) _’.5_xdx—2(:)ln|5—x|+c

by the coefficient of x =—2In|5-x|+c )

|
]

<
4

\

A f"“““%-_.»-J
] \vaﬂf“—f—‘""‘*—nm#-,’f
_-.In \— 4
.I' r||
\ . Exercise 19A
1. Find:
(@) () [5(x+3)" dx (ii) [(x-2) dx
' (b) () [(4x—5) dx (i) [(4x+1) dr
: (© () [4(3-1x) dx (ii) [(4-x)"dx
)( (d) () [Vax—1dx (i) [7(2-5x)" dx
. 1 ) 6
A © O [ o dx (ii) | == dx
X
2. Find these integrals:
(@) (i) [3e*dx (if) [er+dx
:. b0 (4 I
/. (b) (4) je X (ii) Je X

© @) j —6e 3 dx

@ ) [—rds

X 624  Topic 6: Calculus
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(ii) j e%dx

(ii) j 5 dx

© Cambridge University Press 2012
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3. Find:
@0 xJ1r4dx @ | 5x5—2
OO Jrge 055
(©) () j%dx (ii) j7_l x
@0 fi-——dr ) [3e;dx

4. Integrate the following:
(a) I—csc x cot x dx

(b) J3 sec?3 x dx
(c) Jsin (2-3x)dx
(d) Icscz (ix) dx
(e) JZ cos 4x dx

(f) J.secg tan g dx

1
Two students integrate j3—dx in two different ways.
X

Marina writes:

dezljldx=11n|x|+c
3x 39 x 3

Jack uses the special case of the reverse chain rule and
divides by the coefficient of x:

J.idx: lln|3x|+c
3x 3

Who has the right answer?

a Given that 0 < a < 1 and the area between the x-axis, the
is 0.4, find the

lines x = a% x = a and the graph of y = n
—x
value of a correct to 3 significant figures. [5 marks]

© &:mtbridge University Press 2012
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Another method for
integrating products
is integration by

]> parts,  the reverse]>

of the product rule.
We will meet this in
Section 19E

626 Topic 6: Calculus
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The shortcut for reversing the chain rule works only when the
derivative of the ‘inside’ function is a constant. This is because a
constant factor can ‘move through the integral sign;, for example:

1 1 1
Jcost dx = J.Ex2cos2x dx = EJ.ZCOSZX dx = 5sin2x+ c

This cannot be done with a variable:ﬁj xsinx dx is not the
same as x I sinx dx. So we need a difterent rule for integrating
a product of two functions. In some cases this can be done by
extending the principle of reversing the chain rule, leading to
the method of integration by substitution.

When using the chain rule to differentiate a composite function,
we differentiate the outer function and multiply this by the
derivative of the inner function; for example

d, .
—(sm (x? +2)) = cos(x2 +2) X 2x

dx
We can think of this as using a substitution # = x* + 2, and then
by _dy du
dx du dx’

Let us now look at J.xcos(x2 +2)dx.

As cos(x? +2) is a composite function we can write it as cosu,
where u = x? +2. So our integral becomes chosu dx. We know
how to integrate cosu, so we want to change our variable to

u. But then we need to be integrating with respect to u, so we

should have du instead of dx. Those two are not the same thing,

du
but they are related because u = x* +2 = — = 2x.

X

1
We can now ‘rearrange’ this to get dx = z—du.
X

Substituting all this into our integral we now have
L)
9 2 2 dx — ~ (_ d
IxCOs(x +2) J‘xcosukzx u
= jlcusu du
2

1 .
=—SlNhu+c
2
This answer is in terms of u so we need to write it in terms of x.

1
Ix cos(x? +2)dx :Esin(x2 +2)+¢

) du . . .
A word of warning here: — is not really a fraction, so it is not

clear that the above ‘rearrangement’ is valid. However, it can
be shown that it follows from the chain rule that it is valid to

1
du.
f(x)

replace dx by
© Cambridge University Press 2012
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Worked example 19.2 &
Find the following: 1
(a) J.sinchosx dx (b) fxze"3+4 dx <
* ‘ &
.. = & :
It is helpful here to think of sin® x &) et = el v A
. \5 . du 1 : C
as (smx) . Therefore the inner Then — =cosx = dx = du {
L dx cos X d )_
function is sin x : A
[
. . ..
Make the substitution J‘(ginxf I J’ua 05 X du j
cos X d
{
= J.u%lu 3
/| :‘ —‘
==+ )
o .
'I ‘J I‘ﬂ.
o __' e p |
Write the answer in terms of x* =" xte a A
S
o. — 40 1
e*is a composite function with ) e u;x T4 1 ‘ -
inner function x3 + 4 Then Y =332 = dx=—du ¢
dx 2x?
p R
() {
Make the substitution ® Ixzcxz’“*dx = ijeu du 1 3
5x2 §
1 4
= J.ge”olu p )
1 i €
=—¢e"+c
5 )
. . ) E— O +4 . '
Write the answer in terms of x ¢ =3¢ tc
PN WVNIW % - )

You may have noticed in all of the above examples that, after
making the substitution, the part of the integrand which was du /

still in terms of x cancelled with a similar term coming from i
X

1 1

For example, in (b), | x%e***dx = | x’e* —du = | —e*du .

ple.in ©), | JrrerSrdu= 3 /
This will always happen when one part of the integrand is an

exact multiple of the derivative of the inner function, and can be .

explained by looking at the chain rule. ~g

© Cambridge University Press 2012 19 Further integration methods 627
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For example, consider the integral J.(Zx +3)(x? +3x - 5)4 dx.

" To find this integral, think about what we would need to
differentiate to get (2x +3)(x? +3x — 5)4. As2x +3is the
derivative of x* + 3x — 5 we know that we would get 2x + 3 for
free’ when differentiating some power of x* + 3x — 5 using the
chain rule. In this case to end up with (x? +3x — 5)4 we would

1
want to be differentiating E(x2 +3x— 5)5, that is

%G(x IV 5)5] ~ (2x+3)(x* +3x—5)'

and therefore:

J-(2x+3)(x2 +3x—5)4 dx = é(xz +3x—5)5 +c

This is the same answer we would get by using the substitution

A u = x* +3x —5. If you notice that you can integrate an
expression by reversing the chain rule, you can just write down
the answer without any working. However, if you are not sure, it

\ is safer to go through the whole process of substitution.

\ In some cases this cancelling of the remaining x-terms will not

happen and you will have to express x in terms of u. The full
method of substitution will then be as follows:

KEY POINT 19.2

x | Integration by substitution
' You will nearly

| always be told which

| substitufion to use.

| r
' you are not, look o
“ site function

1. Select a substitution (if not already given).

2. Differentiate the substitution and write dx in terms
of du.

—— W

a ComPO B ' .
| and take U= ‘inner 3. Replace dx by the above expression, and replace any
- function. obvious occurrences of u.

4. Simplity as far as possible.
5. If any terms with x remain, write them in terms of u.
6. Work out the new integral in terms of u.

7. Write the answer in terms of x.

For the integral in the next example there are two possible

substitutions. As there is a composite function v4x —1, we
/ could use the ‘inner’ function: u = 4x —1. However, we must
?L always use the substitution we are given.

628 Topic 6: Calculus © Cambridge University Press 20
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Worked example 19.3

Find J.x\/4x —1 dx using the substitution u = v4x —1.

Differentiate the substitution «* u=+/4x—1
du_ 4
dx  2+4x—1
_2
u
@
... and write dx in terms of du*® olx=%udu

(Key point 19.2 Step 2)

1
J.JC\/4X—AI dx=j.xu§udu

()

Replace those parts that we *
already have expressions for, 1
and simplify if possible = J-Exuzdu

(Steps 3 and 4)
* ol
4

There is still an x remaining, >
so replace it by using
v?+1

u=Vi4x-1=x=
(Step 5)

()

I

|
—

=

N

—+

<

N

S

<=

Il

|
VY
a | —

<

o

+

|

5

Sl
N—

+

Q

Now everything is in terms of
U so we can integrate (Step 6)

. 1(1 5 3
Write the answer in terms of x* =g(g<”4x_1) +5( “4x_1) )+C
using u=v4x -1 (Step 7)

I_ P S Ao e T -
—_— S st A Andin . 0. A Asedie Bt a A Bttt a0 A Aeebe 4. A A Btn e no A A

el P N e I Y W e T

\

\

When limits are given, we must change them too. Then there is
no need to change back to the original variable at the end.

KEY POINT 19.3

When evaluating a definite integral using substitution, add
the following step to the process in Key point 19.2:
Step 3a. Write the limits in terms of u.

© Cambridge University Press 2012 19 Further integration methods 629
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The next example shows one of the most common uses of
substitution; integrating a quotient where the numerator is a
multiple of the derivative of the denominator.

h Worked example 19.4

1
Evaluate J. dx giving your answer in the form a In p.

0x2—6x+7

1.’

This is of the form ‘something’ x— ¢ Let u=x? —6x+7.

e

so the ‘inner’ function is x2 -6x+7 Then d_u: 2X—6=dx= du

ax 2x—06

Write limits in terms of u<® Limte:x=0= u=7x=1=u=2

Make the substitution «® du

' ox*—ox+7

1 x—3 2x—=3 1
J ‘ '[7 u 2x—-0

21
Simplify 2x —6=2(x-3)* 2.[7 25

SR . W VO
ol M f — Deatt A s & rj i

|
|
| —
=
<
| SE—
N N
A ad
L I_\.‘-"A L Bty Aa A et a0 A A x—\—"‘“‘\_._ A Sothen no A Aee

2 In the above example it is possible to write down the result of
the integration without using the full substitution method, if we

notice that x — 3 is half of the derivative of x> —6x +7,

and so (x —3)X comes from differentiating

x> —6x+7

lln‘x2 —6x+7‘.
2
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This particular case of substitution, where the top of the fraction
is the derivative of the bottom, is definitely worth remembering:

KEY POINT 19.4

J%dlen|f(x)|+c

The next example shows that the substitution can also be
given as x in terms of u (or 0 in this case). It also illustrates
that substitutions can lead to integrals where the use of
trigonometric identities is required.

Worked example 19.5

2
Use the substitution x = sec& to find the exact value of Li(xz - 1)7(3/ ) dx.

@
Differentiate the substitution and® X =s5ech

express dx in terms of d@
dx

= -—=secftan¢
a6

dx=secltanfdE

Change the limits 2 When x=/2::

:;,49:5
4
When x =2

1
secld=2=cos0= E

:>67=E
2

1
cecO=~I2 = cos = —
V2

We will see more
examples of using
trigonometric identi-
ties in the next
section.

Lan A, et no t eten no A et i A Mooy a., ot L A Semo 0.

l
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continued . . .

already have expressions for.
Remember that sec2d—1=tan &

()
Replace those parts that we *®

/3 ,é
= L/4 (tan? ) 2 sec@tanddE

= J”;/: (tan8)” sec HtanBd O

2 9 3 _g
J@(XZ_D 2dx=f/’4(eecz 6—1) 2 secOtanfd

1
Writing this as —

We seem to be stuck; writing ®
everything in terms of sin and cos
often helps

cosé’

sinéd sind’
now have a standard derivative
(Section 19A)

= J”;/j (tand)“ sec 846

(v 1 cos” @
4 cos @ sin® @
5 cos 6
- 46

T sinz g

= J-t/fcecﬂcot 846

‘HM__,MMW

. Exercise 19B

632 Topic 6: Calculus

1. Either by using a suitable substitution, or by considering the

chain rule, find these integrals:

(@) () [x(x*+3) dx

®) @) j(zx —5)(3x% —15x +4)" dx

(ii) f(xz + 2x)(x3 +3x% — 5)3 dx

(d) (4) f4c0553xsin3xdx
) (i) j 3xe 1 dx
0 0 [——

eZ)C+3 + 4

(ii) J3x (x2 - 1)5 dx

6x% —
(i) -[ 6x+1

(ii) J.cos 2xsin’ 2x dx

(ii) j3xex2 dx
COsS X
( ) J3+4S|nx
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(g) (1) f325eC2 2xtan’®2x dx

(ii) _|.65ec6 (f)tan(f) dx
4 4

(h) (1) fcsc“ xcotx dx

csc? 2x
.. d
(if I(3+cot2x) *
X

@ G [ N
(if) [2e e " dx

dx

. Use a suitable substitution to show that jtanx dx=1In | secx |+ C. EXAM HINT

The integral of fan
. Find the following integrals using the given substitution: s not given in the
*,
(@) () J‘x\/x +1dx, u=x+1 Formula bookle
and is worth
(ii) J.xZ\/x —2dx,u=x-2 remembering-

(b) () [2x(x—5) dx,u=x-5

(ii) J‘x(x+3)5 dx,u=x+3

. Find the following using an appropriate substitution:

(@) () [x(2x-1)"dx (i) [9x(3x+2) dx

(b) () [xvx—3dx (i) [(x+1)v5x—6 dx
. x? .. 4(x+5)

© 0 '[ x—5 ax w J(2x—3)3

. Use the given substitution to evaluate these definite integrals:

@ 0 J(5% ] anu=a-x

EXAM HINT
EXAT ——

When an unus
substitution 18
required it W!

val
4—x

3
(ii) f X A u=x+2

(x+2) always be given I"
) n the question.
® O (- 44 u=sing .
0 1+sinéd

(ii) Jmﬂ sin& dé u=1+cosé
0 1+cosé

1

00 | e

(ii) J’M; dx, x = lcosﬂ
0 J1—4x? 2

2 .
dx, x = gsm 1
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a Find the exact value of J.:(Zx +1)e¥ 1 dx. [6 marks]

5 2x - .
Evaluate L T 1 dx, giving your answer in the
x —

form In k. [4 marks]

X

a Use the substitution u = x — 2 to find J. > dx. [6 marks]

x —

a (a) Show that (x —1) is a factor of x> —1.
(b) Find [ XL 4. [4 marks]
x3 =1
2 1 2

I8 Use the substitution u = In x to find J.w dx. [6 marks]

X
FindJ. C_US)C dx. [3 marks]

Sin® x

3(2x—3)\/x2 —3x+3 ds

x> —-3x+3

IPA Evaluate .L [6 marks]

EXAM HINT
EXAY ———
|f you are asked to

do an integral like
this in the exam You

will be given @ hint,
as in the example

below.

634 Topic 6: Calculus

J

Using trigonometric identities in
integration

Sometimes it is necessary to rearrange the expression before
reversing a standard derivative or using a substitution. In
this section we will take a more systematic look at using
trigonometric identities in order to integrate a wide range of
functions.

As seen in the previous section, the presence of the cos x in
J-sin3 x cos x dx makes it possible to apply the reverse chain rule
(or a substitution) but how do we cope with just J.sin3 xdx? As

a mixture of sin and cos helps us in the use of the reverse chain
rule, we aim to introduce cos by using sin® x + cos? x =1.

~ © Cambridge University Press 2012
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Worked example 19.6

(a) Show that sin® x = sin x — cos? xsin x.

(b) Hence find J.sin3 x dx

® ;
(a) sin® x =sin® xsinx }

Intfroduce cos?x by using sin?x + cos?x =1,
= (1-cos? x)einx

to do this we need to ‘split’ sin®x

=sinx — cos® X sinx p
@ q Q q
We can use the result from part (a) ¢ (b) Jemz‘ xdx= femx— cos” xsinx dx

- _ ° du p
Use a substitution u=cosx U=cosx = M _oinx y
dx {

1 £

j5|n5xa|x——c05x—ju sinx| ——— |du

sinx :

— 2 Y

=—cosXx+ |u?du 1

1 g
= —coax+gc05“ x+c

sl i e VOV VG P N R
\ v
The same trick does not work for _[sinz x dx, as we can only
rewrite it as _[1 —cus? x dx which we also cannot integrate. Double angle identi-
Instead we notice that sin? x appears in one of the versions of L ties were covered in <]

the double-angle formulae for cos2x : cos2x =1-2sin” x, and Section 124,

we know how to integrate cos2x.

Worked example 19.7

Find sin? x dx.

.. co0s2x=1-2sin? x §

Write an alternative expression for *® :
sin?x by using a double angle identity = sin? x = 5(1—(;0923() ;

.'.J‘ein2 X dx = J.%U - c052x) dx
= J.l—lcost dx
2 2

4 ,
Remember to divide by the coefficient® e pee )

of x when integrating cos 2x 2 22 b

1 1
=—X——sin2x+c
2 4

© Cambridge University Press 2012 19 Further infegration methods 635
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expected
to recall this metho
without hints.

See Worked exam-

ple 15.25 in Section
I5H to remind you<:l
of this method.

A similar method is used to integrate cos*x and should be
learnt.

KEY POINT 19.5

To integrate sin® x, use cos2x =1—2sin” x.

To integrate cos? x, use cos2x = 2cos* x —1.

The methods from Worked examples 19.6 and 19.7 can be
extended to deal with any powers of sinx and cosx. The
method from Worked example 19.6 can be applied to any odd
power, for example:

. . 2 . 2 . .
sin® x = (sin? x)” sinx = (1 — cos? x)” sinx = (1 —2cos? x + cos* x)sin x
which can be integrated using the reverse chain rule.

For even powers, we can use the identity from Key point 19.5,
for example

1+cos2x) 1
cost x =(cos? x)’ = (ﬂ)

1
5 =—+—cos2x+—cos*2x

and then the double angle identity has to be used again to relate
cos?2x to cos4x.

This becomes increasingly complicated for larger powers.
Luckily, there is a ready-made alternative from the unlikely
source of complex numbers. We saw in chapter 15 that we could
use De Moivre’s Theorem to generate expressions for powers of
sin and cos in terms of multiple angles.

Worked example 19.8

\

We derived similar identities in

1 3 15 5
(a) Show that cos® x = —cos6x + —cos4x + —cos2x + —.
16 8 16

(b) Hence find fcosﬁ x dx.

Section 15H, so we will not
repeat it here

Use the result from part (a)

Don't forget to divide by the
coefficient of x

(a) See Section 15H for how to do this.

1 8 15 5
(b) J.coaexdx: [—cos6x+Zcos4x +—cos2x += dx
e & 16 &

[®

1
= —5in6x+35in4x+ﬁain2x+§x+c
96 32 22 &

.
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Don’t worry if this seems complicated — a question like this will
always be split into several parts, as in questions 10 and 11 in
Worked exercise 19C at the end of this section.

[T sy =

We shall now integrate tan x and its powers. We have already

integrated tan x as an application of the reverse chain rule in —~
Exercise 19B, question 2: J.tanx dx = In|secx|+ c. However, H,_:
this does not help when trying to integrate more complicated <l This identity was <1 G
functions, for example tan* x. We do, however, have an identity derived in chapter 12. ]

relating tan” x to something we know how to integrate:
1+ tan® x = sec” x.

Worked example 19.9 —

Find J.tanz 2x dx.
We have an identity relating ** Jtamz 2x dx = _’feec2 2x —1dx ; )
tan?( ) to sec?( ), which we {
know how to integrate 4
1 J
Use the standard result for s =§tan2x—x+c : A
integrating sec?( ), remembering
to divide by the coefficient of x =
- I W
The same identity is used in integrating any power )
of tan x. '

KEY POINT 19.6

To integrate tan” x use the identity 1+ tan® x =sec’ x and P
d

the fact that d—(tan x)=sec? x.
X

© Cambridge University Press 2012 19 Further infegration methods 637
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Worked example 19.10

Find J.tan3 x dx.

Introduce sec2x by using <* Jtar@ x dx = J‘tan2 xtanx dx 7

t 2y = 2 —]
an?x = sec?x :J'(%sz_1)tanxdx

. o =J.9602xtanxdx—Jtanxdx
We integrate the two terms separately

() Q 0 )

We can apply the reverse chain® First integral: ,

rule (or a substitution u =tanx) to J'%CZ xtanx =l(tanx)2 e 4
d 2

sec?x tanx because d—(fonx) = sec 2x g

x ‘,

) 1, 2 1

( ) integrates to 5( ) {

«

> | <

Second integral: )

We found jton x in the previous

section jtanx dx =ln|secx|+c

1
.'.jtanaxdx=Etanzx—ln|eecx|+c ¥

The above examples illustrate standard methods used to
integrate powers of trigonometric functions. Many other
trigonometric integrals can be rearranged into a form where
we can simply reverse a standard derivative. Here we give one
example of using trigonometric identities to do this.

Worked example 19.11

sin4

Find [
sin’ 2x

As we have 4x and 2x, apply the double <* j ?im54x d :JZQi”?’E CO52X ) {

angle identity for sine sin” 2x sin” 2x :

2c052x <

=J dx ,

5in® 2x 1

—
638 Topic 6: Calculus © Cambridge University Press 2012
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continued . ..

of one of our standard derivatives. If we
cannot see it immediately, it is a good idea to
try and split the expression into a product of
two trigonometric functions

Check if this can be manipulated into the form ¢

j
.. =—CsCLX t+C j

Remember to divide by the coefficient of x*

=2j 1 cerxdx
sin2x sin2x

= 2Jcac 2X cot 2x dx

. Exercise 19C

1. Simplify to get standard integrals, and then integrate:

(a) J-tan3x

cos3x

b) [—

sin? x
(o) J.sin 5xCOSx — Cos5xsinx dx

() J-3 cos2x d

sin?2x

CcOS2x
(e) [0
cosx + s1nx

2. Use trigonometric identities before using a substitution (or

reversing the chain rule) to integrate:

(a) J.cos3 xsin? x dx

(b) J. sin?

(c) ISIII X C0S xet2* dx

cos? X

(d) J.tan4 3x+tan®3x dx
sin2x cos 2x
(o) [F—=

V14 cos 4x

3. Find the following integrals:

(a) (i) j2 cus? x dx (ii) _[cosz 3x dx

®) @ | 2tan2(§) dx (ii) [tan?3xdx

© S‘om.bridge University Presst] 2
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'

4. Find the exact value of the following:

(a) (i) J.:sin2 2x dx (ii) J.Omtan2 (g)dx
b) ) [ (tanx-17dv D) [ (1+cos2x) dx

Three students integrate cos xsin x in three different ways:

Amara uses reverse chain rule with u =sin x:

u
— = CUSX, S0
dx

J.cosxsinxdx:J.udu
1.
=—sin?x+c
2

Ben uses reverse chain rule with u =cosx:

du .
— = —sinx, so
x

jcosxsinx dx = J.—u du
1 2
=——cos’x+c
Carlos uses a double angle formula:

_[cosxsinx dx = J%sian dx

1
=——cos2x+c¢
4

Who is right?
a Find IsinZ (g) dx. [5 marks]

(a) Show that tan®x = tanxsec? x —tanx.
(b) Hence find _[tan3 x dx. [6 marks]

/12 4—-T1
B Given that _[O tan?(kx) dx = T find the

value of k. [6 marks]

a (a) Use the formula for cos(A + B) to show that cos2x =2cos? x —1
(b) Hence find Icos 2xsinx dx. [7 marks]

© . ’ _iCdinb_tjdge v



(a) Show that sin® #= sin &— sin #cos? b.

L

(b) Hence find the exact value of J.:n sin3 (g) dx. [7 marks]

A complex number is defined by z = cos #+isiné. :
1
(a) (i) Show that —=cosé&—isiné. -
z G
(ii) Use De Moivre’s Theorem to deduce that: .
z" —— = 2isinnd. -
Zl’l
1 5
(b) (i) Expand (z - —) )
z
(ii) Hence find integers a, b and ¢ such that: |
16sin® &= asin58+ bsin38+ csin 6. F
(¢) Find IsinS 2x dx. [14 marks]
N

>

In the last section we saw examples of similar-looking integrals —
that required very different methods: .[Sinz xcusx dx could -

be done by reversing the chain rule. But Jsinz x dx required

the more complex method of substituting with a trigonometric )
identity; without the derivative of sin x the integration was more b
difficult.

dx and J

1
Similarly, consider dx.
! ‘[ V1-x? V1—x? !
The first integral features a function (1 — x2) and a multiple of
its derivative (—2x), so we can apply the reverse chain rule:

x

J. T dx = —+v/1—x? + ¢c. However, the absence of the )
1—x

derivative of (1 - x?) in the second integral means that we need

another method.

Fortunately, we have already met the expression in
y V1-x? These results are
chapter 18 as the derivative of arcsin x. In the same chapter we <I given in Key point <I /

saw that the derivative of arctan x is . This means that: 18.8.

1+ x?

dx = arctan x.

dx =arcsinx and J.

1
J V1= x?
© Cambridge University Press 2012 19 Further infegration methods 641
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We can extend these results slightly to include expressions of the

| 1
3 form and L For example, to integrate
- Ja* - x a* +x? 16+ x?

1 . .
we can take out a factor of — to turn the denominator into the

= form 1+ Y? and then use a substitution:

J16+x _J16 )

6

ol 1 1
r =— X 4dY where Y:ﬁ
1+Y? 4

:ZJ.HY2

1
= ZarctanY+c
=—arctan| — |+¢
4 4

We can use this method to obtain the general result for the two
) integrals:

KEY POINT 19.7

1 X
j dxz—arctan = |+c
L a’+x? a
1 X |
J—dx—arc51n — |+c (|x[<a)
a? —x? a )

— W)

It is worth noting several things about these; first of all, the

whether there are rules
for integrating

1

‘ 1 .
You may wonder @ arctan result has a factor of — and the arcsin one does not.

a
Secondly, the arcsin result only applies when | x‘ < a because of
the presence of the square root. Finally, you may be wondering

———— when |x|>aor why there is no corresponding result with arccos; if you look
Vx? —a? back at Key point 18.7 you will see that the derivative of
ﬁ . These require the arccosx is —ﬁ, which, according to the Key point above,
study of hyperbolic functions, would integrate to —arcsin x. This is because the graphs of the
which are in many ways arcin and the arccos functions are related through a reflection
similar to trigonometric and a translation.

functions, and can be used
to describe some important
curves, such as the shape of
a hanging chain.

v
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Worked example 19.12

1
1+ 9x2

Find the value of:j

but x? has been replaced by 9x2 :(3x)2
So reverse the standard derivative,
remembering to divide by the
coefficient of x

.

This is similar to the derivative of arctan x*

°. 1 1

@ J.1+ O

gt brves

1
= garctan(Bx) +c

dax {

When working through an integration, we may first need to put the expression into the correct
form. As there is an x* term in the derivatives of both arcsin x and arctan x, this often involves
completing the square. (For a reminder of this term, see glossary on CD-ROM.)

Worked example 19.13

\

3
Find | dx.
V—4x? —4x+8
{
This is not a reverse chain rule integrcul'. j—z 5 dx =I . 5 dx
and there is a square root in the VoAXE —4x+ 6 J-(4x% +4x-8) )
denominator, so perhaps arcsing The B 3 y g
only way of producing v1- X2 in the _I\/—[(2x+ e _1_5] X ;
denominator is to start by completing
the square to get VC - X? = J'# dx )
9—(2x+1) 4
1
® ‘
Now reverse the standard derivative, ¢ = 5'[;2 dx ‘
remembering to divide by the (3?2 —(2x+1) ¥
coefficient of x which is 2 _ éam@m(Zx + 1) o
2 .
N PPV Va et et A e A A R A,J

. Exercise 19D
1. Find the following:

®) @ [ ﬁ dx (i) jﬁ dx
© Cambridge Uni 19 Further integration methods 643
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() (

@ @ | ﬁdx i) | J:7 dx

2. By first completing the square, find the following:

. 1
@ -[ x* +4x +5dx (i) '[xz—6x+10

1
. d .. d
) '|.\/8x—x2 —15 * (i) ".\/29c—x2 *

.. 5
. ©) @) -[x 2+10x+27 d (i) '[\/—4x2—12x dx

NEYY
1+ 4x?

2 . Find the exact value of J dx. [4 marks]

(a) Write 2x2 + 4x +11 in the form 2(x + p)2 +q.

\' (b) Hence find I* dx. [5 marks]
\

2x* +4x+11
(a) Write 1+ 6x —3x? in the form a* — 3(x - b)z.

(b) Hence find the exact value of J [5 marks]

W1+ 6x —3x?

g a Show thatJ. m dx= % [6 marks]
X+

( : By using the substitution u = e*, find the exact value of

Lins
2 1

J. dx. [6 marks]
0 e*+e*

o

We now have a number of techniques to use when integrating
a quotient of functions; we can reverse a standard derivative,
apply the reverse chain rule or use an inverse trigonometric

e | function. However, there are occasions when none of these
methods seem to be useful. In such cases our only remaining
option is to split the fraction into two separate fractions, each of
which we can solve.

The easiest way to do this is to split the numerator.

644  Topic 6: Calculus © Cambridge University Press 2012
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Worked example 19.14

X =

.=

. x+1
FlndJ.
V1—x?
x+ | ¢ ]
. . . .. d_x+ ‘.' [«
Split the fraction into two N J\/— j\/— ‘ ~
f g
. . 0 o _ )
The first part can be integrated Firet integral: ; ). .
using the reverse chain rule Lebu=1—22 60 LW B J -
or the substitution u = 1- x dx 2x
: I X x J. x du '
S| Y——dx=-—— ¢
J1—x2 Ju 2x §
| L '
=_[—— uzdu f .
2 é —
=Ju+e=—1-x2+¢
{
' -" ! ‘ W
We recognise the second part as I - dx = arcsinx + ¢ A
the derivative of arcsin Vi- y
X+1 = ?
=—J1—-Xx? +arcsinx +c¢
J‘ VI1—x < -
ST . VY vy
_ ‘ y )

Sometimes it is not obvious how to split the numerator.

Worked example 19.15

4x+19 .
Find [ 5410, ) |
x*+12x+41 :

.O-

No obvious options, so split
the fraction into two
However, simply writing this as:
4x N 19
x2+12x+41 x2+12x+41

is no use as we still can't integrate

N A
Betedon A A ieadan A A

fraction a multiple of the derivative of the X% +12x + 41
denominator in order to apply the reverse _J ARl L ,[ 5
chain rule and then hope to be able to X2 +12x + 41
deal with the resulting second fraction

—dx
X% +12x + 41

Instead, make the numerator of the first «® J'ﬂ e ‘ /
|
<

© Cambridge University Press 2012 19 Further infegration methods 645
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continued . . .
This works; second fraction can be ** = J‘:]rxi dx _J‘Lz e
integrated with the arctan function et (x+6) +5
ft leting th 2x+12 1
(after completing the square) _ 2-[ 2 dx—_[ "
X +12x + 41

T ——

()~

, X+6
Apply reverse chain rule to the firsts® = 2In(x? +12x+41)—\/5arctan( NG ]+ ¢

fraction (it is of the form U—,) and

A
P Bttty e ta A, St a0 A e

S

U
arctan to the second

\_ e

L e f‘—“‘—"‘—‘r""ﬂr,u—p‘n-ﬂt .fr‘L“““»_ﬂ o b J

We should always check whether the fraction can be simplified
before trying to split the numerator.

Worked example 19.16

x+4
Integratej.i
12 —-5x—2x?
s J- x+4 dx = J x+4
Check whether the polynomial ® 2 B2 X7 (3—2x)(x+4) X
factorises 1

dx

=J5—2x

@
We now have a standard integral, ® = —lln|5 —-2x|+¢
just remember to divide by the Z
coefficient of x

L &.--‘"L Bttt A A S,

L Y anm et n o A P e,

- v

) The final type of functions to consider are improper fractions.
You will need the . s . .
These can be integrated by splitting them into a polynomial plus

method of compar- .
@ ing coefficients from <l a proper fraction.

Section 3A.

646 Topic 6: Calculus © Cambridge University Press 2012
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(a) Find constants A, B and C such that:

>+5
o =Ax+B+

(b) Hence find J

x+2

We can multiply both sides by x + 2 to get rid ¢
of fractions

()
Setting x = —2 will eliminate the first term on the ®

right, so we can find C

To find A and B we need to expand o
the brackets and compare coefficients

()
The result from part (a) allows us to use®
standard integrals

x+2 x+2

(a) x> +5=(Ax+B){x+2)+C

When x=— 2:

(—22)+5=(-2A+B)(0)
~C=9

X?+5=Ax?+2Ax+Bx+2B+9
x?terms: 1= A

xterms: O=2A+B=2+B5..6=-2

So

2

X +5=x—2+ 9

x+2 x+2

xX?+5 9
b dx=|x—-2+ ax
®) -[x+2 J. x+2

=%x2—2x+9[m|x+2|+c

k ot

b, _Pomen ot F‘NH’J/—AH%W‘JJ

NG\

Worked example 19.17

T T

. Exercise 19E
1. By first simplifying, find:

4x - x+3
o St o |

2. Find the following by splitting the numerator:

@ |5 (b) IJ%

dx

© Cambridge University Press 2012
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© J' 8x+23

x—5
——dx d |——dx
x%+8x+25 @ ‘[\/—x2+6x—7

3. Find the following by splitting into a polynomial and a

Al proper fraction:
! @0 [Ta @ [P e
= ) () J-x +2 (ii) J-x +2x— 1

x+5
x? +5x+1
©) J. x*+3

1 1 5
(2) Show that —=——= :
x—2 x+3 x*+x-6

. (b) Hence find 1%6 dx giving your answer in the
X2 +x—

form ln(f(x))+c. [5 marks]
1 . Find the exact value of f ey dx. [4 marks]
Show that ——* -1 . 2
C a(a) owrha 24x—x* 2—x l1+x
) B
: 1' (b) Given that IIS—x dx = Ink, find the
i 02+x—x?
| value of k. [6 marks]
1 4x+5
Find 5 marks
@ rind | — [5 marks]

B (a) Write 2x?> —8x+17 in the form a(x — p)2 +4.

Y (b) Hence find jﬂ dx. [7 marks]

2x2 —8x+17

-
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In Section B we saw cases where we could integrate products of
functions by using the reverse chain rule or a substitution, but
we cannot yet solve integrals such as stinx dx or szex dx.

In order to deal with these we return to the product rule for
differentiation (Key point 18.4).

d
—(uv
dx

Integrating with respect to x we get:

dv

uv:.[u% dx+jv% dx
éju% dx = uv—jv% dx

KEY POINT 19.8

The integration by parts formula.
Juﬂ dx =uv —Jv%dx
dx dx

[T sy =

Ll ot [}

When using integration by parts, the challenge is deciding
which of the functions is to be u and which ﬂ The aim is to

du
select them so that the product vd— is easier to integrate than
X

the original product. This often (but not always) means that you
choose u to be a polynomial.

Worked example 19.18

Find Jx sinx dx.

This is a product to which we can’ts®
apply the reverse chain rule,
so fry integration by parts

Choose u to be the polynomial part x

Apply the formula<®
x

av )
u=xand —=sinx
dx

d
= d—u=1andv=—coex

Ju? dx= uv—J.vj—;’ dax
J.xaimx ax =

= —xcoex+Jcoex dx

W

L)u

Jf(— cosx)l dx ‘

3\

xX(—cosx)—

—XcosX +sinx+c

Y
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It may be necessary to use integration by parts more than once.

As long as the integrals are becoming simpler each time, you are
on the right track! The next example also shows you how to deal
with the limits.

Worked example 19.19

In2
Find the exact value of IO x%e* dx.

This is a product to which we ®
can’t apply the reverse chain
rule, so try integration by parts
Choose the polynomial as v

Apply the formula®
Put in the limits on the uv part
straight away

We have to integrate a product”
again, so use integration by
parts again
Choose u to be the polynomial
again

(If we used u=e*and dv_ 2x
X

we would end up back where
we started!)

()
Apply the formula again and

use the limits
[

Put both integrals together,

making sure to keep track

of negative signs by using
brackets appropriately

dav
u=x%and —=¢&*
dx

d
:>—U=2xamd v=e*
dax

juj_;=uv_ jvj—;

In2 n2 In2 .
J. x%e* dx = [x%e* | —J. 2xe* dx
0 o 0

L STV SN L e

d
u=2x and —V=e"
dx

PUToN

d
:>—u=23ma/v=e"
ax

o,
In2 n In2 qIn qln
[ 2xer ax=[2xe )" [ 267 dx=[2xe | ~[27]

Therefore,

J; weran=le | ~{lewe ]y - (21}
= ((I2)7e"2 —0) — (2In2e"% — 0) +(2¢"% —2)
= 2(In2)2— 4In2+ 2

LW‘H_\_W“_‘»%‘M_“%M

AART
e

[ P

o~ 2
A NN —— s M‘“"A““‘ ._f "“‘““»___,W‘

W
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Sometimes it seems that we are getting nowhere, as the new
integral resulting from integration by parts is no easier than the
original. However, as long as things are not getting worse, they
will eventually get better as the following example shows.

Worked example 19.20

This is one of the rare occasions *®
when it makes no difference which

dv
way round we choose u and —
X

Applying the formula, the new <*
integral is no better but also no
worse than the original

()
With no other option, we proceed ®
with a second integration by parts

We need to be consistent and

dv

choose v and I in the same way

as before to avoid undoing what
we have just done

It seems that no progress has been <*
made as we have ended up with
the integral we started with (except
with a different sign)

However, when we put everything <*
together it becomes apparent
that the different sign allows us to
rearrange and find an expression
for '[excosxdx

Use integration by parts to find J.e" cosx dx.

av
u=cosx and —=e*
dx

du )
= —=—sinx and v=¢e*
dx

Je" cos X dx = cos xe* —J(—aimx)ex dx
=cos xe* +J-c*5mx dx
dv

=X
dx

u=sinx and

du
= —=c05X and v=¢*
dx

So,
Je" sinx dx =sinxe® —Jcoaxe" dx

Therefore,
J.s" cosXdx=cosxe* + {5imxe’ — Jcoa xe* dx}
= ZJ.c" cosxdx=e*cosx+e*sinx

X

€ ]
= Ic* cosxdx = E(coex+9mx)+ c

.

© Cambridge University Press 201
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We are able to differentiate and integrate e* but so far we have
only been able to differentiate In x.

In order to be able to integrate In x, we can use integration by
parts. This might not seem an obvious method at first because
there is no product of functions here, but with a little creativity
we can proceed.

Worked example 19.21

>
|
g
i
\ Find J.lnx dx.
a [
[ The seemingly trivial step of writing
| In x as the product of 1 and In x
sets up infegration by parts
A

..
Cannot integrate Inx so let u=Inx

u=lnx and ﬂ=1
dx

du 1

— and v=x

j]nxdx:jmnxdx (‘,

Apply the parts formula

dx  x

® g "'

dx dx {

j1x]nxdx=([nx)x—j%xd.
= xlnx — [1dx

=xlhx—x+c¢

NPV N .Y i

-l ..

v

L.,
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Although this example only shows how to integrate In x, in most
other cases of integration by parts involving In x we would still
let In x = u. The choices for u and v in the common cases are
summarised below.

KEY POINT 19.9

When integrating J.x” f(x) dx by parts, choose u = x"in all

cases except when f(x) =1n x.

© Cambridge University Press 2012
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. Exercise 19F
1. Use integration by parts to find the following:

(@) () [xcos2xdx (i) jxsm( )dx
(b) (i) [4xe? dx (if) et dx

() () [2xIn5xdx (if) [xlnx dx
(d) () [x?cos3xdx (i) [x’sinxdx
© [3 et dx

Inx

O s
(g) Jlnx dx

2. Use integration by parts to find the following:
(a) farctan x dx (b) _[In (2x+1) dx
3. Evaluate the following exactly:

(a) J.n/zxcosx dx

Inx

(b) j

() IO Sinxln(secx)dx

When using the integration by parts formula, we start

with <% and find . Why do we not include a constant of

dx

integration when we do this? Try a few examples adding

+ Cto v and see what happens.

Find_[er‘” dx.
a Evaluate f:xs Inx dx.

(a) Show thatJ.tanx dx = |n|secx|+ c.

(b) Hence find J

dx.
Ccos? x

k
~ a Find the value of k such that _[0 arccosx dx =0.5

© Sombridge University PresstO] 2
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[5 marks]

[6 marks]

[8 marks]

[7 marks]
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a Use the substitution vx +1 = u to find the

311
3 exact value of JllgeJm dx. [8 marks]

: Summary
» Look for standard derivatives before attempting any more complicated methods. They are
given in the Formula booklet, but you may need to divide by the coefficient of x.

o If the expression contains both a function and its derivative and the ‘inside’ function is of the
form (ax + b) it is highly likely to be susceptible to the reverse chain rule or a substitution.

« Integration by substitution can also work in other situations, and you need to be able to use
any given substitution. The steps of integration by substitution are given in Key point 19.2.

o When evaluating a definite integral using substitution, see Key point 19.3.

- « A particular case of substitution, where the top of the fraction is the derivative of the bottom, is
worth remembering:

"(x
J.de:1n|f(x)|+c
()
\ « Many integrals involving trigonometric functions can be simplified using identities.
1 : Y
Particularly useful identities are: cos® x = 5( 1+ cos2x);sin® x = E\i —c0s2x); tan? x =sec? x — 1.
For example, to integrate sin’x, use cos2x = 1 — 2sin’x; to integrate cos’x, use cos2x = 2cos*x — 1;

to integrate tan"x, use 1 + tan’x = sec’x and that %(tan x) = sec’x.

» Higher powers of sine and cosine can be integrated using De Moivre’s Theorem.

« Integration can be done using inverse trigonometric functions: J.%dx = larctan(f) +¢;
a a

3

5 + The integral of tan is worth knowing: Jtanx dx = In|secx|+c.
F

( a*+x?

J*dx :arcsin(£J+c (‘xi<a).
m a

4 « It may be necessary to split a fraction that contains two (or more) terms in the numerator into
two separate functions before integrating each with the above methods. If the degree of the

) numerator is at least as large as the degree of the denominator, then write it as a polynomial
plus a proper fraction and compare coeflicients.

« It may be possible to integrate a product of functions using the integration by parts formula:
. J.uﬂdxzuv—jv%dx
d dx

X

o The challenge with integration questions is often not in carrying out any of the above methods,

/ but actually in selecting the correct method to use in the first place. In the exam you will often,

?‘ but not always, be told which method to use. For extra practice see the Extension worksheet 17
‘Basic integration.
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Introductory problem revisited

Use integration to prove that the area of a circle of radius r is equal to ©tr2

In order to use integration, we need to think of a circle as a
graph of a function. We saw at the beginning of chapter 18
that the coordinates of a point on the circle with radius r
satisfy the equation x? + y* = r%. (You are not required to know
this equation for the exam!) In chapter 18 we used implicit

x differentiation to find the gradient; in order to integrate we need
an explicit expression for y in terms of x.

22y =12
(, y)

- T

There is a small problem: the equation of the circle above is a
relation, not a function - the graph of a circle does not pass the
- vertical line test.

We can only integrate functions, but we can avoid the problem
. by considering only the top half of the circle and then doubling
<l Rey point 5.1 from <l the answer we get for the area.

For the top half of the circle y > 0, so y = +/r* — x?. Now that
o= ViT—a? you have done lots of integration practice, you may suspect
that this one needs a substitution and it turns out that a useful
substitution is x = r cos 6. This makes some sense, as we know that
trigonometric functions are closely related to circles.

chapter 5 useful here.

EXAM HINT

This is not one of the standard integrals, so if you have to
do it in the exam you should be given a hint.

Now that we have decided on the strategy we can carry out the

integration.
Write down the integral to be «* The area of the top half of the circle is given by:
A g
evaluated EZJ, Ny
State the method to be used ** Substitution: x =rcos &

© &:mhbridge University Press 2012 19 Further inte&r;ation thqgls ‘6@5-
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i continued . . . o
Differentiate * — =—rgind
- a6
=dx=-rsinddd
q Express the integrand in terms of 8<° r? —(rcos 6)° =r?(1-cos? ) = r? oin” &
< Notice that sin 8 is positive on the ** =r? —x* =rsind
top half of the circle
Change the limits <* Limite:
when x=-r, cos@=-1s0 =7
when x=r, cos@=150 =0
A 0
'.'r Put everything together * 5= jn (rsin@)(-reind) d@
¥ Remove the minus sign by * = rz_’:einz 646
4 swapping limits and take the
constant outside the integral
_ Use the double angle formula to*® = rz_[:#dﬂ
' ? integrate sin? 6
) |:19 5in2€:|"
=prl|l — =
5 2 A
.. =r2{|:£_91n2n:|_[oj}
o 2 4
B
2
} mr?
] Hence the area of the whole circle is 2 x B Tr?, as required.
Al
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Mixed examination practice 19

Short questions
Find the exact value of J-: cos?(3x) dx. (6 marks]
Use integration by parts to find jXCOS 2x dx. [6 marks]

m dx
Given that jo P dx =1 calculate, to 3 significant figures,
X+

the value of m. [6 marks]
e Find the exact value of J.n/lz dx. [5 marks]
cus?4x
Find the following integrals:
1
(a) |——dx (b) dx [6 marks]
j 1-3x f (2x+ 3)
a Find jln x dx. [5 marks]
—2x —4x —2x
. (a) Simplify +—3e (b) Hence find J.+—3€9 dx. [6 marks]
B Findj6x+4 dx. [5 marks]
g (a) Show that _ XS can be written as 2 1 .
(x+1D(x+2) x—1 x+2
(b) Hence find, in the form In k, the exact value
ofj X5 dx. [8 marks]
x + 2
Flndj [6 marks]

X ﬁx 1
4 Using the substitution u = 2 1, or otherwise,

ﬁndj X dx [5 marks]
Jix—1
Find the exact value of j dx. [6 marks]
x+2
Use integration by parts to find farctan x dx. [7 marks]
a 2

Given that J:a e dx =1, find the exact value of a. [7 marks]
© Cambridge University Press 2012 19 Further integration methods I6é] .
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Long questions
4-3 A 1-B
1. Show that —xcan be written in the form + X
(x+2)(x2+1) x+2 x*+1

finding the constants A and B.

() Hence find J%

V32 4-3x
Find the exact value of '[ dx. [15 marks]
0 ll_xz
Sinx cusx
2. Let [=|——dx and ]=J._—dx.
Sinx+cosx Sinx+cosx

Find I +].
By using the substitution u =sinx + cosx, find J - 1.
Hence find j& dx. [9 marks]

sinx + cosx

3. Lett= tan(%] dx.

Find ﬂ in terms of t.
dx

2tanéd
sec2 @

(i) Show that sin2¢=

(ii) Hence show that sinx = .
1+12

1
1+sinx

X /2
(@) Use the substitution t = tan(E) to evaluate J.O dx. [14 marks]

s
Consider the complex number z = cos #+isiné.

1
(a) Using De Moivre’s Theorem show that z” + — = 2cosné.
ZYl

4
(b) By expanding (z + l) , show that cos* &= %(cos 46+ 4cos26+3).
z
(c) Letg(a)= J: cos* #dé.

(i) Find g(a).
(ii) Solve g(a)=1. [11 marks]
(© IB Organization 2004)
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In this chapter you
will learn:

® to write real world
problems as equations
involving variables and
their derivatives

® how fo relate different
rates of change

® to apply calculus to
A forest fire spreads in a circle at the speed of 12 km/h. problems involving

How fast is the area affected by the fire increasing when its motion (kinematics)
radius is 68 km?

e to find volumes of
shapes rotated around
an axis

® to maximise or
minimise functions with
constraints.

Did you know that if you are in a sealed box you cannot L
measure your velocity but you can measure your acceleration? -
Or that Newton’s second law says that force is the rate of change

of momentum? These are two examples where a rate of change -

is easier to find than the underlying variable. To get from this -

rate of change to the underlying variable requires the use of

integration. This chapter will look at various applications of

the calculus you have met in the previous four chapters, with g,

a particular emphasis on real-world applications of rates of )

change. .
)\

20A
When blowing up a balloon we can control the amount of gas in
the balloon (V), but we may want to know how fast the radius P

(r) is increasing. These are two different rates of change, but
they are linked - the faster the gas fills the balloon the faster

) o . L. dv
the radius will increase. We need to link two derivatives: E

and ﬂ This is done by using the chain rule and the geometric

dt
context. /

© Cambridge University Press 2012 20 Further applications of calculus 659
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Worked example 20.1

A spherical balloon is being inflated with air at a rate of 200 cm?® per minute. At what rate is the
radius increasing when the radius is 8 cm?

D,

Define variables *® V = volume of air in balloon in cm?® :
r = radius of balloon in cm )
t = time in minutes 4‘
Write the given rate of change ** Voo f
\ and the required rate of dt }
b <
change o, .‘
, dt |
- d
\ y
: Relate these rates of change «* av_dv. dr 3
] using the chain rule dt  dr dt 1}
3 )
¢
L 5o we need to find av §
- dr 4
A i
O |Since the balloon is spherical, v = = e 1
Use geometric context® nee tne balloon 1o spnerical, —gnr ’ ;
dv
— =4mur?
-3 = dr b
d . . .. dv d ;
y Put into the chain rule LAV e dr 4
dt at j
/ ™ ¢ lll‘N’l‘ av 1
ExaM B3N = =200, r=8
k Don't use units 1N dt
. he working, 95 d é
*\ gs the units 1N 200 = 2561 2" 4
ong - are Jt
G, the information 1}
consistent. A.\chsur I 0249 (36F \
give units with yo = T (25F) j
ﬁnc\ GnsWer.
So radius is increasing at about 0.249 cm/minute  ©
3
| \ B O VPPV T e A 8 o P J,“N“““-—_.»&‘J J
o ol
3 The rate required may be linked to several other variables.
660 Topic 6: Calculus © Cambridge University Press 2012
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Worked example 20.2

As a conical icicle melts the rate of decrease of height h is 1 cm™ and the rate of decrease of the
radius of the base, 7, is 0.1 cm h'. At what rate is the volume (V) of the icicle decreasing when
the height is 30 cm and the base radius is 4 cm?

Write the given rates of change <* dh _
and the required rates of dt
change ar
Remember that decrease means T —01
negative derivative
dv
Y =g
dt
Use geometry to link the ®* V= eh

variables

Differentiate both sides with ** dav _d ( 1 rz)h+(lnr2)@

oA _aAN
I— A Bentitean oo A At a o A Aecenithan e e L s heo ‘-“"“'f“n._‘_.,_

respect to t, requiring dat 4t\3
the product rule and 2_dr, 1 dh
. RN
the chain rule 3 TR
r=30,h=49"_ 019 _
dt dt
av 2 1
()
in gi . S— == X4 X(-01) X350+ =X 47 X (-1
Put in given values e (-0.) = (-1
=-41.9 cm3h™
The volume is decreasing at 41.9 cm? perh hour
T T e T N S T
\_ W

. Exercise 20A

1. In each case, find an expression for % in terms of x.
@ () z=4y% y=3x> (i) z=y*y=x"+1
(b) (i) z=cosy, y=3x* (ii) z=tany, y=x>+1

2. (a) (i) Giventhat z= y* +1 and d_y: 5,find % when y=5.

dx dx
. dy dz
(ii) Given that z=2y?* and == -2, find — wheny=1.
dx dx
© Cambridge University Press 2012 20 Further applications of calculus 661
e ; tforr ting "§T‘| g or distributior V— ’

=



fatra Ny A~

(b) (i) If w=sinx and d—W=—3, find dx when x=§.

dt dt

dh
(ii) If P=tanh and d—P =2, find — when h= E.
dx dx 4

- dv
P (¢) (i) Given that V =12r3 ﬂ =1 and r =4, find the

! possible values of 7. t
i = (ii) Given that H = 3572, find the value of S for which
‘ dH ds

E =3 and d_ =4,
3. (a) (i) Given that V =3r%h, find d—V when r=3, h=2, ﬂ =2
dt dt
a o
and .

dN
(ii) Given that N = kx*, find O when

x=2,k=5,%=1andd—x=1.
dt dt

(b) (i) Given that m=-> and that
n

m
S:IOO,Q: 20, n =50 and %: 4, find —.
dt dt dt

(ii) Given that p= % and that

d
m=249" 2 v=120and & = 6. find 2.
dt dt dt

A circular stain is spreading so that the radius is increasing at
the constant rate of 1.5cm s7!. Find the rate of increase of the
area when the radius is 12 cm. [5 marks]

The area of a square is increasing at the constant rate of
\ 50 cm?s™". Find the rate of increase of the side of the square
' when the length of the side is 12.5 cm. [5 marks]
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a The surface area of a closed cylinder is given by

A =2mr*+2nrh, where h is the height and r is the radius of

the base. At the time when the surface area is increasing at the
rate of 201 cm?s™! the radius is 4 cm, the height is 1 cm and

is decreasing at the rate of 2 cms™. Find the rate of change of
radius at this time. [6 marks]

1

ool o

A spherical balloon is being inflated at a constant rate of
500 cm?®s™!. The radius at time ¢ seconds is r cm.

Find the radius of the balloon at the time when it is increasing at
the rate of 0.5 cms™. [6 marks]

a A ship is 5 km east and 7 km North of a lighthouse. It is moving
North at a rate of 12 kmh™ and East at a rate of 16 kmh™'. At -
what rate is its distance from the lighthouse changing?
[7 marks]

20B

Kinematics is the study of movement - especially position,
speed and acceleration. We first need to define some terms
carefully:

In the IB you will only
& have to deal with
motion in one
Time is normally given the symbol £. We can normally define dimension. However, motion

t =0 at any convenient time. is, oﬁen‘ in fwo or three. ‘
dimensions. To deal with this

In a 400 m race athletes run a single lap so, despite running requires a combination of

400 m they have returned to where they started. This vectors and calculus called

distance is how much ground someone has covered, whilst (unsurprisingly) vector

the displacement is how far away they are from a particular calculus.

position. The symbol s is normally used to represent ¥
displacement.

The rate of change of displacement with respect to time is called
velocity, and it is normally given the symbol v. )

KEY POINT 20.1

o ds
Velocity is given by: v= T
Speed is the magnitude of the velocity: | v|. /

© Cambridge University Press 2012 20 Further applications of calculus 663

o, Not for printing, sharing or distribution. - : < a
=2, T mpy A Q0L 0T PrINLING, ShAMNQ QEAISKIYON.~ W, — § | “15



-~ S &t : T4 B S s - = r
AL M i) €

The rate of change of velocity with respect to time is called
acceleration, and it is given the symbol a.

KEY POINT 20.2

d
Acceleration is given by: a = d_: .

To reverse the process — going from acceleration to velocity to
displacement - is done by integration.

differentiate differentiate

displacement ] velocity { acceleration

L
\
:

There is an important difference between finding distance and
g displacement between times a and b.
» KEY POINT 20.3
: See  Section 17H "
for more on the Displacement is the integral: j vdt
<1 differences  between <1

areas and integrals. ) ) b
Y Distance travelled is the area: J |v|dt
)y

Worked example 20.3

The velocity (ms™) of a car at time ¢ seconds after passing a flag is modelled by v=17 -4+,

for 0<t <5.
E. | (a) What is the initial speed of the car?
(b) Find the acceleration of the car.
71" (c) What is the maximum displacement of the car from the flag?
>
664 Topic 6: Calculus © Cambridge University Press 2012
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continued . . .
(d) Find the distance the car travels.

(a) Whent=0, v =17ms™

(b) a= av_ —4 ms?
dt

Maximum displacement occurs ®

éz 0, which is the
dt

(c)When v=0, t=425
when

same as v=0

4,25 425
5=Io vdtzfo 17— 4tdt

= 36.125m (from GDC)

()
Distance is actual area between ®
graph and x-axis of v+t graph

[°Iv |t =37.25 (from GDC)

So total distance is 37.25m

Zw‘ﬁ_m.‘_ Aot A hacemenithon . o AT A e a0 A Aeemenithey e AT e A

In all the examples so far, velocity and acceleration were given as
functions of time. But there are many practical situations where
it is easier to see how velocity depends on the displacement. For
example, a speed camera records a car’s speed as it passes over
certain marks along the road. From this data we may produce

an equation for the speed of the car, such as v = 60 —,/20000s
(vis km and s in km/h). Is it possible to deduce the acceleration

dv
of the car from this equation? We know that a = o but as v

depends on s we cannot differentiate it with respect to ¢. Using
related rates of change allows us to get around this problem:

© S_dmbrldge University PressJZO] 2 of 20 Further dpp||cc_-tl9ns of caleulus 665 4
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KEY POINT 20.4

E dv dsdv dv
d=—=——=y—
dt dt ds ds

/ Worked example 20.4

A car is braking from the initial speed of 60 km/h. The speed of the car depends on the

1 distance travelled since the brakes were applied, and is given by the equation v = 60 —/20000s.
\ Find the acceleration of the car after it has been braking for 50 m.
’ Q a=v a f
-l We have v in terms of s and want*® T ds |
dv
i =V — —1 ) 4
3 tofind a, so use @ = v p = (60~ /200005)x (20 000s) 2 x20000 <

_ ~10000(60 /20 0005
- J20 0005 1

||_.
h 8 \When 5=005: f
- Remember that s should be in 1= —8970km | W2 i

kilometres! The car is decelerating at 8970km/ k2. ‘

This is about 0.7 m/s2 ¢

1. Find the expressions for the velocity and acceleration in
terms of time if the displacement is given by the equation:

¥
' (@) () s=4e™ (i) s=5-2e*
[t
by (b) (i) S=5Sln(5) (i) s=2-3cos(2t)
2. A particle moves with the given velocity. The particle is at
the origin at t = 0. Find the displacement in terms of :
3 (@ () v=3r-1 (i) vzé(l—ﬁ)
7[ () () v=2¢" (i) v=1+e¥
: 3 1
N3 PN
©® v t+2 (i) v t+1
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3. For the given velocity function, find the distance travelled T
between the given times:
(a) i) v=2e"' between t=0 and t =2
(ii) v= 4(lnt)3 between t =2 and t =3
(b) i) v=1-—5cost between t=0.2 and t =0.9
(i) v=2cos(3t) between t=1 and t=1.5
(¢c) (i) v=t*>-2 between t=0 and t=2.3
(i) v =5sin(2t) between t=0.5 and t =2.5

L

ool o

4. An object moves in a straight line so that the velocity is a
function of the displacement. Find the acceleration of the
object for the given value of the displacement or the velocity.

(a) () y=e?,s=In3 (i) v=3sin2s, s:%
® O v=""t v=2 (i) v=3In(2s), v=10
s+2 5

Use integration to derive these constant acceleration
formulae for an object moving with constant acceleration a,
and initial velocity u, where s is the displacement from the
initial position.
(@) v=u+at

1
(b) s=ut+—at?

(¢) v’=u?+2as

B An object moves in a straight line so that its velocity at time )
t )

(a) Find an expression for the acceleration of the object at
time £. [

tis given by v=—

(b) Given that the object is initially at the origin, find its
displacement from the origin when t=5. [6 marks]

A ball is projected vertically upwards so that its velocity
vms! at time ¢ s is given by v =12 —9.8¢. Find the distance
travelled by the ball in the first 2 seconds of motion.  [5 marks]

. t
B The velocity of an object, in ms™, is given by v = 5COS(§).

(a) Find the displacement of the object from the starting /
point when £ = 6.

(b) Find the total distance travelled by the object in the first

6 seconds. [6 marks] -
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g The displacement of an object varies with time as

1 3 . .
s=—§t3 +5t‘ +4t, for 0 <t <5. Find the maximum

velocity of the object. [5 marks]

m An object moves in a straight line so that its velocity, v, is a
function of the displacement, s, given by v = In(s +2).
Find the acceleration of the object when v =4. [5 marks]

10(s—2)

m The velocity of an object, in ms™, is given by v=— 1
T+

where s is the displacement in metres.
(a) Find the maximum velocity of the object.

(b) Find the acceleration of the object when s=3.  [6 marks]

20C

In chapter 17 you saw that the area between a curve and the

b
You might find Key x-axis from x = a to x = b is given by j ydx aslongas y>0,
<1 P 01:nt 178 and Key <1 and also that the area between a curve and the y-axis from
point  17.9  useful d
here. y =ctoy=dis given by _[ x dy. In this section we will use
a similar formula to find the volume of a shape formed by
rotating the curve around either the x-axis or the y-axis.
If a curve is rotated fully around the x-axis or the y-axis the
resulting shape is called a volume of revolution.
Y
)
f(CL) 7 T T
a b
668 Topic 6: Calculus © Cambridge University Press 2012
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KEY POINT 20.5
The volume of revolution around the x-axis is given by:

x=b
my? dx

X=a

The volume of revolution around the y-axis is given by:

J.y:d nx? dy

y=c

Notice that the
limits use the
variable you aré
'mtegrdﬁﬂg wit
respect fo.

The formulae are derived on the Fill-in proof sheet 23 “Volumes
of revolution’ on the CD-ROM.

Worked example 20.5

T
The graph of y =sin2x, 0 < x <—, is rotated 360° around the x-axis. Find the volume of the
solid generated, in terms of 7.

Use the formula for the volume of ® V= J-nlzn(g,ir] 2x)° dx
revolution ¢

VS e

n/2 X
= njo sin® 2x dx

C)
in2 H M n/2
Integrate sin? 2x using the :ch. L (1= cos4x) dx
double-angle formula o 2

[1 1 ]2
=n| —x——sindx
2 &

[0]

= n{(%—éeinZn)—(O—éeinO)}

e tas A A o A heeeabthe, LA

=n(£—O—O) !
& .
_ 4
_: ‘.\

)

. — J
T et e v f‘.ﬂ-—‘_r&_.__\ deeta A W Amiaata, Mo

. .

The formulae in Key point 20.5 apply when the curve is rotated
through a full turn (27 radians) around an axis. You can also
form a solid by rotating the curve through a part of the full turn,
most commonly 7 radians (half a turn).

© Cambridge University Press 2012 20 Further applications of calculus 669
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Worked example 20.6

Y
Find the volume of revolution generated when the shaded
region is rotated 7 radians around the y-axis. y=lns
First establish limits in terms <* When x=1, y=0 4
A of y When x=¢?, y=2 ;
) ,
() = T2 -2 4 4‘
The volume when rotated by 7 is = EJ.O edy 4
i d
. half the volume when £
rotated by 2n }
<
. . .. — Ly {
A Rearrange equation of line to get x=e :

. 2 R = 2_ &

. X% in terms of y x%=(e’) =e¥ ‘;
! _ Tz, 1‘\
I V= > J.O e dy )

= P x53.6 (from GDC) 5
= =842 (3SF) 4
e~ et A TN et S Sam e
- v
o You might also be asked to find a volume of revolution of an
' fa) ¥ area between two curves. We can apply a similar argument to
9(z) B the one we used for areas in Section 17].
)J From the diagram we can see that the volume formed when the
region R is rotated around the x-axis is given by the volume of
. 0 0 g revolution of g(x) minus the volume of revolution of f(x).
' T
KEY POINT 20.6
The volume of revolution of the region between curves
g(x)and f(x)is
~AM HINT b 2 2
ExAM HIS- J, g () = () e
Do not fall info
~ the trap of so\/mg . where g(x) is above f(x) and the curves intersect at
. that the volume 15: x=aand x=b.

'l go)-FA] &
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Worked example 20.7 n

The region bounded by the curves y=x?+6 and y =8x —x? is rotated 360° about ~
the x-axis.
, :
(a) Show that the volume of revolution is given by 411;.[1 13x? —4x* —9dx. q‘:
B
(b) Evaluate this volume, correct to 3 significant figures. -

(a) Intersections:
X2+ 06=28x—x*
2x2-8x+06=0
2(x-1)(x-2)=0
x="1or 3

@
The limits of integration are the *
intersection points

y=22+6

y =8z — 1z

-
. T T T 1 LAY
() 1 3 {

b 2 2 ° 3
Use V = nL [F()] -[g(x)] dx V= nf(&x —x2) —(x2+6)" dx
Draw a sketch to see which curve = nJ5(64x2 —16x% + x* ) = x* +12x% + 36 ) dx -
is above .
= TEL 52x? —16x° —36dx B
. ‘
= 4x[ 13x* - 4x° —9 dx ( 3

(b) Using GDC,

. ..
We can evaluate the integral V=184 (35F) g,
using GDC R, . 3
. » _/ ]
There are also formulae for finding the surface area of a solid formed by rotating a
region around an axis. Some particularly interesting examples arise if we allow one end '\

of the region to tend to infinity. For example, rotating the region formed by the lines

A =1 and the x-axis results in a solid called the Gabriel’s Horn, or Torricelli’s trumpet.
Areas and volumes can still be calculated using something called improper integrals, and it
turns out that it is possible to have a solid of finite volume but infinite surface areal

i D
Notice that the calculation for J[f(x)]2 - [g(x)]2 dx is :
easier than doing J[f(x)]z dx — J.[g(x)]2 dx I~
‘\} e
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1. Find the volume of revolution formed when the curve
y = f(x), with a < x <b, is rotated through 2 radians about
the x-axis.

(@ (i) f(x)=x>+6, a=-1, b=3
(ii) f(x)=2x*+1, a=0, b=1
(b) () f(x )—e2x+1 a=0, b=1
(ii) f(x)=e> a=0, b=
© () f(x)= M, a=0, b=m
T

.. _ __ T _r
(ii) f( )—secx, a= 2 b .

%‘;; 2. The part of the curve y = g(x) with a < x <b, is rotated 360°

around the y-axis. Find the volume of revolution generated,
correct to 3 significant figures:

(a) (i) gx)=4x*+1, a=0, b=2

(i) g()=",

a=1 b=4

(b) (1)) g(x)=Inx+1, a=1, b=3

(i) g(x)=In(2x-1), a=1, b=5
(c) () g(x)=cosx, a=0, b:g

(ii) g(x):tanx, a=0, bzg

The part of the graph of y =Inx between x =1and x =2e is
rotated 360° around the x-axis. Find the volume generated.
[4 marks]

. T .
The part of the curve y* =sinx between x =0 and x = ) is

rotated 27 radians around the x-axis. Find the exact volume
of the solid generated. [4 marks]

The part of the curve y =1In(x?) between x = 1 and x = €* is
rotated 360° around the y-axis. Find the exact value of the
resulting volume or revolution. [6 marks]

© Cambridge University Press 2012
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a (a) (i) Find an equation of the straight line passing E
through points (0, k) and (r, 0).

(ii) By finding the volume of revolution formed when
the line is rotated around the y-axis, show that the

1

o1
volume of a cone is gnrzh.

(b) A circle of radius r and the centre at the origin has
equation x> + y*> =r?, where —r < x, y <r. By rotating
the circle around the x-axis prove that the volume of a

ool o

4
sphere is gnﬁ. [9 marks]

Y

Region R is bounded by the curve y=2cosx and the
coordinate axes, as shown in the diagram.

Find the volume generated when R is rotated 27 radians y=2cose

about the y-axis.
[5 marks] ;

a Find the exact volume generated when the region between
the graph of y = Jx, the y-axis and the line y = 3 is rotated
7 radians about the the y-axis. [7 marks] -

3
a The part of the curve y = N betweenx=1andx=a
x
rotated 2 radians around the x-axis. The volume of the

resulting solid is nln(%). Find the exact value of a. [7 marks]
\

The region bounded by the curve y = e?* —1, the y-axis
and the line y = 3 is rotated n radians around the y-axis.
Find the volume of the solid generated. [5 marks] '

(a) Find the coordinates of the points of intersection of
the curves y =4/x and y = x +3. )

(b) The region between the curves y = 4/x and y=x+3
is rotated 27 radians around the y-axis. Find the
volume of the solid generated. [7 marks]

(a) Find the coordinates of the points of intersection of /
curves y=x?+3and y=4x+3. /

(b) Find the volume of revolution generated when the
region between the curves y = x>+3 and y =4x+3 is
rotated 360° around the x-axis. [7 marks]
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In many real world
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b: The diagram shows the curve y = Inx and the line

1
y =——x+2. The two graphs intersect at (e, 1). The shaded
e

region is rotated 360° around the y-axis.

Find the exact value of the volume of revolution. [8 marks]

situations we have g& 20D

information about

the rate of change

of a quantity. These are
called differential equations,
and they are introduced in
Fill-in proof 20 ‘Fundamental
theorem of calculus’.

In this section we shall look at how to maximise or minimise a
function that appears to depend upon two different variables.
However, these two variables will always be related by a
constraint which will allow one of them to be eliminated. We
can then follow the normal procedure for finding maxima or
minima.

<1 See Section 16] for the procedure for finding maxima<l

and minima.
L Worked example 20.8
g Find the maximum value of F = xy — y given that x + 3y =7.
i
( Define variables We wish to maximise F=xy —y
Write F in terms of only one*® x=7-3y
1 variable AF=(7-3y)y -y
=0y —3y?
)y
Find stationary points * — a4 _ 6-06y
dy
But ﬁ =0 at a maximum point
dy
6-6y=0, y=1
7 Sx=7-3y =4
SLF=4%x1-1=3
—>
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continued . . .

Classify stationary points * FF_ 50 .

dx?
s0 F =3 is a local maximum j.
Check endpoints and asymptotes * There are no asymptotes and when Ly is large F 1*\
becomes negative so 3 is the global maximum }
Rt PV f‘t!_‘rn‘_"‘“‘"“-«f W - .i“““*—-—»“‘“‘J

. v

Sometimes the constraint is not explicitly given, and needs
to be deduced from the context. The two common types of

constraints are:

o A shape has a fixed perimeter, area or volume - this gives an
equation relating different variables (height, length, radius...)

A point lies on a given curve - this gives a relationship
between x and y.

Worked example 20.9

% A rectangle has perimeter 100 cm. What is the largest its area can be?

The area of the rectangle is*

length X width. Introduce

those as variables so

we can write equations
It is impossible to see from this '.. Ferimeter = 2x +2y =100
equation alone what the
maximum possible value of the
area is. But x and y are

Let x =length and y =width.
Then Area=xy

P P AL“‘%A.—

related: We can write an i
equation to express the fact j
that we know the perimeter
—
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continued . . .
3 This means that we can express * 2y =100 —2x
the area in terms of only one of = y=50-x
the variables
: . Area=x(50 — x)
=50x — x?
| We can now use differentiation ** A=50x — x2
s to find the maximum point JA
=—=50-2x
dx
. For stationary points:
dA
— - = O
dx
2 =50-2x=0
=>x=25
- We need to check whether this<® A2A
. . . b —=-2<0, g0 this is a maximum point.
) is @ minimum or a maximum by P
using the second derivative The maximum area is
A=50X25—252 = 625cm?.
G .
]
It is intuitively clear that a long and thin or a short and wide rectangle will have a very *’
small area, so the largest area should be somewhere in between. *‘*

A related problem is finding the minimum possible surface area for an object of a fixed volume.
Examples of this can be seen in nature: Snakes have evolved to be long and thin in order to
maximise their surface area for heat absorption, while polar bears avoid losing too much heat by
adopting a rounder shape which minimises the surface area for their volume.

_ J
You may have noticed in the above example that the rectangle with the largest area is
actually a square (x = y = 25). It turns out that out of all plane shapes with a fixed perimeter,
the circle has the largest possible area. This is called ‘the isoperimetric problem’, and has
several intriguing proofs and many applications. y
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Worked example 20.10

3 . [ )
Define variables®

Write L in terms of only one <*
variable

Find stationary points. This looks **
complicated and there is no
requirement for exact answers so

use GDC

\

Find the point on the curve y = x° closest to the point (2, 0).

Lis the length from the point(2, O) to the point F (x, y)
So L=4/(x - 2)2 +y?

If P lies on the curve then y = x°

cl=y(x—2) +x°

A A e A

L
)

povey

1.30

A A e A

0.829
1
<

From GDC, the minimum is when x = 0.8629 (35SF) and \

y =0.569 (35F).

AMA‘.MW““\"“M"M",—‘MM*

L

A

. Exercise 20D

% 1. (a) (i) Find the maximum value of xy given that x+2y =4.

(ii) Find the maximum possible value of xy given that

3x+y=7.

(b) (i) Find the minimum possible value of a+b given

thatab=3 and a,b > 0.

(ii) Find the minimum possible value of 2x+ y given

that ab=4 and a,b > 0.

© Cambridge University Press 2012
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(c) (i) Find the maximum possible value of 4r*h if
2r2+rh=3and r,h>0.

F\

4 (ii) Find the maximum possible value of rh? if
4r>+3h*> =12 and r,h > 0.

E 2. A farmer wishes to fence off a rectangular area adjacent to a
wall. There is an existing piece of fence, 10 m in length, and
perpendicular to the wall, as shown in the diagram.

Let x and y be the dimensions of the enclosure. Given that

- the length of the new fencing is to be 200 m:

\ (a) Write down an expression for the area of the enclosure
in terms of x only.
\ (b) Hence find the values of x and y to create the maximum
. possible area.
—
2 Y

)
FENCE

WALL

g A square sheet of card of side 12 cm has four squares of
_ side x cm cut from the corners. The sides are then folded
'’ to make a small open box.

( (a) Find an expression for the volume of the box in terms of x.
(b) Find the value of x for which the volume is maximum
possible, and prove that it is a maximum. [6 marks]
1y
An open box in the shape of a square-based prism has
) volume 32 cm? Find the minimum possible surface area of

the box. [6 marks]

A rectangle is drawn inside the region bounded by the
curve y=4-—x? and the x-axis, so that two of the vertices
lie on the axis and the other two on the curve.
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Find the coordinates of vertex A so that the area of the
rectangle is a maximum. [6 marks]

a A rectangle is drawn inside the region bounded by
the curve y =sinx and the x-axis, as shown in the
diagram. The vertex A has coordinates (x, 0).

y

(a) (i) Write down the coordinates of point B.

(ii) Find an expression for the area of the rectangle
in terms of x.

(b) Show that the rectangle has maximum area when
2tanx =T —2x.

(c) Find the maximum possible area of the rectangle.
[8 marks]

What is the largest possible capacity of a closed
cylindrical cuboid with surface area 450 cm? [6 marks]

B What is the largest possible capacity of a closed square
based cuboid with surface area 450 cm? [6 marks]

% g The sum of two numbers, x and y, is 6, and x, y >0.
Find the two numbers if the sum of their squares is:

(a) the minimum possible
(b) the maximum possible. [7 marks]
© Cambridge 20 Further dpp|icc£i9ns of caleulus 679
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A cone of radius r and height / has volume 817.

(a) Show that the curved surface area of the cone is
given by S= E\/r6 +243%.

(b) It is required zc’o make the cone so that the curved

surface area is the minimum possible. Find the
radius and the height of the cone. [7 marks]

A 20 cm piece of wire is bent to form an isosceles
triangle with base b.

(a) Show that the area of the triangle is given by:
A= S«JIOO —10b.

(b) Show that the area of the triangle is the largest
possible when the triangle is equilateral. [6 marks]

The sum of the square of the two positive numbers is
a. Prove that their product is the maximum possible
when the two numbers are equal. [6 marks]

b ) Find the coordinates of the point on the curve y = x?,
x 20, closest to the point (0, 4). [7 marks]

r-')) Summary

If there are more than two variables involved in a question, you may need to relate their rates

dz dz _dy
of change using the chain rule, e.g. T @ X A

Do not confuse distance (how much ground has been covered) and displacement (how far
away from a particular position), or velocity (rate of change of displacement with respect to

. s . .
time: v = —) and speed (magnitude of velocity: | v|).
dt
dv
Acceleration is the rate of change of velocity with respect to time: a = e

In kinematics, differentiate to go from displacement to velocity to acceleration. Integrate to go
from acceleration to velocity to displacement.

b
The displacement between times a and b is J vdt.

b
The distance between times a and b is J. |v|dt.

If the velocity depends on displacement we need to use a = v?.
s
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'
If a curve is rotated fully around the x- or y-axis, the resulting shape is called a volume of

revolution.

The volume of revolution is given by

x=b
V= J ~ my’dx for rotation around the x-axis

=d
V= J.y nx?dy for rotation around the y-axis
y=c

The volume formed by rotating the region between two curves g(x) and f(x), where g(x) is
above f(x) and the curves intersect at x =a and x = b, is:

[ 7 g - ) ]

When solving optimisation problems that involve a function which depends on two variables,
the variables will be related by a constraint that will allow one variable to be eliminated before
differentiating to find stationary points. Two common types of constraint are:

- ashape has a fixed perimeter, area or volume (this gives an equation relating different
variables)

- apoint lies on a given curve (this gives a relationship between x and y).

Introductory problem revisited

A forest fire spreads in a circle at the speed of 12km/h. How fast is the area affected by
the fire increasing when its radius is 68 km?

Let r be the radius of the region affected by the fire and let A be its area. We are told that

dr
a =12, where t is the time since the start of the fire, measured in hours. We need to find

ilﬂ when r = 68. To do this, we need to relate the rate of change of A to the rate of change of .
t

Using the chain rule:

dA _dA_dr
dt  dr ~ dt

Since the region is a circle, we know that A = rtr?, so i 2mr. Hence,
r

dA
— =27r X12 = 247r.
dt

dA
When r = 68, P 5127, so the area affected by the fire is increasing at the rate of about
¢
5130km?/h.
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Mixed examination practice 20

Short questions

The region bounded by the curve y = ax — x* is rotated 360° around the
x-axis. Find, in terms of g, the resulting volume of revolution. [7 marks]

An object moves in a straight line so that its velocity, in ms™ is given by
v =1t —6t* + 8t, where t is measured in seconds.

(a) Find the displacement from the initial position when ¢ =5.

(b) Find the total distance travelled in the first 5 seconds. [6 marks]
€ The sum of the squares of two positive numbers is 32. Find the two

numbers so that their sum is the maximum possible. [6 marks]

A circular stain is spreading so that the rate of increase of radius is
inversely proportional to the square root of the radius. Initially, the radius
of the stain is 4 cm and it is increasing at the rate of 2 cms™'. Find the
radius of the stain at the time when its area is increasing at the rate of

115 cm?s7. [6 marks]

An object moves in a straight line so that its displacement, s, is given by
the equation s = 3e~* sint, where t is time.

(a) Calculate the velocity of the object when ¢ = 3.
(b) Sketch the graph of v(t) for 0< ¢ < 3. [6 marks]
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a The diagram shows an isosceles right-angled triangle of side 100 cm.
Point D is moving along the side AB towards point B so that the area of the
trapezium DBCE is decreasing at the constant rate of 18 cm’s™. Let BD = h.

(a) Write down an expression for the area of the trapezium DBCE in terms of .

(b) Show that - 18
& h-100

Initially point D is at vertex A.
(c) Given that h=100- k\/; , find the value k. [8 marks]
A

A

“D

v

B &
- 100 >

An aeroplane is flying at a constant speed at a constant altitude of 3 km
in a straight line that will take it directly over an observer at ground level.

L .1 . .
At a given instant the observer notes that the angle 0 is gn radians and is

. . 1 . . o
increasing at m radians per second. Find the speed, in kilometres per hour,

at which the aeroplane is moving towards the observer. [6 marks]
(© IB Organization 2003)

Aeroplane

3 km

Observer
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a The diagram shows a part of the curve with equation x = y* and a fixed

> point S (1, 0). Point P lies on the curve and has y-coordinate k (k=0 ).
Let d denote the distance of P from the y-axis, and let r denote the ratio ;ip
- 2
1 a) Show that ¥ = ———. 7 marks
(a) Show — [7 marks]
(b) Find the maximum possible value of r.
FS y )
[ T=1y
\ d /
] P
|
-l
A

v:+4

L g The acceleration of an object depends on its velocity as a = - The
g initial velocity is 3. Show that v? =13e’ — 4. [6 marks]
» .
\/é‘v%:z% 1. The diagram shows a square with side x cm
o and a circle with radius y cm.

Write down an expression for the

A perimeter:
(i) of the square (ii) of the circle x

)y The two shapes are made out of a piece of wire of total length 8 cm.

Find an expression for x in terms of y.

Show that the total area of the two shapes is given by:

A= %(n+4)y2 “omy+4
7 If the total area of the two shapes is the minimum possible, what
zz percentage of the wire is used for the circle? [10 marks]
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Consider two curves with equations y = x> —8x+12 and y=12+x —x?
for 0< x<5.

Write down the coordinates of the points of intersection of the two curves.
Find the greatest vertical distance between the two curves.

The region between the curves is rotated 360° around the x-axis.

(i) Write down an expression for the volume of the solid generated.
(ii) Evaluate the volume, giving your answer to the nearest integer.
[10 marks]

3. A painting of height 2 m is hanging on the wall of an art gallery so that the
bottom of the painting is 2 m above the floor. A visitor is sitting on a stool
so that his eyes are at the height of 1.5 m. The stool is at the distance x m
from the wall.

2 m

1.5m

xr

Show that the angle at which the visitor sees the painting is:

2.5 .5
f=arctan— —arctan—
X X

Find how far from the wall the stool should be placed so that the
painting appears as large as possible. Give your answer in the form

—~— , where p and q are integers. [9 marks]

4. Show that Jlnx dx=xlnx—x+c.
() An object is initially at the origin, and moves with velocity v =3In(f +1)
(i) Find the acceleration of the object after 5 seconds.
(ii) Find an expression for the displacement in terms of t.

(iii) Find the distance travelled by the object in the first 5 seconds.
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A second object has velocity given by v = 8 —¢. It is also initially at the
origin.
(i) The second object has greater velocity for 0 <t < a. Find the value of a.
(ii) Find the greatest speed of the second object during the first 20 seconds.

(iii) After how long have the two objects travelled the same distance?
[16 marks]

5. Triangle ABC is made out of a piece of elastic string. Vertices A and B are
being pulled apart so that the length of the base AB is increasing at the rate
of 3 cms™ and the height, h, is decreasing at the rate of 2 cms™'. Initially,
AB=20cmand h=30cm.

Show that AB =20+ 3t.
Find an expression for / in terms of t.

Find an expression for the rate of change of the area of the triangle in
terms of t. [12 marks]

Find the rate at which the area of the triangle is changing when
AB=26and h=26.

6. Use integration by parts to show that J(ln x) dx= x((lnx)2 —Inx+ 1) :

Consider the graph of y = e* between x =0 and x = 1. Regions R, and R,
are defined as shown on the diagram. Region R, is rotated around the
x-axis and region R, is rotated around the y-axis to form volumes V, and

Vi
V, respectively. Find the exact value of the ratio — . [14 marks]
2

)

Ry

Ry

0 1

7. Particle A moves in a straight line, starting from O,, such that its velocity in
metres per second for 0 <#<9 is given by:

1 3
VA :__t2+3t+_
2 2

()R
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Particle B moves in a straight line, starting from Oy, such that its velocity

in metres per second for 0= <9 is given by:
VvV, = eOAZt
5=

L

Find the maximum value of v, justifying that it is a maximum.

Find the acceleration of B when t=4.

The displacements of A and B from O, and Oy respectively, at time ¢ are
s, metres and s, metres. When t =0, s,=0 and s;=5. 3

LR

Find an expression for s, and for s, giving your answers in terms of t.
(i) Sketch the curves of s, and s, on the same diagram.
(ii) Find the values of t at which s, =s,.
[23 marks]
(© IB Organization 2006)

8. John needs to get from his house, which is on the main road, to his
friend’s house, which is in the field 10 km along the road and 4 km away -
from the road, as shown in the diagram. John can either cycle along the
road, at the speed of 10 kmh' or walk through the field, at the speed

of 5 kmh™.
/]1 -
— I_l F
o
<3 10 >
F
John decides to cycle for the first x km and then walk the rest of the way 3
in a straight line.
Show that the time it takes John to get to his friend’s house is given by: l
1
r=*,1 16+(10 - x)’
10 5
John wishes to get to his friend’s house in the shortest possible time. )
(i) Show that the distance, x, he should cycle satisfies 3(10 - x)2 =16.
(ii) Hence find how far John should cycle. [10 marks]
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9. A ladder is carried around a corner from a corridor of width 9 m into a
corridor of width v/3 m as shown in the diagram.

A

AXB is a straight line making angle 0 with the first corridor, as shown.
(i) Write AX and XB in terms of 6.
(ii) Find the minimum length of AB.
Find the maximum length of a ladder that can be around the corner.
[8 marks]
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