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16

In real life, things change. Planets move, babies grow and 
prices rise. Calculus is the study of things that change, and 
one of its important tools is diff erentiation; the ability to 
fi nd the rate at which the y-coordinate of a curve is changing 
when the x-coordinate changes. For a straight-line graph this 
is determined by the gradient, but it requires more work to 
apply the same idea to curves, where the gradient is diff erent at 
diff erent points.

16A  Sketching derivatives
Our fi rst task is to establish exactly what is meant by the 
gradient of a curve. We are clear on what is meant by the 
gradient of a straight line and we can use this idea to make a 
more general defi nition: the gradient of a curve at a point P is 
the gradient of the tangent to the curve at that point.

A tangent is a straight line which touches the curve without 
crossing it.

Basic 
differentiation 
and its 
applications

Introductory problem

Th e cost of petrol used in a car, in £ per hour, is 
12

100

2+ v
 

where v is measured in miles per hour and v > 0. 

If Daniel wants to travel 50 miles as cheaply as possible, at 
what speed should he travel?

In this chapter you 
will learn:

 how to fi nd the • 
gradients of curves 
from fi rst principles, 
a process called 
differentiation

 how to differentiate • xn

 how to differentiate • 
sin x, cos x and tan x

 how to differentiate e• x 

and ln x

 to fi nd the equations of • 
tangents and normals 
to curves at given 
points

 to fi nd maximum and • 
minimum points on 
curves.

tangent at P

y = f(x)

x

y

P
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528 Topic 6: Calculus

Note that when we say that the tangent at P does not cross the 
curve we mean that this is only the case locally (close to the 
point P). Th e tangent might also intersect a diff erent part of the 
curve.

Th e derivative of a function, f(x), is another function that gives 
the gradient of y = f(x) at any point in the x domain. 
It is oft en useful to be able to roughly sketch the derivative. 

We have already met 
tangents in chapter 3.

Worked example 16.1

Sketch the derivative of this function.

y

x

Imagine we are tracking a point moving along the curve from left to right; we will 
track the tangent to the curve at the moving point and form the graph of its gradient

y

x

The curve is increasing from left to right, 
but more and more slowly...

x

... so the gradient is positive and falling
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continued . . .

y

x

The tangent is horizontal...

x

... so the gradient is zero
y

x

The curve is now decreasing….

x

... so the gradient is negative
y

x

The tangent is horizontal again...

x

... so the gradient is zero
y

x

The curve is increasing, and does so faster 
and faster...

x

... so the gradient is positive and 
getting larger
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530 Topic 6: Calculus

Worked example 16.2

You are given the derivative of a function. Sketch a possible graph of the original function.

y

x

y

x

The gradient is negative...

y

x

... so the curve is decreasing.

y

x

The gradient is zero...

y

x

... so the tangent is horizontal.

We can also apply the same reasoning backwards.

y

x

The gradient is negative...

y

x

... so the curve is decreasing.

y

x

The gradient is zero...

y

x

... so the tangent is horizontal.
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 16 Basic differentiation and its applications 531

continued . . .

y

x

The gradient is positive...

y

x

... so the curve is increasing.

y

x

The gradient is zero...

y

x

.... so the tangent is horizontal.

y

x

The gradient is zero...

y

x

... so the tangent is horizontal.

y

x

The gradient is positive...

y

x

... so the curve is increasing.

y

x

The gradient is zero...

y

x

.... so the tangent is horizontal.

y

x

The gradient is zero...

y

x

... so the tangent is horizontal.
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532 Topic 6: Calculus

continued . . .

Notice in this example that there was more than one possible 
graph we could have drawn, depending on where we started the 
sketch. In chapter 17 you will learn more about this ambiguity 
when you ‘undo’ diff erentiation.

Th e relationship between a graph and its derivative can be 
summarised as follows:

KEY POINT 16.1KEY POINT 16.1

When the curve is increasing the gradient is positive.

When the curve is decreasing the gradient is negative.

When the tangent is horizontal the gradient is zero; a point 
on the curve where this happens is called a stationary 
point or turning point.

Exercise 16A

(a) (i) y

x
−1

3

(ii) y

x
(1,− 1

2)

1. Sketch the derivatives of the following showing intercept with the x-axis:

y

x

The gradient is positive...

y

x

... so the curve is increasing.
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 16 Basic differentiation and its applications 533

(b) (i) y

x
−5 3

(ii) y

x
2

(c) (i) y

x
−1

(3, 32)
(ii) y

x

(1, 5)

(3, 2)

(d) (i) y

x
(−2, −5)

(1, 25)
(ii) y

x−3

(−1, 16)

1

(e) (i)

(5, 1)

(3, −1)

 
(1, 1)

(−1, −1) 

(−3, 1)

(−5, −1)

y

x

(ii)

(2, 2)

(1, −2)

(0, 2)

(−1, −2)

(−2, 2)

y

x

© Cambridge University Press 2012

Not for printing, sharing or distribution.



534 Topic 6: Calculus

(f) (i) y

x

(ii) y

x

2.  Each of the following represents a graph of a function’s derivative. Sketch a possible graph 
for the original function, indicating any stationary points.

(a) y

x
−1 5

(b) y

x
2

(c) y

x
−2 1

(d) y

x
1
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 16 Basic differentiation and its applications 535

3. For each of the following statements decide if they are always 
true, sometimes true or always false.

 (a)  At a point where the derivative is positive, the original 
function is positive.

 (b)  If the original function is negative then the derivative is also 
negative.

 (c)  Th e derivative crossing the axis corresponds to a stationary 
point on the graph.

 (d)  When the derivative is zero, the graph is at a local 
maximum or minimum point.

 (e)  If the derivative function is always positive then part of the 
original function is above the x-axis.

 (f)  At the lowest value of the original function, the derivative is 
zero.

16B  Differentiation from fi rst principles
You will probably fi nd that drawing a tangent to a graph is very 
diffi  cult to do accurately, and that your line actually crosses 
the curve at two points. Th e line segment between these two 
intersection points is called a chord. If the two points are close 
together, the gradient of the chord is very close to the gradient 
of the tangent. We can use this to establish a method for 
calculating the derivative for a given function.

Self-discovery worksheet 3 ‘Investigating derivatives of 
polynomials’ on the CD-ROM leads you through several 
examples of this method. Here we summarise the general 
procedure.

Consider a point P x f x(f )( ) on the graph of the function 
y f ( )x  and move a distance h away from x to the point 
Q x h f x hx+ h( )(f (ff ) .

y = f(x)

h

f (x + h) − f(x)

P

Q

(x, f(x))

(x + h, f (x + h))
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536 Topic 6: Calculus

We can fi nd an expression for the gradient of the chord PQ:

m y y
x x
f x h f x

x h x
f x h f

h

PQ =

=
+( ) ( )

( ) −

=
+( )

1y
2 1x

( )x

As the point Q becomes closer and closer to P, the gradient of 
the chord PQ becomes a closer and closer approximation to the 
gradient of the tangent at P.

y = f(x)

P

Q1

Q2

Q3

To denote this idea of the distance h approaching zero, we use 
lim
h→0

, which reads as ‘the limit as h tends to 0’. Th is idea of a limit 
is very much like that encountered for asymptotes on graphs in 
chapters 2 and 4, where the graph tends to the asymptote (the 
limit) as x tends to ∞.

Th e process of fi nding lim
h→0

 of the gradient of the chord PQ 
is called diff erentiation from fi rst principles and with this 
notation, we have the following defi nition:

KEY POINT 16.2KEY POINT 16.2

Diff erentiation from fi rst principles

′ =
( )+

→
f x′

f ( f) −
hh

)x lim
( )x

0

 

f ' (x) is the derivative of f (x). It can also be written as f ', y' or d
d

yd
x

 

where y f ( )x . Th e process of fi nding the derivative is 

called diff erentiation. 

Differentiation from 

fi rst principles means 

fi nding the derivative 

using this defi nition, 

rather than any of 

the rules we will meet 

in the later sections.

exam hint
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 16 Basic differentiation and its applications 537

We can use this defi nition to fi nd the derivative of simple 
polynomial functions.

Worked example 16.4

Diff erentiate f x x( ) =  from fi rst principles.

′ ( ) = +
→

f lim
h

h
h0

x x+ −h

We do not want to let the denominator tend 
to zero so manipulate the numerator to get 

a factor of h
We can get rid of the square roots by 

multiplying top and bottom of the fraction 

by x h x+ +h  and using the difference of 
two squares

x x x x x x
x x

+ = + × ++
+ +

h
h

h
h

h
h

= ( )+ ( )
( )+

)+ − (
+h( ++

= ( )+
h

h( + ++

We can now divide top and bottom by h... =
+ +

1
h x x+

Worked example 16.3

For the function y = x2, fi nd d
d

yd
x

 from fi rst principles.

Use the formula
d
d

y
hhx

x= ( )hh
→
lim

0

2 2

We do not want to let the denominator tend 
to zero so fi rst simplify the numerator and 
hope the h in the denominator will cancel

d
d

y h h
hhx

x= +h −
→
lim

0

2 2h h+h 2

=
→
lim
h

h h+
h0

22x

Divide top and bottom by h     
= +

→
lim )(
h

h
0

2x

Finally let h → 0
     = 2x

We can use the same method with other functions too, but it 
may require more complicated algebraic manipulation.
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538 Topic 6: Calculus

continued . . .

Exercise 16B
1. Find the derivatives of the following functions from fi rst 

principles:

 (a) (i) f x x( ) = 3 (ii) f x x( ) = 4

 (b) (i) f x x( ) = −4  (ii) f x x( ) = 3 2

 (c) (i) f x x( ) = −x2 6 (ii) f x x( ) = x2 3 4x +  
2. Prove from fi rst principles that the derivative of x2 1+  is 2x. 

 [4 marks]
3. Prove from fi rst principles that the derivative of 8 is zero. 

 [4 marks]

4. Prove from fi rst principles that the derivative of 1
x

 is − 1
2x
.

 [4 marks]
5. If k  is a constant prove that the derivative of kf ( )x  is kf ′( )x .

 [4 marks]

6. Prove from fi rst principles that the derivative of 
1
x

 is − 1
2x x

.
 

[5 marks]

16C  Rules of differentiation
From Exercise 16B, and the results of Self-discovery worksheet 3 
‘Investigating derivatives of polynomials’ on the CD-ROM, some 
properties of diff erentiation are suggested:

KEY POINT 16.3O N 6.3

• If y xn then:
d
d

yd
x

nxn= −1

... and let h → 0 ∴ ′( ) =
+ +→

f
x x+

lim
h h0

1

 
=

+
1

x x+

 
= 1

2 x
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 16 Basic differentiation and its applications 539

Fill-in proof sheet 15 ‘Diff erentiating polynomials’ on the CD-
ROM proves these results for positive integer values; however, 
this result holds for all rational powers.

A special case is when n = 0. Since x0 1= , we can say that 

d
d

yd
x

= 0 0x =x−1 . Th is is because the gradient of the graph y = 1 is 

zero everywhere; it is a horizontal line. In fact, the derivative of 
any constant is zero.

You oft en have to simplify an expression before diff erentiating, 
using the laws of algebra, in particular the laws of exponents.

Note that you cannot differentiate products by 
differentiating each of the factors and multiplying them 
together – we will see in chapter 18 that there is a more 
complicated rule for dealing with products.

exam hint

If you need to review 
rules of exponents, 
see chapter 2.

Worked example 16.5

Find the derivative of the following functions:

(a) f x x x( ) = 2  (b) g x
x

( ) = 1
3

First rewrite the function in the form 
xn using the laws of exponents

(a) f x x( )x 2
 = x x2

1
2  = +

x
2

1
2  = x

5
2

Differentiate
 

f´ ( ) x)
−5

2

5
2

1

 
= 5

2

3
2x

Cube root can be written as a power (b) g
x

( )x = 1
3

 
= −

x
1
3

 
g´ ( ) x)

− −1
3

1
3

1

 
= − −1

3

4
3x

•  If we diff erentiate kf ( )x  where k  is a constant we get 
kf ′( )x .

•  Diff erentiation of the sum of various terms can proceed 
term by term.

KEY POINT 16.3 continued...

© Cambridge University Press 2012

Not for printing, sharing or distribution.



540 Topic 6: Calculus

Worked example 16.6

Find the derivative of the following functions:

(a) f x x( ) = 5 3

(b) g x x x( ) = x +4 2x3
2

5 4x −x

(c) h x
x

( ) = 2( )x −2 7

Differentiate x3 then multiply 
by 5

(a) f´ ( ) x) 5 3× 2
 = 15 2x

Differentiate each term 
separately

(b) g´ x( )x −x ×4
3
2

2 5x +x3

 
= +4 3 53 x3−

We need to write this as a sum 
of terms of the form xn

(c) h
x

( )x = 2( )x −2 7

= 4 1− 4
1
2

x

x

= − −
4 14

1
1 1

2x x1− 4

= −
4 14

1 1
2x x1− 4

Now differentiate each term 
separately  

h́ x x( )x × − −⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −⎞− ⎛ −

4
1
2

14
1
2

1
2

1
1
2

1

= − −
2 7+

1 3
2x x7+

Exercise 16C
1. Diff erentiate the following:
 (a) (i) y x4  (ii) y x
 (b) (i) y x3 7  (ii) y x4 5

 (c) (i) y = 10  (ii) y = −3
 (d) (i) y x x +4 5x −x 2 8x −x3 2x5  (ii) y x x x2 3x +x4 3x3+

 (e) (i) y x1
3

6  (ii) y x3
4

2

 (f) (i) y x x−x7 1
2

3  (ii) y x x+2 5 1
5

4 5x+ 1
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 16 Basic differentiation and its applications 541

 (g) (i) y x
3
2  (ii) y x

2
3

 (h) (i) y x6
4
3  (ii) y x3

5

5
6

 (i) (i) y x3 1x x−x + 5 2x −x4 2x
2

 (ii) y x x x−x +3
5
3

1
2

3
5

4
3

 (j) (i) y x−1 (ii) y x−3

 (k) (i) y x− 1
2  (ii) y x−8

3
4

 (l) (i) y x x−x −5 8
15

5
2  (ii) y x x+− −7

3
4
3

3
7 6

2. Find d
d

yd
x

 for the following:

 (a) (i) y x3  (ii) y x45

 (b) (i) y
x

= 3
2
 (ii) y

x
= − 2

5 10

 (c) (i) y
x

= 1  (ii) y
x

= 8
3 34

 (d) (i) y xx ( )2 3 4x −x  (ii) y xx ( )xx x +

 (e) (i) y x +x(( )( )x2)( x −  (ii) y x
x

= +x⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞2 2

 (f) (i) y x
x

= 3 2x5

2
 (ii) y

x
= 9 3x +

2

2

3

3. Find d
d

yd
x

 if:

 (a) (i) x y+ =y 8  (ii) 3 2 7x y2 =y2
 (b) (i) y x x+ +x =2 0  (ii) y x x=x4 2

16D   Interpreting derivatives and second 
derivatives

d
d

yd
x

 has two related interpretations:

• It is the gradient of the graph of y against x.
•  It measures how fast y changes when x is changed – this is 

called the rate of change of y with respect to x.

Remember that 
d
d

yd
x

 is itself a function – its value changes with x. 

For example, if y x2  then 
d
d

yd
x

 is equal to 6 when x = 3, and it 

is equal to –2 when x = –1. Th is corresponds to the fact that the 
gradient of the graph of y x2 changes with x, or that the rate of 
change of y varies with x.

exam hint

We can also 

write this using 

function notation: 

If f x x( ) = 2  then 

′( )f 6) =  and 

′( )−f 2) = −
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542 Topic 6: Calculus

exam hint

Your calculator 

can fi nd the gradient 

at a given point, but 

it cannot fi nd the 

expression for the 

derivative. See 

Calculator sheet 8 on 

the CD-ROM.

To calculate the gradient (or the rate of change) at any particular 
point, we simply substitute the value of x into the equation for 
the derivative.

Worked example 16.7

Find the gradient of the graph y x4 3 at the point where x = 2.

The gradient is given by the 

derivative, so fi nd d
d
y
x

d
d

y
x

x= 12 2

Substitute the value for x When x = 2 : 
d
d

y
x

= ×12 2 4= 82

So the gradient is 48

If we know the gradient of a graph at a particular point, we 
can fi nd the value of x at that point. Th is involves solving an 
equation.

Th e sign of the gradient tells us whether the function is 
increasing or decreasing.

Worked example 16.8

Find the values of x for which the graph of y x −x3 7 1x +  has gradient 5.

The gradient is given by the derivative
d
d

y
x

= 3 7x −x2

We know the value of d
d
y
x

 so we can form an 
equation

3 7 52 =7
⇒ =3 1= 22

⇒ =2 4
⇒ = 2 2−o
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KEY POINT 16.4KEY POINT 16.4

If  d
d

yd
x

  is positive the function is increasing – as x gets 

larger so does y.

If  d
d

yd
x  

 is negative the function is decreasing – as x gets 

larger y gets smaller.

Th ere is nothing special about the variables y and x. We can just 

as easily say that d
d

B
Q

 is the gradient of the graph of B against Q 

or that 
d
d

bananas
monkeys

( )
( ) measures how fast bananas change when 

you change the variable monkeys. To emphasise which variables 

we are using, we call d
d

yd
x  

the derivative of y with respect to x.

In Section 16H we 
will discuss what 
happens when 
d
d

yd
x

= 0.

Worked example 16.9

Find the range of values of x for which the function f x x( ) = 2 6x2xx3  is decreasing.

A decreasing function has negative gradient f ´( )x < 0
⇒ − <6 6− 02

 ⇒ −2 1 0<

This is a quadratic inequality, so we need to 
look at the graph of x2 − 1

y

x
−1 1

0

−1 1< <x  
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d
dx

 is called an operator – it acts on functions to turn them into 

other functions. So when we diff erentiate y x3 2 what we are 

really doing is applying the d
dx

 operator to both sides of the 
identity:

d
d

d
dx

y
x

x( ) = ( )3 2

⇒ =d
d

yd
x

x6

So d
d

yd
x

 is just d
dx

 applied to y.

Th e d
dx

 operator can also be applied to things which have already 

been diff erentiated. Th is is then called the second derivative.

KEY POINT 16.5KEY POINT 16.5

d
d

d
dx

yd
x

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞  is given the symbol 

d
d

2

2

y
x

 or ′′f x′′ )x  and it refers to 

the rate of change of the gradient.

We can diff erentiate again to fi nd the third derivative 
d
d

3

3

y
x

f xor ′′′⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

)x , fourth derivative d
d

4

4

y
x

f xor ( )4 )x⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

, and so on.

You may wonder why it is so important to emphasise 
that we are differentiating with respect to x (or Q or 
monkeys). In this course we are only considering 
functions of one variable, but it is possible to generalise 
calculus to include functions which depend on several 
variables. This has many applications, particularly in 
physics and engineering.

d

Worked example 16.10

Given that a S , fi nd the rate of change of a  when S = 9.

The rate of change is given by the 
derivative

a = S
1
2

d
d

a
S

S
S

= =S
−1

2
1

2

1
2

Substitute the value for S When S = 9: 
d
d

a
S

= =1
2 9

1
6
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Worked example 16.11

Given that f x x( ) = 5 4x5xx3 :

(a) Find f´́ (x).

(b) Find the rate of change of the gradient of the graph of y f ( )x  at the point where x = –1.

Differentiate f (x) and then 
differentiate the result

(a) f ´(x) = 15x2 – 4
 f ´´(x) = 30x

The rate of change of the gradient 
means the second derivative

(b) f ´´(– 1) = – 30

We can use the second derivative to fi nd out more about the 
shape of the graph. Remember that the second derivative is the 
rate of change of the gradient. So when the second derivative is 
positive, the gradient is increasing. Th is means that the graph is 
curving upwards; we say that it is concave up. When the second 
derivative is negative, the gradient is decreasing so the graph 
curves downwards; we say that it is concave down.

Exercise 16D
1. Write the following rates of change as derivatives:
 (a)  Th e rate of change of z as t changes.
 (b)  Th e rate of change of Q with respect to P.
 (c)  How fast R changes when m is changed.
 (d)  How quickly balloon volume (V) changes over time (t).
 (e)  Th e rate of increase of the cost of apples (y) as the 

weight of the apple (x) increases.
 (f) Th e rate of change of the rate of change of z as y changes.
 (g) Th e second derivative of H with respect to m.

2. (a) (i)  If f x
1
3  what is the derivative of f with respect to x?

  (ii)  If p q3 5 what is the derivative of p with respect to q ?
 (b) (i)  Diff erentiate d t t −3 7t +t 1  with respect to t.
  (ii)  Diff erentiate r c

c
= +c 1  with respect to c.

 (c) (i)  Find the second derivative of y x x= +x9 2 3x+  with respect to x.

  (ii)  Find the second derivative of z
t

= 3 with respect to t .

concave up

concave down
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3. (a) (i)  If y x5 2, fi nd d
d

yd
x

 when x = 3.

  (ii)  If y x
x

= +x3 1 , fi nd d
d

yd
x

 when x = 1 5.

 (b) (i) If A b7 3b +b , fi nd d
d
Add
b

 when b = −1.

  (ii)  If f = θ 2 + θ –3, fi nd 
dƒ
dθ

 when θ = 0 1.

 (c) (i)  Find the gradient of the graph of A x3 when x = 2.
  (ii)  Find the gradient of the tangent to the graph of 

z a a= +a2 2 when a = −6.
 (d) (i)  How quickly does f T 2 change as T changes when T = 3?
  (ii)  How quickly does g y4 change as y changes when y = 2?
 (e) (i)  What is the rate of increase of W  with respect to p when 

p is −3 if W p2?
  (ii)  What is the rate of change of L with respect to c when 

c = 6 if L c 8cc −c ?

4. (a) (i)  If y ax a x= +ax ( )2 1  where a is a constant, fi nd d
d

yd
x

.

  (ii)  If y x b= +x3 2b+  where b is a constant, fi nd d
d

yd
x

.

 (b) (i)  If Q ab bab  where b is a constant, fi nd d
d
Q
a

.

  (ii)  If D av( )2 where a is a constant, fi nd d
d
D
v

.

5. (a) (i)  If y x x−x3 5 , fi nd 
d
d

2

2

y
x

 when x = 9.

  (ii)  If y x8 2+ 4, fi nd 
d
d

2

2

y
x

 when x = 4.

 (b) (i)  If S A
A

+A 12 , fi nd 
d
d

2

2

S
Add

 when A = 1.

  (ii)  If J v v−v , fi nd 
d
d

2

2

J
v

 when v = 9.

 (c) (i)  Find the second derivative of B with respect to n if 
B n and n = 2.

  (ii)  Find the second derivative of g with respect to r if g r7 
and r = 1.

6. (a) (i)  If y x3 3 and 
d
d

yd
x

= 36, fi nd x.

  (ii)  If y x x= +x4 2  and d
d

yd
x

= 5, fi nd x.

You may think that it is 
contradictory to talk 
about the rate of 
change of y as x 
changes if we are fi xing x to 
have a certain value. Think 
about x passing through this 
point.
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  (b) (i)  If y x
x

+x2 8  and d
d

yd
x

= −31, fi nd y.

   (ii)  If y x= +x 3 and d
d

yd
x

= 1
6

 fi nd y.

 7. (a) (i)  Find the interval in which x3 − 4x is an increasing function.
   (ii)  Find the interval in which x3 − 3x2 is a decreasing function.

  (b) (i)  Find the interval in which 3 2x
x

+  is a decreasing function.

   (ii)  Find the interval in which x x  is an increasing 
function. 

  (c) (i)  Find the interval in which the graph of y = x3 – 4x + 3 
is concave up.

   (ii)  Find the interval in which the graph of y = x3 + 6x2 – 1 
is concave up.

  (d) (i)  Find the set of values of x for which the graph of 
f (x) = x4 – 6x3 + 12x2 is concave down.

   (ii)  Find the set of values of x for which the graph of 
f (x) = x4 – 54x2 is concave down.

 8. Find all points of the graph of y x x−x3 22 1x +2x  where the 
gradient equals the y-coordinate. [5 marks] 

 9. In what interval on the graph of y x x x−x7 2 3x  is the gradient 
decreasing? [5 marks] 

 10. In what interval on the graph of y x x x= +x −x1
4

1
2

3 6x +4 3x+ 2  is 
the gradient increasing? [6 marks] 

 11. Find an alternative expression for 
d

d

n

n
n

x
x( ). 

16E  Trigonometric functions
Using the techniques from Section 16A we can sketch the 
derivative of the graph of sin . Th e result is a graph that 
looks just like y x. On Fill-in proof sheet 17 ‘Diff erentiating 
trigonometric functions’ on the CD-ROM you can see why this 
is the case. Results for y x and y xtan  can be established 
in a similar manner giving these results:
KEY POINT 16.6KEY POINT 16.6

Diff erentiating trigonometric functions gives:
d

dx x x(sin ) c

  
d

dx x x(cos ) sin

 
d

dx x x(tan ) s 2

In Section 18C 
we will prove the 
derivative of tan x 
using the quotient 
rule.

Reciprocal 
trigonometric func-
tions were covered 
in Section 12D.
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Whenever you are 

doing calculus you 

MUST work in radians.

exam hint

All rules of diff erentiation from Section 16C still apply.

Exercise 16E
1. Diff erentiate the following:
 (a) (i) y x3 in  (ii) y x2
 (b) (i) y x x2 5x −x cos  (ii) y xt n 5x +x

 (c) (i) y x= +sin cx + 2
5

 (ii) y x x1
2

1
3

t n sx −x in
 

2. Find the gradient of f x x x( ) +x= si 2 at the point x = π
2

.
    [5 marks]

3. Find the gradient of g x x x( ) = −1
4

3 3tan cxx 3  at the 

point x = π
6

.
 

 [5 marks]

4. Given h x x( )x = + ≤ <xsin cx +x  0 2π,  
fi nd the values of x for which ′ ( ) =h′ ( 0.  [6 marks]

5. Given y x
x

+ ≤1
4

1
0 2x< ≤x

2
t +x π

 

solve the equation d
d

yd
x x

= −1 2
3
. [6 marks]

Worked example 16.12

Diff erentiate y x x3 2c2x −x os .

Differentiate using the rules in key 
point 16.6. Note that sec2x can also 

be written as 1
2cos x

d
d

y
x

= ( ) ( )x23( )x) ()x

 = 3 2+2c 2 i x2+ s2+ in

It is possible to do 
calculus using 
degrees, or any 
other unit for 
measuring angles, 
but using radians gives the 
simplest rules, which is why 
they are the unit of choice 
for almost all 
mathematicians.

Th ese rules only work if x is measured in radians since they are 
based upon the result that sin x x for very small values of x. 
You can check on your calculator that sin x x for radians but 
not for degrees. Th e result can also be seen on the graph and is 
proved on Fill-in proof sheet 16 ‘Th e small angle 
approximations’ on the CD-ROM.

y

x
y = sin x

y = x
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16F   The exponential and natural 
logarithm functions

Use your calculator to plot the graphs of y x= 2  and y x= 3  and 
their derivatives. Th e results looks like another exponential 
function.

y

x

y = 2x

Gradient

y

x

y = 3x

Gradient

It appears that there is a number somewhere between two and 
three where the derivative of the graph would be exactly the 
same as the original exponential. It turns out that this is the 
graph of x= e  where e = …2 718  It is the same as the base of 
the natural logarithm defi ned in Section 2E.

KEY POINT 16.7KEY POINT 16.7

d
d

e
x

xe( )ex

Th e natural logarithm function y xln  behaves in a surprising 
way, having a derivative of a completely diff erent form.

KEY POINT 16.8 KEY POINT 16.8

d
dx

(ln )x = 1
x

Th is result is proved on Fill-in proof sheet 18 ‘Diff erentiating 
logarithmic functions graphically’ on the CD-ROM.

We will see how 
to diff erentiate 
e x p o n e n t i a l 
functions with bases 
other than e in 
Section 20D.
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Exercise 16F
1. Diff erentiate the following:
 (a) (i) y x= 3e  (ii) y

x

= 2
5
e

 (b) (i) y x2ln  (ii) y x1
3

ln

 (c) (i) y
x x= −ln

5
3 4x + e  (ii) y x

x

+4
2

3
e

ln
 

2. (i)  Find the exact value of the gradient of the graph of 

f x x( )x = 1
2

e lx −x 7 n
 
at the point x = ln .4  

 (ii)  Find the exact value of the gradient of the graph 

f x
xx( )x −x= e

ln
2

 when x = ln3.  [4 marks]
3. Find the value of x where the gradient of f x ex( ) = 5 2−  is –6.

  [4 marks]
4. Find the value of x where the gradient of g x x x( ) = x2 12 ln  is 2.

 [4 marks]
5. Diff erentiate:
 (a) (i) y xln 3 (ii) y xln5
 (b) (i) y x= +e 3 (ii) y x= −e 3

 (c) (i) y x= e2ln  (ii) y = e3 2x+l

 (d) (i) y xl  (ii) y x4 l

Th ere is an easier 
way to do some parts 
of Question 5 using a 
method from Section 
18A. For now, you 
will have to use your 
algebra skills!

y

x

Tangent

Normal

0

16G  Tangents and normals
Th e tangent to a curve at a given point is a straight line which 
touches the curve and has the same gradient at that point. 
Finding the equation of the tangent at a point relies on knowing   
the gradient of the function at that point. Th is can be found by 
diff erentiating the function. We then have both the gradient of 
the line and a point on it and we can use the standard procedure 
for fi nding the equation of a straight line.

Normals are lines which pass through the graph and are 
perpendicular to the tangent. Th ey have many uses, such as 
fi nding centres of curvature of graphs and working out how light 
is refl ected from curved mirrors. However, in the International 
Baccalaureate® you are only likely to be asked to calculate their 
equations. To do this you use the fact that if two lines with 
gradients m1 and m2 are perpendicular, m m1 2m 1= − .

See Prior learning 
section W on the 
CD-ROM.
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Worked example 16.13

(a)  Find the equation of the tangent to the graph of the function f(x) = cosx + ex 
at the point x = 0.

(b)  Find the equation of the normal to the graph of the function g(x) = x3 – 5x2 – x 
3–2 + 22 

at (4, –2).

In each case give your answer in the form ax by c+ +by = 0, where a, b and c are integers.

We need the gradient, which is f '(0) (a) f ´ si xsin x( ) + e

 ∴ ( ) + =´f 0 0) = −sin 10e

To fi nd the equation of a straight line we also 
need coordinates of one point

The tangent passes through the point on the 
graph where x = 0. Its y-coordinate is f (0)

When x = 0,
y f ( ) +0) = 0cos e+0
 = 1 1+
  = 2

Put all the information into the equation 
of a line

 y y m=y ( )1 m= ( −

  y − ( )−2 1=

  ⇒ = +y x 2

 ⇒ − −y x 2 0=

The normal is perpendicular to the tangent, so 
we need the gradient of the tangent fi rst

(b) f ´ x x( )x 3 1x3x −x 0
3
2

2
1
2

Find the gradient at x = 4  
∴ ( ) ( ) ( ) − ( )´f 3) = 1) − 0( 3

2
2

1
2

  = − −48 40 3 5=

For perpendicular lines, mm1 = −1
Therefore gradient of normal,

m = −1
5

We are given both x and y-coordinates of 
the point, so put all the information into the 

equation of a line  

  y y m=y ( )1 m= ( −

 
y − ( )− = − ( )−1

5

 

⇒ +
⇒ + =

5 1+ 0 4= − +
5 6+ 0
y
y
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Th e procedure for fi nding the equations of tangents and 
normals can be summarised as follows:

KEY POINT 16.9KEY POINT 16.9

For the point on the curve y f x( ) with x a:

• the gradient of the tangent is ′ ( )f ′ (
• the gradient of the normal is −

′( )
1

f a′ (
• the coordinates of the point are x a y f1 a ya ya y ( )a .

To fi nd the equation of the tangent or the normal use 
y y m x x=y −( )1 1m x x= (  with the appropriate gradient.

You may not be given the coordinates of the point where 
the tangent touches the curve, but asked to fi nd them given 
another point.

 Your calculator 

 may be able to 

fi nd the equation of 

a tangent at a given 

point.

exam hint

Worked example 16.14

Th e tangent at point P on the curve y x= +x2 1  passes through the origin. Find the possible 
coordinates of P.

We want to fi nd the equation of the tangent 
at P, so use unknowns for its coordinates

Let P  have coordinates (p, q)

As P lies on the curve, (p, q) satisfi es 
y x= +x2 1

Then q p= +p2 1

The gradient of the tangent is given by d
d
y
x

 

when x = p

d
d

y
x

x= 2

When x
x

== p
y

p:
d
d

2

∴ =m p= 2

Write the equation of the tangent, 
remembering it passes through (p, q)

Equation of the tangent:
y q p=q ( )p2
⇒ − ( )+ ( )y − ( p ( −2) =
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continued . . .

Exercise 16G
1. Find the equations of the tangent and normal to the following:

 (a) y x
x

= +2 4 at x = 4

 (b) y x x3 2 2 s2x −x 2 in  at x = π
4

 (c) y x= −3
1
5

e  at x = 2 5l  

2. Find the coordinates of the point on the curve y x x= +x 3  
where the gradient is 5.  [4 marks]

3. Find the equation of the tangent to the curve y xx +x  
which is parallel to y x3 .   [4 marks]

4. Find the x-coordinates of the points on the curve 
y x x−x3 2x3  where the tangent is parallel to the normal of 
the point at (1, –1).   [6 marks]

5. Find the coordinates of the point where the tangent to the 
curve y x x−x3 2x3  at x = 2 meets the curve again.   [6 marks]

6. Find the coordinates of the point on the curve y x −x(( )1 2 
where the normal passes through the origin.  [5 marks]

7. Points P and Q lie on the graph of f (x) = 2 sin x and have 
x-coordinates π

6
 and π

4
.

 (a) Evaluate ′ ⎛⎝
⎛⎛ ⎞

⎠
⎞⎞f

π
6

.

 (b)  Find the angle between the tangent at P and the chord 
PQ, giving your answer to the nearest tenth of a degree.
 [11 marks]

8. A tangent is drawn on the graph y
k
x

=  at the point where 

x a, (a > 0). Th e tangent intersects the y-axis at P and 
the x-axis at Q. If O is the origin show that the area of the 
triangle OPQ is independent of a. [8 marks]

Tangent passes through the origin, 
so set x y0 0y =y

Passes through ( , )0, :
0 2( )12 ( )0 −0p2)1 = 2
⇒ −p p−2 2p= −=
⇒ =p2 1
⇒ =p 1 1−o

We can now fi nd q When p = 1 , q = 2
When p = −1 , q = 2
So the coordinates of P are (1, 2) or (–1, 2)
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Worked example 16.15

Find the coordinates of the stationary points of y x2 1x −x 5 2x + 4 8x +x3 215x .

Stationary points have d
d
y
x

= 0 so we 

need to differentiate

d
d

y
x

= 6 3xx 0 2x + 42

Then form an equation For stationary points 
d
d

y
x

= 0:
6 30 24 02 303030
⇒ − =−2 5 4+x 0
⇒ ( )− ( ) =)− ()( −)( 0
⇒ = x= 1 4=xo

9. Show that the tangent to the curve y x x−x3  at the 
point with x-coordinate a meets the curve again at a 
point with x-coordinate –2a. [6 marks]

16H  Stationary points
In real life people are interested in maximising their profi ts, or 
minimising the drag on a car. We can use calculus to describe 
such things mathematically as points on a graph.
Th e gradient at both the maximum and minimum point on the 
above graph is zero and therefore:

KEY POINT 16.10KEY POINT 16.10

To fi nd local maximum and local minimum points, we 

solve the equation d
d

yd
x

= 0.

We use the phrase local maximum and local minimum 
because it is possible that the largest or smallest value of the 
whole function occurs at the endpoint of the graph, or that there 
are other points which also have gradient of zero. Th e points 
that we have found are just the largest or smallest values of y in 
that part of the graph.
Points which have a gradient of zero are called stationary 
points.

9.9.9.9.

y

x

A

B

C

D

E

F

y

x
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Th e calculation in Worked example 16.15 does not tell us 
whether the stationary points we found are maximum or 
minimum points.

It can be seen from the diagrams that one way of testing for the 
nature of a stationary point is to look at the gradient either side 
of the point. You can do this by substituting nearby x-values 

into the expression for d
d

x
yd

. For a minimum point the gradient 

moves from negative to positive. For a maximum point the 
gradient moves from positive to negative.
We can also interpret these conditions  by looking at the sign 
of the second derivative. Around a minimum point the curve is 

concave up, so d
d

2 y
x2

is positive. Around a maximum point the 

curve is concave down and d
d

2 y
x2

 is negative.

Th is leads to the following test.

KEY POINT 16.11KEY POINT 16.11

Given a stationary point (x0, y0) of a function y = f (x), if:

• d
d

2 y
x2

0< , at x0, then(x0, y0) is a maximum

• d
d

2 y
x2

0> , at x0, then(x0, y0) is a minimum

•  d
d

2 y
x2

0= , at x0, then no conclusion can be drawn, so 

test the gradient either side of (x0, y0)

-ve +ve

0

(x0, y0)

+ve -ve

0
(x0, y0)

continued . . .
Remember to fi nd the y-coordinate 

for each point
When x = 1:
y = − +2 15 2+ 4 83 215( )1 ( )11 ( )1  = 19
When x = 4:
y = − +2 15 2+ 4 83 215( )4 ( )44 ( )4  = −8
Therefore,
stationary points are (1, 19) and (4, –8)

See the end of 
Section 16D
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All local maximum points and local minimum points have 
d
d

yd
x

= 0, but the reverse is not true: A point with d
d

yd
x

= 0  does 

not have to be a maximum or a minimum point. Th ere are two 
other possibilities:

+ve

+ve

0

(x0, y0)

-ve

-ve

0

(x0, y0)

Worked example 16.16

Classify the stationary points of the function y x2 1x −x 5 2x + 4 8x +x3 215x  from 
Worked example 16.15.

We have already found the stationary points Stationary points are (1, 19) and (4, –8)

The nature of stationary points is determined by 
the value of the second derivative

d
d

2

2
12 30

y
x

x= −12x

At x = 1 :

d
d

2

2
12 30

y
x

= 12( )1( )11 = − <18 0

∴( ),1 1, 9 is a maximum

At x = 4 :

d
d

2

2
12 30

y
x

= 12( )4( )44 = >18 0

∴( ),4 8−, is a minimum
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Th ese possibilities are called points of infl exion, and are 
labelled (x0, y0) on the above diagrams. Note that at those points 
the line with zero gradient actually crosses the curve. Th e 
gradient is either positive on both sides of a point of infl exion 
(positive point of infl exion), or negative on both sides (a 
negative point of infl exion).

 In UK English, ‘infl exion’ 
may be spelt ‘infl ection’.

Worked example 16.17

Find the coordinates and nature of the stationary points of y x x−3 4+ 3 4x .

Stationary points have d
d
y
x

= 0
d
d

y
x

x x= x12 2 3x4

For stationary points 
d
d

y
x

= 0 :
12 4 02 34x 42 444
⇒ ( )− =4 ( 02 −
⇒ == 0 3=xo

Find y-coordinates When x = 0 :
y = ( ) ( )3 4+ 0 0) − (3 4( )0(  = 3
When x = 3 :
y = ( ) ( ) =3 4+ ) − ( 303 4( )(
Therefore, stationary points are:
(0, 3) and (3, 30)

The nature of the stationary points 
is determined by the second 

derivative

Find the nature of these points:

d
d

2

2
224 12

y
x

x x12= 24x

At x = 0:

d
d

2

2

224 12
y

x
= ( )0 ( )0 = 0

As d
d

2

2
0y

x
=  we need to check the 

gradient either side of the stationary 
point

Therefore, examine 
d
d

y
x

:

At x = −1:

d
d

y
x

= 12 4−2 34( )−1 ( )−11 = >16 0

At x = 1:

d
d

y
x

= 12 4−2 34( )1 ( )11 = 8 0>

∴( ) is a positive point of infl exion.
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continued . . .

When d
d

2

2
0y

x
= , the stationary point is NOT always a point 

of infl exion.

Worked example 16.18

Find the coordinates and nature of the stationary points of f x x)x = 4 :

′f ( ) x=) 4 3

Stationary points have =f x′( )x 0 For stationary points ′ =f ( ) 0
4 03

⇒ = 0

Find the y-coordinate f 0 0( )
Therefore, stationary point is:
0 0,( )

The nature is determined by f x′′( )x Find the nature of this point:
′′f ( ) x=) 12 2

′′f ( ) 0=)

As ( )f ′′ ( )) = , we need to check the 
gradient on either side

Therefore, examine ′f ( ) :
′ ( )−f ( )− 4=) 3 = −4 0<
′f ( ) ( )4=) 3

 = 4 0>
Therefore (0, 0) is a minimum.

At :

is a maximum

At x = 3:

d
d

2

2

224 12
y

x
= 24 ( )3( )3( )33 = − <36 0

∴( ),3 3, 0 is a maximum

© Cambridge University Press 2012

Not for printing, sharing or distribution.



 16 Basic differentiation and its applications 559

Exercise 16H
1. Find and classify the stationary points on the following curves:
 (a) (i) y x x−x3 2x5  (ii) y x x−x4 2x8

 (b) (i) y x
x+ − ≤ ≤i ,x +x
2

π πx≤ ≤x  

  (ii) y x ≤2 1+x 0 2x≤ <x,x 1+x π
 (c) (i) y x x−xln  (ii) y x2 5x

 
2. Give an example to illustrate that the following statement is 

incorrect:
 ‘If y f ( )x  has exactly two stationary points, at x1  and x2, and 

f x f x1 2f x( ) > )x2x  then ( ( ))x f, x1(f, x  must be a local maximum.’
 Under what conditions is the statement true?  
3. Find and classify the stationary points on the curve 

y x x= +x3 2+ 3 2x2x 4 1+x 2.  [6 marks]
4. Find and classify the stationary points on the curve y x x−x .

  [6 marks]
5. Find and classify the stationary points on the curve 

y x x+i cx +x os4  in the interval 0 < x < 2π.  [6 marks]

6. Show that the function f x x
xk( ) +x= l 1  has a stationary point 

with y-coordinate lnk
k

+1.  [6 marks]

7. Find the range of the function f x .x� 3xx 1x 8 6xx4 316 2x16xx
  [5 marks]

8. Find the range of the function f x ex .e xx� 4 2+xx  
   [5 marks]

9. Find and classify in terms of k the stationary points on the curve 
y kx xkx3 2x+ . [6 marks]
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16I  General points of infl exion
In the previous section we met stationary points of infl exion, 
but the idea of a point of infl exion is more general than this.

One defi nition is that the tangent to the curve at a point of 
infl exion crosses the curve at the same point. Th is does not 
require the point to be a stationary point.

y

x

P

Geometrically, this can be interpreted as an ‘S-bend’, a curve 
which goes from decreasing gradient to increasing gradient (or 
vice versa). Th is means that the curve is concave down on one 
side of the point of infl exion and concave up on the other. We 
know that this corresponds to the second derivative changing 
from negative to positive (or vice versa). 

KEY POINT 16.12KEY POINT 16.12

At a point of infl exion 
d
d

2

2
0y

x
= .

Unfortunately, as in Worked example 16.18, just because a point 

has 
d
d

2

2
0y

x
=  it is not necessarily a point of infl exion. We have to 

determine the gradient on either side to be sure.

Although the red line 

actually crosses the 

graph at P, it is still 

referred to as the 

tangent, because it 

has the same gradient 

as the curve at P.

exam hint

See the end of 
Section 16D.

If a question states that a 

curve does have a point 

of infl exion and there is 

only one solution to the 

equation 
d
d

2

2
0y

x
= , you 

can then assume you 

have found the point of 

infl exion.

exam hint
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Worked example 16.19

Find the coordinates of the point of infl exion on the curve y x x−x −x3 23 5x +2x 1.

Find d
d

2

2

y
x

d
d

y
x

x= +3 6xx 52

d
d

2

2
6 6

y
x

= 6

At a point of infl exion 
d
d

2

2
0

y
x

= , 

6 6 0=6  

x = 1

Remember the other coordinate! When x = 1 , y = + =1 3− 5 1− 2
So point of infl exion is at (1, 2)

 Exercise 16I

1. Find the coordinates of the point of infl exion on the 
curve y xx 2.  [5 marks]

2. Th e curve y x x−x +x4 26 7x +2x 2 has two points of 
infl exion. Find their coordinates.   [5 marks]

3. Show that all points of infl exion on the curve y xin  
lie on the x-axis.   [6 marks]

4. Find the coordinates of the points of infl exion on the 
curve y x x= +x2  for 0 2≤ ≤ π . Justify carefully that 
these points are points of infl exion.   [5 marks]

5. Th e point of infl exion on the curve y x ax bx c−x − +bx3 2ax  
is a stationary point of infl exion. Show that b a2. 
   [6 marks]

6. Th e graph shows y f ′( )x .
 On a copy of the diagram:
 (a)  mark any point corresponding to a local minimum 

of f x)x  with an A
 (b)  mark any point corresponding to a local maximum 

of f x)x  with a B
 (c)  mark any point corresponding to a point of 

infl exion of f x)x  with a C. [4 marks]

x

y
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16J  Optimisation
We can now start to use diff erentiation to maximise or minimise 
quantities. In Section 16H we saw how to fi nd stationary points 
(the points with zero gradient) and how to decide whether they 
are local maximum or local minimum points. We also noted 
that a stationary point does not necessarily give the largest 
or smallest value of the function over the whole domain. For 
example, on the diagram, points B and D are local maximum 
points, but the largest value of the function occurs at point F, 
which is an end point of the domain.

A

B

C

D

E

F

y

x

Some functions do not have maximum or minimum values 
at all. Th is can happen when the graph has an asymptote. We 
say that the function is not continuous throughout its domain. 
For example, the value of tan x increases without a limit as x 
increases towards π

2
, so tan x does not have a maximum value.

If we wish to minimise or maximise A by changing B we do so 
in four stages:

1.  Find the relationship between A and B.

2.  Solve the equation d
d

Add
B

= 0.

3.  Decide whether it is a maximum, minimum or point of 

infl exion by considering d
d

2

2

A
B

.

4.  Check whether the end points of the domain are actually 
global maximum or minimum points, and check that there 
are no vertical asymptotes.

Oft en the fi rst stage of this process is the most diffi  cult and there 
are many questions where we have to use a geometric context to 
make this link. Th ankfully in many questions this relationship is 
given to you.

y

x
π
2

y = tan x
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Worked example 16.20

Th e height of a swing (h) in metres at a time t seconds is given by h t  for 0 3. 
Find the minimum and maximum height of the swing.

Find stationary points
d
d

h
t

t= − =1 5 0. c5 os
 
at a stationary point

⇒ =t 0

0 3
2

=t3 ∴ π
 (only one solution)

Classify stationary points
d
d

2

2
1 5

h
t

t= s5 in

When t = π
2

, 
d
d

2

2
1 5 0

h
t

= >1 5  so t = π
2

 is a 

local minimum. This minimum height is 

h = =2 1− 5
2

0 5. s5 in
π

metres

Check end points
Check there are no vertical asymptotes

When t = o, h = 2m
When t = 3, h = 1.79m (3SF)
So maximum height is 2 m.

Exercise 16J 

1. What are the minimum and maximum values of the 
expression ex for 0 1≤ ≤ ?  [4 marks]

2. A rectangle has width x metres and length 30 − x metres. 
 (a)  Find the maximum area of the rectangle.
 (b)  Show that as x changes the perimeter stays constant and 

fi nd the value of this perimeter. [5 marks]

3. Find the maximum and minimum values of the function 
y x x−x3 9  if − ≤ ≤2 5≤ ≤ . [5 marks]

4. What are the maximum and minimum values of 
f x x( ) = e 3x −x  if 0 2≤ ≤ ? [5 marks]

5. What are the minimum and maximum values of 
y x xin 2+x  for 0 2≤ ≤ π? [5 marks]

6. Find the minimum value of the sum of a positive real 
number and its reciprocal. [5 marks]
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7. A paper aeroplane of weight w > 1 will travel at a constant 

speed of 1 1−
w

 ms–1 for a time of 5
w

 s. What weight will 

achieve the maximum distance travelled? [6 marks]

8.  Th e time in minutes (t) taken to melt 100 g of butter depends 
upon the percentage of the butter which is made of saturated 
fats (p) as in the following function:

  t
p p= +p +

2

10 000 100
2

  Find the maximum and minimum times to melt 100 g 
of butter. [6 marks]

9.  Th e volume of water in millions of litres (V) in a new tidal lake 
is modelled by V t +t 100  where t is the time in days 
aft er being completed.

  (a) What is the smallest volume of the lake?
  (b)  A hydroelectric plant produces an amount of electricity 

proportional to the rate of fl ow of water. In the fi rst 6 days 
when is the plant producing maximum electricity? [6 marks]

 10. Th e owner of a fast-food shop fi nds that there is a relationship 
between the amount of salt s (g/tray) added to the fries and his 
weekly sales of fries F (100s of portions):

  F s s s( ) = 4 1s +s 2 ,  0 4 2≤ ≤ .

  (a)  Find the amount of salt he should put on his fries to 
maximise his sales.

  (b)  Th e total cost C ($ per tray) associated with the sales of 
fries is given by:

  C s F s s( ) = + ( ) +0 3 0 2 0 1. .+3 0
  (b)  Find the amount of salt he should put on his fries to 

minimise his costs.
  (c)  Th e profi t made on his fries is given by the diff erence 

between the sales and the costs. 
How much salt should he add to maximise 
his profi t? [8 marks]

 11. A car tank is being fi lled with petrol such that the volume in 
the tank in litres (V) over time in minutes (t) is given by

 V ( )t t−t + 4t  for 0 0 5.
  (a) How much petrol was initially in the tank?
  (b)  Aft er 30 seconds the tank was full. What is the capacity of 

the tank?
  (c)  At what time is petrol fl owing in at the greatest rate?  [8 marks]
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 12. x is the surface area of leaves on a tree in m2. Because leaves may be 
shaded by other leaves, the amount of energy produced by the tree 

is given by 2
10

− x  kJ per square metre of leaves.

  (a)  Find an expression for the total energy produced by 
the tree.

  (b)  What area of leaves provides the maximum energy for the 
tree?

  (c)  Leaves also use energy. Th e total energy requirement is 
given by 0 01 3x . Th e net energy produced is the diff erence 
between the energy produced by the leaves and the energy 
used by the leaves. For what range of x do the leaves 
produce more energy than they use?

  (d)  Show that the maximum net energy is produced when the 

tree has leaves with a surface area of 
10

3
( )7 1

. [12 marks]

Summary

• Th e gradient of a function at the point P is the gradient of the tangent to the function’s graph 
at that point.

• To fi nd the gradient of a function we can diff erentiate from fi rst principles:

  
′ ( ) =

→
f x′ ( f x h f−

hh
lim

+x h ( )x
0

 (also denoted by d
dx

 f(x))

• For the point on the curve y f x( ) with x a:

 – the gradient of the tangent is ′ ( )f a′ (
 – the gradient of the normal is −

′( )
1

f a′ (
• If f x xn( ) = , then ′ ( ) = −f x′ ( nxn 1.

• Th e derivative of a sum is the sum of the derivatives of each term.

• If we diff erentiate kf ( )x  where k  is a constant we get kf ′( )x .

• Th e derivatives of the trigonometric functions are:

  
d

dx
xc( )sin x

 
d

dx
xin( )cos x

 

d
dx

xs( )tan x 2

• Th e derivatives of the exponential and natural logarithm functions are:

  
d

d
e

x
xe( )ex

 
d

dx x
( )xln = 1

• Stationary points of a function are points where the gradient is zero, i.e.

    
d
d

yd
x

= 0
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• Stationary points can be one of four types:

– local maximum
– local minimum
– positive point of infl exion
– negative point of infl exion.

• Th e second derivative can be used to test which of these occurs. At a stationary point x y0y( ), if
– 

d
d

2

2
0y

x
<  at x0  then x y0y( )  is a maximum

– 
d
d

2

2
0y

x
>  at x0  then x y0y( )  is a minimum

– 
d
d

2

2
0y

x
=  at x0  then no conclusion can be drawn, so check the sign of the gradient either 

side of x y0y( ).
• Points of infl exion can also have a non-zero gradient. 

• At a point of infl exion d
d

2

2
0

y
x

= .

• Global maximum or minimum points may also occur at the endpoint of a graph.

Introductory problem revisited

Th e cost of petrol used in a car, in £ per hour, is 
12

100

2+ v
 where v is measured in 

miles per hour and v > 0. If Daniel wants to travel 50 miles as cheaply as possible, at 
what speed should he travel?

If we have the cost per hour and we want the total cost we must fi nd the total time. But the 

time taken is 50
v

 hours, so the total cost is C
v

v
v

v= +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = +50 12

100
600

2

2
.

If we wish to fi nd a minimum value of C by changing v we can do this by setting d
d
C
v

= 0:

− + =600 1
2

0
2v

⇒ =2 1200
v = 34. (6 )ph S3( F  (Taking the positive root since v > 0)

To see if we have found a minimum we fi nd 
d
d

2

2
31200

C
v

v= −  which is positive for any positive 
v, so the point is a local minimum.

Next, to see if it is global minimum we must consider the end points. Although v is never 

actually zero as it gets close to it, the 600
v

 term gets very large. When v gets very large the v
2

 

term gets very large. Th erefore we have found the global minimum.
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Mixed examination practice 16

Short questions

1. Find the equation of the tangent to the curve y xe 2x +x sin  at the point 

where x = π
2

.
 

[5 marks]

2. Find the equation of the normal to the curve y x −x(( )2 3 when x = 2. [5 marks]

3. f x)x  is a quadratic function taking the form x bx c+bx . If f 1 2( )  and 
′ ( )f 1) = 2  fi nd the values of b and c. [5 marks]

4. Find the coordinates of the point of infl exion on the graph of 

y x x x= − +
3

2

6
.
 

[6 marks]

5. Find and classify the stationary points on the curve y x x−xt n 4
3

.  [6 marks]

6. Let f be a cubic polynomial function. Given that f f (f ) ,0)(f 0)′  
f f ( )f (′  and f″ff ( ) ,6) =)  fi nd f x)x .  [2 marks]

 (© IB Organization 2005)

 7. Th e graph shows y f ′( )x :
 On a sketch of this graph:
 (a)  Mark points corresponding to a local minimum 

of f x)x  with an A.
 (b)  Mark points corresponding to a local maximum 

of f x)x  with a B.
 (c)  Mark points corresponding to a point of 

infl exion of f x)x  with a C. [6 marks]

8. On the curve y x3 a tangent is drawn from the point ( , )a, 3 , a > 0 and 
a normal is drawn from the point ( , )a, − 3 . Th e tangent and the normal 
meet on the y-axis. Find the value of a. [6 marks]

Long questions

1. Th e line y x24( )x −x 1  is tangent to the curve y ax bx= ax +2bx 4 at x = 2.
 (a)  Use the fact that the tangent meets the curve to show that 2 5b .
 (b)  Use the fact that the tangent has the same gradient as the curve to fi nd 

another relationship between a and b.

y

x
0
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 (c) Hence fi nd the values of a and b.
 (d)  Th e line meets the curve again. Find the coordinates of the other point 

of intersection. [12 marks]

2. Th e graph shows part of y x x x−x − +x3 2x 3.
 Th e point A is a local maximum and the point B is a 

point of infl exion.
 (a) (i) Find the coordinates of A.

  (ii) Find the coordinates of B.
 (b) (i)  Find the equation of the line containing both 

A and B.
  (ii)  Find the x coordinate of the points on the 

curve at which the tangent is parallel to this line. [10 marks]

3.  (a)  Sketch and label the curves y x2  for − ≤ ≤2 2≤ ≤x ,  and y = − 1
2

 ln x 
for 0 2≤ .

 (b) Find the x-coordinate of P, the point of intersection of the two curves.
 (c)  If the tangents to the curves at P meet the y-axis at Q and R, calculate 

the area of the triangle PQR.
 (d)  Prove that the two tangents at the points where x a a, ,a > 0  on each 

curve are always perpendicular.
 [14 marks]
 (© IB Organization 2000)

4.  Th e population of bacteria (P) in thousands at a time t in hours is modelled by:
t ≥t 0t ≥t t3tt,

 (a) (i) Find the initial population of bacteria.
  (ii)  At what time does the number of bacteria reach 

14 million?

 (b) (i) Find d
d
P
t

.

  (ii)  Find the time at which the bacteria are growing at a rate of 6 
million per hour.

 (c) (i)  Find 
d
d

2

2

P
t

 and explain the physical signifi cance of this quantity.

  (ii) Find the minimum number of bacteria, justifying that it is a minimum.
 [12 marks]

y

x

A

B
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17

As in many areas of mathematics, as soon as we learn a new 
process we must then learn how to undo it. However, it turns 
out that undoing the process of diff erentiation opens up the 
possibility of answering a seemingly unconnected problem: 
what is the area under a curve?

17A  Reversing differentiation
We saw in the last chapter how diff erentiation gives us the 
gradient of a curve or the rate of change of one quantity with 
another. What then if we already know the function describing 
a curve’s gradient, or the expression for a rate of change, and 
wish to fi nd the original function? Our only way of proceeding 
is to ‘undo’ the diff erentiation that has already taken place and 
this process of reverse diff erentiation is known as integration.

Basic 
integration 
and its 
applications

Introductory problem

Th e amount of charge stored in a capacitor is given by the 
area under the graph of current (I) against time (t). When 
it contains alternating current the relationship between I 
and t is given by . When it contains direct current 
the relationship between I and t is given by I = k. What 
value of k means that the amount of charge stored in the 
capacitor from t = 0 to t = π is the same whether 
alternating or direct current is used?

In this chapter you 
will learn:

 to reverse the process • 
of differentiation (this 
process is called 
integration)

 to fi nd the equation • 
of a curve given its 
derivative and a point 
on the curve

 to integrate sin•  x, cos x 
and tan x

 to integrate • ex  and 1
x

 to fi nd the area • 
between a curve and 
the x- or y-axis

 to fi nd the area • 
enclosed between two 
curves.
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Let us look at two particular cases to get a feel for this process. 

Each time we will be given d
d

yd
x

 and need to answer the question 

‘What was diff erentiated to give this?’

If 
d
d

yd
x

x= 2  then the original function y must have contained 

x2 as we know that diff erentiation decreases the power by 1. 
Diff erentiating x2 gives exactly 2x, so we have found that if 
d
d

yd
x

x= 2  then y x2.

If d
d

yd
x

x=
1
2 then the original function y must have contained x

3
2. 

Diff erentiating x
3
2 will give y x

3
2

1
2 and we do not 

want the 3
2

. However, if we multiply the x
3
2 by 2

3
 then when we 

diff erentiate the coeffi  cient cancels to 1, so if d
d

yd
x

x=
1
2  

then y x
2
3

3
2.

Writing out ‘if d
d

yd
x

x=
1
2  then y x

2
3

3
2, is descriptive but rather 

laborious and so the notation used for integration is:

∫x x∫∫ =
1
2

3
2

2
3

d

Here, the dx simply states that the integration is taking place 

with respect to the variable x in exactly the same way that in 
d
d

yd
x

 

it states that the diff erentiation is taking place with respect to x. 

We could equally well write, for example, ∫t t∫∫ =
1 3

2
2
3

d .

The integration symbol
comes from the old 
English way of 
writing the letter ‘S’. 
Originally it stood for the 
word ‘Sum’ (or rather, ∫um∫∫ ). 
As you will see in later 
sections, the integral does 
indeed represent a sum of 
infi nitesimally small quantities.

Exercise 17A
1. Find a possible expression for y in terms of x: 

 (a) (i) d
d

yd
x

x= 3 2  (ii) d
d

yd
x

x= 5 4

 (b) (i) d
d

yd
x x

= − 1
2

 (ii) d
d

yd
x x

= − 4
5

You may have heard 
of the term ‘differential 
equation’. These are 
the simplest types of 
differential equation.
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 (c) (i) d
d

yd
x x

= 1
2

 (ii) d
d

yd
xx

= 1
3 23

 (d) (i) d
d

yd
x

x= 10 4  (ii) d
d

yd
x

x= 12 2

17B  Constant of integration
We have seen how to integrate some functions of the form xn by 
reversing the process of diff erentiation but the process as carried 
out above was not complete.

Let us consider again the fi rst example where we stated that: 

∫ =2 2x x xd .

Were there any other possible answers here?

We could have given ∫ = +2 12x x xd  or

∫ = −2 3
5

2x x xd .

Both of these are just as valid as our original answer; we know 

that when we diff erentiate the constant ( +1 or − 3
5 ) we just 

get 0. We could therefore have given any constant; without 
further information we cannot know what this constant on the 
original function was before it was diff erentiated.

Hence our complete answers to the integrals considered in 
Section 17A are:

∫ = +2 2x x x c+d

∫ = +x x∫∫ x c+
1
2

3
2

2
3

d

where the c is an unknown constant of integration.

We will see later that, given further information, we can fi nd 
this constant.

Exercise 17B
1. Give three possible functions which when diff erentiated 

with respect to x give the following:
 (a) 3 3x
 (b) 0

We will see how to 
fi nd the constant 
of integration in 
Section 17F.
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2. Find the integrals:
 (a) (i) ∫7 4x x4 d  (ii) ∫

1
3

2x x2 d

 (b) (i) 1
2 2t

td∫  (ii) ∫
8

3y
ydyy

17C  Rules of integration
To fi nd integrals so far we have used the idea of reversing 
diff erentiation for each specifi c function. Let us now think 
about applying the reverse process to the general rule of 
diff erentiation.

We know that for y xn , d
d

yd
x

nxn= −1  or in words:

To diff erentiate xn multiply by the old power then decrease the 
power by 1.

We can express the reverse of this process as follows.

To integrate xn increase the power by 1 then divide by the 
new power.

Using integral notation:

KEY POINT 17.1KEY POINT 17.1

Th e general rule for integrating xn for any rational power 
n ≠ −1  is:

x x
n

x cn nx xd =
+

++∫
1

1
1

Note the condition n ≠ −1 which ensures that we are not 
dividing by zero.

It is worth remembering the formula below for integrating a 
constant: ∫ = +k x∫∫ kx c, which is a special case of the rule in 
Key point 17.1 

∫ ∫ = +∫∫ x
k

x c+d∫∫kx∫∫∫ 1=x
k

xd
1

In Key point 16.3, we saw that if we diff erentiate kf ( )x  we get 
kf ′ ( )x ;  we can reverse this logic to show that:

KEY POINT 17.2KEY POINT 17.2

To integrate multiples of functions:

∫ ∫∫∫ f∫∫ xdf∫ ( )x

We will see how 
to integrate x–1 in 
Section 17D.

The + c is a part of 

the answer, and you 

must write it every 

time.

exam hint

This rule only works 

if k is a constant.

exam hint
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Since we can diff erentiate term by term (also in Key point 16.4) 
then we can also split up integrals of sums.

KEY POINT 17.3KEY POINT 17.3

For the sum of integrals:

∫ ∫ ∫+∫∫ f∫∫ x g x∫∫ x( ) ( )xdf∫ ( )x d

By combining Key points 17.2 and 17.3 with k = −1, we can 
also show that the integral of a diff erence is the diff erence of the 
integrals of the separate parts.

Th ese ideas are demonstrated in the following examples.

Be warned! You 

cannot integrate 

products or quotients 

by integrating each 

part separately.

exam hint

Worked example 17.1

Find (a) ∫ −6 3x x3 d   (b) ∫ −( )+
4

− xd

Add one to the power and 
divide by this new power

(a) 6
6

3 1
3

3 1x∫
−

−3
d c

6 3 1x x += +3 1x− +

Tidy up
 =

−
+−6

2
2x c

 = − +−3 2x c

Go through term by term 
adding one to the power 
of x and dividing by this 

new power
Remember the rule for 
integrating a constant

(b) 3 8 2
3 8

2
4 1 1

4
4
3 4

4
31

4
3

1
x8 x x x x23+8 3x8 −4 1x + +2x2

−1 +
− −3 8+ +∫ d c

Tidy up
 

=
−

+ +−3
5

8
25

1
3

1
3x x−5 x c

  
= + + +−3

5
24 25

1
3x x+ 24 x c

Just as for diff erentiation, it may be necessary to change terms 
into the form n  before integrating.
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Exercise 17C

1. Find the following integrals:
 (a) (i) ∫9 8x x8 d  (ii) ∫12 11x x11 d

 (b) (i) ∫x x∫∫ d  (ii) ∫x x∫∫ 3 d

 (c) (i) ∫9dx  (ii) ∫
1
2

dx

 (d) (i) ∫3 5x x5 d  (ii) ∫9 4x x4 d

 (e) (i) ∫3 x xd  (ii) ∫33 x xd

 (f) (i) ∫
5

2x
xd  (ii) ∫

2
3x

xd

2. Find the following integrals:
 (a) (i) ∫3 dt (ii) ∫7dz

 (b) (i) ∫q q∫∫ 5 d  (ii) ∫r r∫∫ 10 d

In the integral do not 

forget the dx or the 

equivalent. We will 

make more use of it 

later! The function 

you are integrating 

is actually being 

multiplied by dx 

so you could 

write question 

1(f)(ii) as
 
∫
2dx
x3

.

exam hint

Worked example 17.2

Find (a) ∫5 2 3x x2 3 xd
  

(b) ∫
( )−

x
x

2

d

Write the cube root as a power 
and use rules of exponents

(a) ∫ ∫5∫ 2 1 3 xd∫5∫ 2 1 d3x5∫ x1 3/
 
= ∫5 7 3x x7 3d

Dividing by 10
3

7
3

1+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
 is the 

same as multiplying by 3
10

 

Expand the brackets fi rst, then 
use rules of exponents

(b) ∫ ∫( ) +
( )x x

x∫) 6x − 92 2

d∫
+

( )
x6

∫
x 9

 

Dividing by a fraction is 
the same as multiplying by 

its reciprocal

= × +5
3
10

10
3x c = +3

2

10
3x c

= ∫ −x −∫∫ x x
3
2

1 1
26 9+x2 d

= × + +2
5

6
2
3

9 2×
5
2

3
2

1
2x x− ×62 x c

= +2
5

4 1+ 8
5
2

3 1
2x x− 42 x c
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 (c) (i) ∫12
3
5g g5 dgg  (ii) ∫5

7
2y y2 dyy

 (d) (i) ∫4
2

dh
h

 (ii) ∫
dpd
p4

3. Find the following integrals:
 (a) (i) ∫ +x x∫∫ − x2 3 2d  (ii) ∫x∫∫ − x4 2 5+x d

 (b) (i) ∫ +1
3

1
3 44t t43 4

td  (ii) ∫ × − ×5 1 4 1
2 5v v2

vd

 (c) (i) ∫x x∫∫ xd  (ii) ∫
3

3

x
x

xd

 (d) (i) ∫( )+ x)+ 3 d  (ii) ∫ ( )+x∫∫ ( x2 d

4. Find ∫
+1 x
x

xd . [4 marks]

17D  Integrating x–1 and ex

When integrating ∫ =
+

++x x∫∫ n
x c++n=x xnd 1

1
1 , we were careful to exclude 

the case n = −1. 

In Key point 16.8 we saw that d
dx x

( )xln = 1 . Reversing this gives:

KEY POINT 17.4KEY POINT 17.4

∫ − +x∫∫ x c+1 d l=x

In Key point 16.7, we saw that d
dx

x xe ex( ) . We can use this to 

integrate the exponential function:

KEY POINT 17.5KEY POINT 17.5

∫ +e d∫∫ xdx c= +e=

We will modify 
this rule in Section 
17H.
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Exercise 17D 1. Find the following integrals:

 (a) (i) ∫ 2
x

xd  (ii) ∫ 3
x

xd

 (b) (i) ∫ 1
2x

xd  (ii) ∫ 1
3x

xd

 (c) (i) ∫ −x
x

x
2 1d  (ii) ∫ +x

x
x

3 5 d

 (d) (i) ∫ 3 2+
2x

xd  (ii) ∫ x x−
x

x
2

d

2. Find the following integrals:
 (a) (i) ∫5ex xd  (ii) ∫9ex xd

 (b) (i) ∫
2

5
ex

xd  (ii) ∫
7
11
ex

xd

 (c) (i) ∫
( )+ dx

2  
(ii) ∫

( )+
x

5
d

17E  Integrating trigonometric functions
We can expand the set of functions that we can integrate by 
continuing to refer back to work covered in chapter 16.

We saw in Key point 16.6 that d
dx

xcos( )sin x  which means 
that ∫ = +cos s= i x c+d .

Similarly, as d
dx

xsin( )cos x , then ∫ +sin c= − os x c+d .

KEY POINT 17.6KEY POINT 17.6

Th e integrals of trigonometric functions:

∫ +sin c= − os x c+d

∫ = +cos s= i x c+d

We do not have a function whose derivative is tan x  and so 
have no way (yet) of fi nding ∫ tan x . We will meet a method that 
enables us to establish this in chapter 19, but for completeness 
the result is given here:

KEY POINT 17.6aKEY POINT 17.6a

tan ln secx xln sec∫

See Exercise 19B 
for establishing this 
result.

The integral of 

tan x is not given 

in the Formula 

booklet and is worth 

remembering

exam hint
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Exercise 17E

1. Find the following integrals:
 (a) (i) ∫ sin cosx xc− os xd  (ii) ∫3 4+ s4+ inx xs4+ in xd

 (b) (i) ∫1 t+ an x xd  (ii) ∫ +sin tanx xtan
x

2 3
d

 (c) (i) ∫ +x x+ xsin
7

d  (ii) ∫ +x x+ xcos
6

d  

 (d) (i) ∫ +1 (− cos s+ in )x xs+ in xd  (ii) ∫ cos ( )− x2 d(cos s− in )x(cos x)

2. Find ∫ +sin c+ os
cos

x xc+ os
x

x
2

d .  [5 marks]

3. Find ∫ cos
cos sin

2x
x xs− in

xd . [5 marks]

17F  Finding the equation of a curve
We have seen how we can integrate the function d

d
yd
x

 to fi nd the 

equation of the original curve, except for the unknown constant 

of integration. Th is is because the gradient, d
d

yd
x

, determines the 

shape of the curve, but not exactly where it is. However, if we 
are also given the coordinates of a point on the curve we can 
then determine the constant and hence specify the original 
function precisely.

If we again consider d
d

yd
x

x= 2  which we met at the start of this 

chapter, we know that the original function must have equation 
y = x2 + c for some constant value c.

If we are also told that the curve passes through the point 
(1, −1), we can fi nd c and specify which of the family of curves 
our function must be.

(1, −1)

c = −6

c = −4

c = −2

c = 4

c = 2

c = 0

y

x
0

Look back to Worked 
example 16.2 where, 
given the gradient, 
we could draw many 
diff erent curves by 
changing the starting 
point.
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Th e above example illustrates the general procedure for fi nding 
the equation of a curve from its gradient function.

KEY POINT 17.7KEY POINT 17.7

To fi nd the equation for y given the gradient d
d

yd
x

 and one 
point (p, q) on the curve:
1.  Integrate d

d
yd
x

, remembering +c.

2.  Find the constant of integration by substituting 
x = p, y = q.

Exercise 17F
1. Find the equation of the original curve if:

 (a) (i) d
d

yd
x

x=  and the curve passes through (–2, 7)

  (ii) d
d

yd
x

x= 6 2  and the curve passes through (0, 5)

 (b)  (i) d
d

yd
x x

= 1  and the curve passes through (4, 8)

  (ii) d
d

yd
x x

= 1
2

 and the curve passes through (1, 3)

 (c) (i) d
d

yd
x

= 2 2x +xe  and the curve passes through (1, 1)

  (ii) d
d

yd
x

x= e  and the curve passes through (ln5, 0)

Worked example 17.3

Th e gradient of a curve is given by d
d

yd
x

x= +3 8xx 52  and the curve passes through the point 

(1, –4). Find the equation of the curve.

To fi nd y  from d
d
y
x

 we need to 
integrate

Don’t forget + c

y = +∫3 8 52 x8− xd

 = +x − x3 24 5+x2x c

The coordinates of the given 
point must satisfy this 

equation, so we can fi nd c.

When x = 1 , y = −4, so
− ( ) − ( ) + ( ) +4 = ( 4 ( 5(3 2( )4 ( c

⇒ − − + ⇒ = −4 1= 4 5+ 6c ⇒
∴ = −y x − x3 24 5+x2 6
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 (d)  (i) d
d

yd
x

x
x

= +1  and the curve passes through (e, e)

  (ii) d
d

yd
x x

= 1
2

 and the curve passes through (e2, 5)

 (e)  (i)  d
d

yd
x

x= +cos sx +x in  and the curve passes 

through (π, 1)

  (ii)  d
d

yd
x

x= 3tan  and the curve passes through (0, 4)

2. Th e derivative of the curve y f ( )x  is 
1

2x
.

 (a) Find an expression for all possible functions f(x).
 (b)  If the curve passes through the point (2, 7), fi nd the 

equation of the curve.  [5 marks]

3. Th e gradient of a curve is found to be d
d

yd
x

x= −x2 4 .
 (a)  Find the x-coordinate of the maximum point, justifying 

that it is a maximum.
 (b)  Given that the curve passes through the point (0, 2), 

show that the y-coordinate of the maximum point 
is −7 1

3
.  [5 marks]

4. Th e gradient of the normal to a curve at any point is 
equal to the x-coordinate at that point. If the curve passes 
through the point (e2, 3) fi nd the equation of the curve 
in the form ( )ln( )g ( )x  where g x( )x  is a rational 
function, x > 0. [6 marks]

17G  Defi nite integration
Until now we have been carrying out a process known as 
indefi nite integration: indefi nite in the sense that we have an 

unknown constant each time, for example = +x x∫∫ x c+2 3=x
1
3

d .

However, there is also a process called defi nite integration 
which yields a numerical answer without the involvement 
of the constant of integration, for example 

x x x b a
a

a

b
b

2 3x x 3 3a
1
3

1
3

1
3

d = ⎡
⎣⎢⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ − ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞∫a
.

Here a and b are known as the limits of integration: a is the 
lower limit and b the upper limit.
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Th e square bracket notation means that the integration has 
taken place but the limits have not yet been applied. To do this 
we simply evaluate the integrated expression at the upper limit 
and subtract the integrated expression evaluated at the lower 
limit.

You may be wondering where the constant of integration has 
gone. We could write it in as before but we quickly realise that 
this is unnecessary as it will just cancel out at the upper and 
lower limit each time:

x x x

b a

b a

c

ca

a

b

a

b
3x x2

3a

3a

1
3

1
3

1
3

1
3

1
3

d = ⎡
⎣⎢⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠⎠⎠
⎛
⎝⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

= b

+

+a3a

∫a

Th e value of x is a dummy variable, it does not come into 
the answer. But both a and b can vary and aff ect the result. 
Changing x to a diff erent variable does not change the answer. 
For example:

u u b a x x
a

b

a

b
2 u b 3 2x

1
3

1
3

d = bb = ∫a∫a
d

Worked example 17.4

Find the exact value of 1 4
1 x

x+∫1
d

e
.

Integrate and write in square 
brackets

1
4 11 x

+ 4 [ ]4x x∫1
dx [ ee

Evaluate the integrated 
expression at the upper 

and lower limits and 
subtract the lower from 

the upper

 =(In (e) + 4 (e)) − (In (1) + 4 (1))

 = ( ) ( )1 4+ 0 4+ 4 3−e e) − ( ) =0 4+ 4

Make sure you 

know how to evaluate 

defi nite integrals on your 

calculator, as explained 

on Calculator skills sheet 

10 on the CD-ROM. 

It can save you time, 

and you can evaluate 

integrals you don’t know 

how to do algebraically. 

Even when you are 

asked to fi nd the exact 

value of the integral, you 

can check your answer 

on the calculator.

exam hint
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Exercise 17G
1. Evaluate the following defi nite integrals, giving exact answers.

 (a) (i) x x3
2

6
d∫2

 (ii) x x x2
1

4
+∫1

d

 (b) (i) cos
/

x xd
0

2π

∫0
 (ii) sin x xd

π

π2

∫π

 (c)  (i) ex xd
0

1

∫0
 (ii) 3

1

1
e dx

−∫−

2. Evaluate correct to three signifi cant fi gures: 

 (a)  (i) x xd
0 3

1 4.

∫0
 (ii) 3

9

9 1

x
xd∫9

 (b)  (i) e dx2

0

1

∫0
 (ii) ln x xd

e

1∫1

3. Find the exact value of the integral e dx xd∫0∫∫
π

 [5 marks]

4. Show that the value of the integral 12

x
x

k

k
d∫k

 is independent 
of k.  [4 marks]

5. If f x( )∫ d 7x =
3∫∫
9

, evaluate 2 1
3

9
xf x( )∫3

d .  [4 marks]

6. Solve the equation t t
a

d =∫ 42
1∫∫ . [5 marks]

y

x

y = f(x)

a b

A

17H   Geometrical signifi cance of defi nite 
integration

Now we have a method that gives a numerical value for an 
integral, the natural question to ask is: what does this number 
mean?

On Fill-in proof sheet 20 on the CD-ROM, Th e fundamental 
theorem of calculus, we show that, as long as f x)x  is positive, 
the defi nite integral of f x)x  between the limits a and b is the 
area enclosed between the curve, the x-axis and the lines x = a 
and x = b.

KEY POINT 17.8KEY POINT 17.8

Area d= ( )∫ f x( x
a∫∫
b
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If you are sketching the graph on the calculator you can get it to 
shade and evaluate the required area: see Calculator skills 
sheet 10 on the CD-ROM. You need to show the sketch as a part 
of your working if it is not already shown in the question.

Worked example 17.5

Find the exact area enclosed between the x-axis, the curve y = sin x and the lines x = 0 and x = π
3

.

Sketch the graph and identify 
the area required

y

x

y = sin x

π
3

A

Integrate and write in square 
brackets

A = [ ]∫ sin = [− //
xxd 0

3

0∫∫
3 ππ

Evaluate the integrated 
expression at the upper and 
lower limit and subtract the 

lower from the upper

= −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠
⎞⎞ ( )cos c⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ − −( os

π
3

0

= −⎛
⎝

⎞
⎠
⎞⎞ − ( )−1

2 = 1
2
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 The Ancient Greeks 
had developed ideas 
of limiting processes 
similar to those used 

in calculus but it took nearly 
2000 years for these ideas 
to be formalised. This was 
done almost simultaneously 
by Isaac Newton and 
Gottried Leibniz in the 17th 
Century. Is this a coincidence 
or is it often the case that a 
long period of slow progress 
is often necessary to get to 
the stage of major 
breakthroughs? 
Supplementary sheet 10 
looks at some other people 
who can claim to have 
invented calculus.

  In the 17th Century, integration was defi ned as the 
area under a curve. The area was broken down 
into small rectangles, each with a height f (x) and a 
width of a small bit of x, called Δx . The total area 

was approximately the sum of all of these rectangles:

x a

x b

f x x∑ ( )Δ

Isaac Newton, one of the pioneers of calculus, was also a 
big fan of writing in English rather than Greek. So sigma 
became the English letter ‘S’ and delta became the English 
letter d so that when the limit is taken as the width of the 
rectangles become vanishingly small then the expression 
becomes:

f x x
a

b
( )x d∫a

This illustrates another very important interpretation of 
integration – the infi nite sum of infi nitesimally small parts.

Worked example 17.6

Find the area A in this graph. 
y

x

y = x(x−1)(2−x)

1 2
A

0

Write down the integral to be 
evaluated, then use calculator

x x x−( ) −( )∫ 1 2)(
0∫∫
1

d bx = −0 y GDC. (525 )

The area must be positive ∴ =A 0 25

When the curve is entirely below the x-axis the integral will give  
a negative value. Th e modulus of this value is the area.
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Unfortunately, the relationship between integrals and areas is 
not so simple when there are parts of the curve above and below 
the axis. Th ose bits above the axis contribute positively to the 
area, but bits below the axis contribute negatively to the area. 
We must separate out the sections above the axis and below 
the axis.

Worked example 17.7

(a) Find x x2
1

4
4 3x4x∫1

d

(b)  Find the area enclosed between the x-axis, the curve y x −x2 4 3x +  and the lines 
x = 1 and x = 4.

Apply standard integration (a) x x x x2 3x x 2

1

4

1

4
4 3x

1
3

2 3x2xx −x3x⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦∫1

d

 
= ( ) ( ) ( )⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞ − ( ) ( ) ( )⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞1

3
2) − 3) + 1

3
2) − 3) +3 2( )2 ) 3 2( )2 )

 
= ⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞ − ⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞ =4

3
4
3

0

The value found above can’t be 
the correct area for (b).

Sketch the curve to see exactly 
which area we are being asked 

to fi nd

(b) y

x

y = x2 − 4x + 3

1 3 4
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Th e fact that the integral was zero in Worked example 17.7 part 
(a) means that the area above the axis is exactly cancelled by the 
area below the axis.

Th is example warns us that when asked to fi nd an area we must 
always sketch the graph and identify exactly where each part 
of the area is. If we are evaluating the area on the calculator we 
can use the modulus function to ensure that the entire graph is 
above the x-axis. Using the function from Worked example 17.7:

| | x
1

4 8
3

=∫1
d

y

x

y = |x2 − 4x + 3|

1 3 4

continued . . .

The area is made up of two 
parts, so evaluate each of 

them separately

x x x x2 3x x 2

1

3

1

3
4 3x

1
3

2 3x2xx −x3x⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦∫1

d

 = ( ) − ⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞4

3
= − 4

3

∴Area below the axis is
4
3

x x x x2 3x x 2

3

4

3

4
4 3x

1
3

2 3x2xx −x3x⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦∫3

d

 = ⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ − ( )4

3
= 4

3

∴Area above the axis is
4
3

Total area = + =+4
3

4
3

8
3

Transformations 
of graphs using the 
modulus function 
were covered in 
chapter 7.
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KEY POINT 17.9KEY POINT 17.9

Th e area bounded by the curve y f ( )x , the x-axis and the 
lines x = a and x = b is given by f x x

a

b
)x d∫a

.
When working without a calculator, if the curve crosses 
the x-axis between a and b we need to split the area into 
several parts and fi nd each one separately.

Th e interpretation of integrals as areas causes one inconsistency 

with our previous work. Consider the integral 1
2

1

x
xd

−

−

∫−
. 

Graphically we can see that this area should exist.

x

y

−1−2

However, if we do the integration we fi nd that:

 

1
2
1

2

1

x
xd [ ]x −

−

−

−

∫−

 = ln( )− l ( )−) ln(−

 
= −

−
⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ln 1

2

 
= ⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞ln 1

2

 = − ln2

Th is is the correct answer (which we could have found using 
the symmetry of the curve) but it goes through a stage where 
we had to take logarithms of negative numbers, and this is 
something we are not allowed to do. We avoid this by redefi ning 

the integral of 
1
x

 as:
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KEY POINT 17.4 AGAINKEY POINT 17.4 AGAIN

x x x c−∫ +x=1 d l

With this defi nition we can integrate y = 1
x

 over negative 

numbers, and the integral above becomes
1

1 2
2

2

1

2

1

x
xd

as before

[ ]
1=

= −

−

−

−

−

∫−
x

ln l
ln

Notice that the answer is negative, since the required area is below 

the x-axis. We can still not integrate 1
x

 with a negative lower and 

positive upper limit, since the graph has an asymptote at x = 0.

 You may rightly be a 
little uncomfortable 
with inserting a 
modulus function ‘just 

because it works’. In 
mathematics, do the ends 
justify the means?

Exercise 17H
1. Find the shaded areas:
 (a) (i) 

y = x2
y

x
1 2

 (ii) 
y = 1

x2

y

x
2 4

 (b) (i) y =x2−4x+ 3
y

x
1 2

 (ii) 
y = x2−4

y

x
1
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 (c) (i) 
y = x3 − x

y

x
−1 2

 (ii) 
y = x2 −3x

y

x
5

 2.  Th e area enclosed by the x-axis, the curve y x and 
the line x = k is 18. Find the value of k.  [6 marks]

 3. (a) Find 2
0

3
1∫0

d

  (b)  Find the area between the curve y x −x2 1 and the 
x-axis between x = 0 and x = 3.  [5 marks]

 4.  Between x = 0 and x = 3, the area of the graph 
y x kx−x2  below the x-axis equals the area above the 
x-axis. Find the value of k.  [6 marks]

 5.  Find the area enclosed by the curve 7 1x x−x − 02  
and the x-axis. [7 marks]

‘Find the area 

enclosed’ means fi rst 

fi nd a closed region 

bounded by the 

curves mentioned, 

then fi nd its area. 

A sketch is a very 

useful tool.

exam hint

17I   The area between a curve and 
the y-axis

Consider the diagram alongside. How can we fi nd the shaded 
area A?

One possible strategy is to construct a box around the graph to 
divide up the regions of interest. You can integrate to fi nd the 
area labelled A1 and then, by adding and subtracting the areas of 
the blue and red rectangles shown, calculate A.

y

x

y = f(x)

c

d

A

y

x

y = f(x)

c

d A1
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Happily, there is a quicker way: we can treat x as a function 
of y, eff ectively refl ecting the whole diagram in the line y = x, 
and then use the same method as in the previous section.

KEY POINT 17.10KEY POINT 17.10

Th e area bounded by the curve y f ( )x , the y-axis and the 

lines y = c and y = d is given by y
c

d
( )y dyy∫c

, where g y( )y  is 
the expression for x in terms of y.

You may have realised that this is related to inverse 
functions from Section 5E.

x

y

x = f(y)

cd

A

Worked example 17.8

Th e curve shown has equation y x2 1xx −x . Find the shaded area.

y

x

y = 2
√

x − 1

10

Express x in terms of y x − = ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

2

2y

⇒ = +y 2

4
1
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Exercise 17I

continued . . .

Find the limits on the y-axis
It may help to label them on the 

graph

When x = 1, y = −2 12 1 1 0=
When x = 10, y = =2 12 10 1− 6

y

x

y = 2
√

x − 1

10

6

Write down the integral and 
evaluate using calculator

Area (from GDC)= +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠∫

y
dy

2

0∫∫
6

4
1 2⎞
⎠⎟
⎞⎞
⎠⎠

=dy 4

1. Find the shaded areas:
 (a)  (i) y

x

y = x2

1

6

 (ii) y

x

y = x3

1

3

 (b)  (i) y

x
y = 1

x2

2

1

 (ii) y

x

y =
√

x

1

5

 (c)  (i) y

x

y = ln x

1
e

e

 (ii) y

x

y = 3/x

1 6
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 17 Basic integration and its applications 591

2. Th e diagram shows the curve y x . If the shaded 
area is 504 fi nd the value of a. [6 marks]

y

x

y =
√

x

a

2a

0

3. Find the exact value of the area enclosed by the graph
of y xl ( )x +x ,  the line y = 2 and the y-axis.  [6 marks]

4. Th e diagram shows the graph of y x .
Th e shaded area is 39 units. Find the value of a.  [7 marks]

y

x

y =
√
x

4 a

5. Th e diagram shows the graph of 2, where a ∈ ∞] , [.
Th e area of the pink region is equal to the area of the blue 
region. Give two equations for a in terms of b, and hence 
give a in exact form and determine the size of the 
blue area. [8 marks]y

x

y = x2

b

1 a

17J  The area between two curves
So far we have only looked at areas bounded by a curve and one 
of the coordinate axes, but we can also fi nd areas bounded by 
two curves.
Th e area A in the diagram can be found by taking the area 
bounded by f x)x  and the x-axis and subtracting the area 
bounded by g x( )x  and the x-axis, that is:

A g x
a

b

a

b

∫ ∫f
a

b

a
f xxx ) dg∫x −x ( )x

y

x

y = f(x)

y = g(x)

a b

A
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592 Topic 6: Calculus

We can do the subtraction before integrating so that we only 
have to integrate one expression instead of two. Th is gives an 
alternative formula for the area.

KEY POINT 17.11KEY POINT 17.11

Th e area A between two curves, f (x) and g (x), is:

A f x g x x
a

b
f ( )∫a∫ (x( )xx d

where a and b are the x-coordinates of the intersection 
points of the two curves.

Worked example 17.9

 Find the area A enclosed between y x2 1+x  and y x −x2 3 5x + .

First fi nd the x-coordinates of 
intersection

For intersection:

x x2 3 5x 2 1x3x = 2x

⇒ − =
⇒ −( )( ) =
⇒ =

−
x− )(

2 5 4+x 0

1 4) −(x)( 0
1 4,

Make a rough sketch to see the 
relative positions of the two curves

y

x
1 4

A

2x + 1y = 

2 − 3x + 5y = x

Subtract the lower curve from the 
higher before integrating A = ( ) ( )−∫ 2 1+ +

1∫∫
4

x ) − (1+ x)+ d

= − +∫ x + x2
1∫∫
4

5 4−x d

= − + −⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

x x
x

3 2x

1

4

3
5

2
4

= −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =8

3
11
6

9
2
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Subtracting the two equations before integrating is particularly 
useful when one of the curves is partly below the x-axis. If f x)x  
is always above g x( )x  then the expression we are integrating, 
f x g x( )x − ( )x , is always positive, so we do not have to worry 

about the signs of f x)x  and g x( )x  themselves.

Worked example 17.10

Find the area bounded by the curves y = e 5x −x  and y x3 2.

Sketch the graph to see the 
relative position of two 

curves

Using GDC:

y = ex − 5

y = 3 − x2

y

x
−2.82 11.66

A
0

Find the intersection points – 
use calculator

intersections: x = −2 818 1 658818 1and

Write down the integral 
representing the area

Area = ( ) ( )
−∫−

)− (e) (
2 818

1 658
x)) − (e −e d

=
−∫−

( )− 2
2 8. 18

1 6. 58
x− d))

Evaluate the integral using 
calculator = 21 6.  (3SF)
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Exercise 17J
1. Find the shaded areas.
 (a)  (i) 

y = 2x+ 1

y = (x−1)2

y

x

 (ii) y = x+ 1

y = 4x−x2 −1

y

x

 (b)  (i) 

y = −x2 −4x+ 12

y

x

y = x2 + 2x+ 12

 (ii) 
y = x2 −2x+ 9

y

x

y = 4x−x2 + 5

 (c) (i) 
y = x2 −x

y = 2x−x2

y

x

 (ii) 
y = x2−7x+ 7

y = 3−x−x2

y

x

2. Find the area enclosed between the graphs of y x x= +x −2 2  
and y x= +x 2. [6 marks]

3. Find the area enclosed by the curve y y xx =yex ,2  the y-axis 
and the line x = 2.  [6 marks]

4. Find the area between the curves y
x

= 1
 and y xsin  in the 

region 0 < <x π. [6 marks]

5. Show that the area of the shaded region alongside is 
9
2 .  

 [6 marks]

y = x2

y

x
−1 2
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6. Th e diagram alongside shows the graphs of y xsin  and 
y xcos .x  Find the shaded area.  [6 marks]

7. Find the total area enclosed between the graphs of 
y xx ( )x −x 2 and y x −x2 7 1x + 5.  [6 marks]

8. Th e area enclosed between the curve y x2  and the line 

y mx  is 10 2
3 . Find the value of m  if m > 0.  [7 marks]

9. Show that the shaded area in the diagram below is 
9
2 .  [8 marks]

y = 2 − x
y2 = x

y

x

y = cos x y = sin x

y

x

Summary

• Integration is the reverse process of diff erentiation.

• Any integral without limits (indefi nite) will generate a constant of integration.

• For all rational n ≠ −1 ∫ =
+

++x x∫∫ n
x c++n=x xn d 1

1
1 .

• If n = −1, we get the natural logarithm function: ∫ − = +x x∫∫ x c+1 d l .

• Th e integral of the exponential function is: ∫ +e d∫∫ xdx c= +e= .

• Th e integrals of the trigonometric functions are:

∫ +sin c= − os x c+d

∫ = +cos s= i x c+d

∫ +tan l= n secxx x c+

• Th e defi nite integral has limits. f(x)(( x
a

b
 d∫a

 is found by evaluating the integrated expression 
at b and then subtracting the integrated expression evaluated at a.
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• Th e area between the curve y = f (x), the x-axis and lines  and x b  is given by:

A f x
a

b

∫a
( )x d

 If the curve goes below the x-axis, the value of this integral will be negative.

• On the calculator, we can use the modulus function to ensure we are always integrating a 
positive function.

• Th e area between the curve, the y-axis and lines y c  and y = d  is given by: A g y y
c

d

∫c
( )y dyy.

• Th e area between two curves is given by:

A f x g x x
a

b
f ( )∫a∫ (x( )xx d

 where x a  and x b  are the intersection points.

Introductory problem revisited

Th e amount of charge stored in a capacitor is given by the area under the graph of 
current (I) against time (t). When there is alternating current the relationship between 
I and t is given by I t . When it contains direct current the relationship between I 
and t is given by I = k. What value of k means that the amount of charge stored in the 
capacitor from t = 0 to t = π is the same whether alternating or direct current is used?

Th e area under the curve of I against t is given by sin tt d [ ]cost =∫ 00∫∫ 2ππ
. For a rectangle of 

width π  to have the same area the height must be 2
π

.

t

l

I= sin t

π
t

l

k

π

You can look at integration as a quite sophisticated way of fi nding an average value of 
a function.
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Short questions

1. If ′ ( ) =f ′ ( xsin  and f
π
3

0⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = , fi nd f x)x .  [4 marks]

2. Calculate the area enclosed by the curves y xln  and y xxe ex .x > 0
  [6 marks]
  [© IB Organization 2003]

3. Find the area enclosed between the graph of y k x−k2 2x  and the x-axis, 
giving your answer in terms of k.  [6 marks]

4. Th e diagram shows the graph of y xn  for n > 1.

y

x
a b

0

 Th e red area is three times larger than the blue area. Find the 
value of n.  [6 marks]

5. Find the indefi nite integral:

       
∫ +1 2x x2

x
xd  [5 marks]

6. (a) Solve the equation:

x x
a

3
0

0ax∫0
dx 0x , .

 (b)  For this value of a, fi nd the total area enclosed between the x-axis and 
the curve y x x−x3  for 0 ≤ ≤x a≤ . [6 marks]

Mixed examination practice 17
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7. Find the area enclosed between the graphs of y xsin  and y x1 sin  
for 0 < <x π . [3 marks]

8. (a) Th e function f x( )x  has a stationary point at 3 19,( ) and ′′( ) =f ′′( 6 6+x .

 What kind of stationary point is ( , )1, 9 ? [5 marks]

 (b) Find f x( )x .

Long questions

1. (a)  Find the coordinates of the points of intersection of the graphs 
y a ax x−4a5 +a2 2ax x4+  and y x a−x2 2a .

 (b)  Find the area enclosed between these two graphs.
 (c)  Show that the fraction of this area above the axis is independent 

of a and state the value that this fraction takes.  [10 marks]

2.  (a) Use the identity cos2 2i 1x xs =2sin xsin2sin  to show that cos x( )arcsin x 1 2 .
 (b) Th e diagram below shows part of the curve y xsin .

 

y

x

a
P

y = sin x

 Write down the x-coordinate of the point P in terms of a.

 (c)  Find the red shaded area in terms of a, writing your answer in a form 
without trigonometric functions.

 (d) By considering the blue shaded area fi nd arcsin x x
a

d
0∫0

 for 0 1.
   [12 marks]
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 18 Further differentiation methods 599

In this chapter we will build on the techniques covered 
in chapter 16 so that we can diff erentiate a wider range of 
functions. Much of the work here will also be used in 
chapter 19 when we learn more integration techniques.

18A   Differentiating composite 
functions using the chain rule

We can already diff erentiate functions such as y ( )x xx +x 2  
by expanding the brackets and diff erentiating term by term:

y x x( )x ( )( ) + ( )2)x + 5)x ( 52 2 = 9 3 2+ 54 33+ 0 2x3+ 03+ 0 x

∴ = +d
d

yd
x

xx + x36 9 503 2++ 90 = ( )2 ( + +x (
But what if the function is more complicated?

Th e same method would work, but it is clearly not practical to 
expand, for example, y ( )x x +x +x 7 and then diff erentiate 
each term. And what about functions such as y xin3  or 
y x= e 2 ? While we can already diff erentiate y xin  and y x= e , 

we have no rules so far to tell us what to do when the argument 
is changed to 3x  or x2.

Introductory problem

Given a cone of fi xed slant height 
12 cm, fi nd the maximum volume 
as apex angle θ varies.

In this chapter you 
will learn:

 how to differentiate • 
composite functions

 how to differentiate • 
reciprocal trigonometric 
functions: sec csc and cotxcsc, x

 how to differentiate • 
products of functions

 how to differentiate • 
quotients of functions

 how to differentiate • 
functions that are not in the 
form y f ( )x

 how to differentiate • 
exponential functions

 how to differentiate inverse • 
trigonometric functions: 
arcsin arccos andarctanx xarccos andarctan, .

18Further 
differentiation 
methods

θ

12 cm

r

h
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600 Topic 6: Calculus

Th e functions y ( )x x +x +x 7, y xsin3  and y x= e 2 may not 
seem related but do have something in common; they are all 
composite functions:

• y ( )x x +x +x 7

 is y u x( )x +2( )x7 3 5x +x2x 2 where u
• y xsin3  is y u x( )xsin  u where u 3
• y x= e 2 is y u x( )xhu r 2

Th ere is a general rule for diff erentiating any composite function.

KEY POINT 18.1KEY POINT 18.1

Th e chain rule
If y g ( )u  where u f ( )x :

d
d

d
d

d
d

yd
x

yd
u

u
x

= ×y

We will accept the chain rule without proof, as it is very 
technical and requires diff erentiation from fi rst principles. Let 
us apply the chain rule to the three functions above.

Worked example 18.1

Diff erentiate these functions:

(a) y ( )x x +x +x 7  (b) y x( )in 3(  (c) y x= e 2

These are all composite functions 
so use chain rule

(a) wherey u u =whereu u +7 2where u =where u 3 5+2 2x5+2

 

d
d

d
d

d
d

y yd
u

u
x xd du

= ×y

    = ( )+7 × (6u

Write the answer in terms of x = ( )+ ( )7 ( + +6+

(b) y usin  where u = 3x

d
d

d
d

d
d

y yd
u

u
x xd du

= ×y

= × ( )cosu

Write the answer in terms of x = ( )3 (co

(c) y u= e  where u = x2

d
d

d
d

d
d

y yd
u

u
x xd du

= ×y = ×eu ( )

Write the answer in terms of x 
in the conventional form

 = 2 2x xe
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 18 Further differentiation methods 601

Worked example 18.1(b) illustrates a special case of the chain 
rule when the ‘inside’ function is of the form ax b+ .

KEY POINT 18.2KEY POINT 18.2

d
dx

f ax b af b( ) = af ′( )ax b+ax

For example, 

d
dx

77 64 7( )x4 1x 44 ( )x4 1x4 1  and 
d

dx
x xe ex3 2 3 22x2( ))

It is useful to remember this shortcut. In practice it is not 
necessary to keep specifying the function u( )x  each time and 
the chain rule calculation can be written down more directly as 
can be seen in the example below, i.e. imagine brackets around 
the inner function u and diff erentiate the outer function fi rst, 
as if the bracketed expression were a single argument, and then 
multiply by the derivative of the bracketed expression.

Sometimes it is necessary to apply the chain rule more than once.

Worked example 18.2

Diff erentiate these composite functions:

(a) y x x= e 2 3   (b) y
x

=
−

3
53

e( ) differentiates to e( ) and 
x x2 3  differentiates 

to 2 3

(a) d
d

y
x

= ( )x − 2e( )x x2 3

First rewrite the square root as a 
power

(b) y = ( )−3( −
1
2

3
1
2( )−  differentiates to − ( )−3

2

3
2  

and x3 5−  differentiates to 3 2x

d
d

y
x

= − ( )x −x ( )x−3
2

3
2 = − ( )− −9

2

2 3
2

x
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Now we can use the chain rule, we can add the derivatives of 
y x y x y xy,xxx yx tnd  (see Key point 18.3 on the 

next page) to those of y x y x xysin ,xx s tx anx d y  already 
established in chapter 16.

Worked example 18.3

Diff erentiate y = cos3 (ln 2x).

Remember that s3A means 
( )cosA 3

y = ( )cos( )ln2 3x

This is a composite of three 
functions, so use chain rule

( )3  differentiates to 3 2( )
cos( ) differentiates to −sin( )

ln2x  differentiates to 2 1
2

1× =
x x

d
d

y
x

x
x

= × ×( )( )x( )x −( )3( ( 2
12(( sin(ln )

= − 3
22

x
xcos (2 ln )sin(ln )2x2

Worked example 18.4

Show that 
d

dx
x xtan( )sec x

Express secx  in terms of cosx y = ( )−sec (x (= ( 1

This is a composite function, so apply 
chain rule

( )−1  differentiates to −( )−2

cos( )  differentiates to −sin( )

d
d

y
x

= −( )x ( )x−−2

   
= sin

cos
x
x2

We want the answer to contain tanx, 

which is 
sin
cos

x
x

= 1
cos

sin
cosx

x
x

= sec ta xtan as required

Th e proofs for the other two reciprocal trigonometric functions 
follow the same pattern, giving the following results.
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 18 Further differentiation methods 603

KEY POINT 18.3KEY POINT 18.3

y x
y
x

x x= ⇒x s
y⇒x = ec t n⇒ dyy

d

y x
y
x

x x= ⇒x c
y⇒x = − sc t⇒ dyy

d

y x
y
x

x= ⇒xt c
y⇒x = − sc⇒ dyy

d
2

Exercise 18A
1. Diff erentiate the following using the chain rule:
 (a) (i) 7( )x2 3 1x3x  (ii) 5( )x3 1+
 (b)  (i) ex x2 2  (ii) e4 3−x

 (c)  (i) 2 1 3e( )−  (ii) 2 5 4( )−ex

 (d) (i) sin( )3 12  (ii) cos( )x x2 2+
 (e) (i) cos3 x  (ii) sin4 x
 (f) (i) ln( )  (ii) ln( )4 12x
 (g) (i) 4 1 4l x( )  (ii) ln x +( )−3 5

2. Diff erentiate the following using the short cut from 
Key point 18.2:

 (a)  (i) 2 3 5( )  (ii) 4 1 8x( )
 (b)  (i) 5 4−( )−x  (ii) 1 7−( )−x
 (c)  (i) cos 1 4−( )x  (ii) cos( )2 − x
 (d) (i) ln 5 2( )  (ii) ln( )
 (e) (i) cot 3x( )  (ii) csc 5x( )
 (f) (i) sec 2 1x +( )  (ii) tan 1 −( )x

3. Diff erentiate the following using the chain rule twice:
 (a)  (i) sec2 3x  (ii) tan2 2x
 (b)  (i) esin2 3x  (ii) e 2( )ln2x

 (c)  (i) 2( )1 2 22  (ii) 4 3 1 2x +( )
 (d) (i) ln( cos )2x  (ii) ln( c )5cos x

4. Find the equation of the normal to the curve y
x

= 1
4 1x +2

 at 
the point where x = 2.

 Find the exact coordinates of stationary points on the curve 
y x= esin  for x ∈[ , ]2, π . [5 marks]

5.
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Many people think that 
a chain hangs as a 
parabola but it can be 
proved that it actually hangs 
in the shape of the curve in 
question 9, called a catenary. 
To prove this requires a topic 
called differential geometry.

18B   Differentiating products using the 
product rule

We now look at products of two functions. We can already 
diff erentiate some products, such as y xx ( )4 ( x −xxx , by 
expanding and diff erentiating term by term. However, like 
composite functions, this is tricky when the function becomes 
more complicated, for example y xx ( )4 ( 9x −xxx , and expanding 
is no help at all with functions such as y x x2 cos  or y x xln .

 6. Given that f x x( ) = csc2 :

  (a) Find f x′ ( )x .
  (b) Solve the equation f x f x′ ( )x = 2 f ) for − < <π π< < . [7 marks]

 7. For what values of x does the function f x xlx n( )� 2 35−  
have a gradient of 1? [5 marks]

 8. (a)  If a, b, p and q are positive with a < b fi nd the 
x-coordinate of the stationary point of the curve 
y x a x bp qx b−x(( ) −( )  in the domain a x b< <x .

  (b) Sketch the graph in the case when p = 2  and q = 3.
  (c)  By considering the graph or otherwise, determine a 

condition involving p  and/or q  to determine when 
this stationary point is a maximum. [10 marks]

 9. A non-uniform chain hangs from two posts. Its height (h) 
satisfi es the equation

  
h x

x
= +xe

e
1
2 for − ≤ ≤1 2≤ ≤x .

  Th e left  post is positioned at x = −1. Th e right post is 
positioned at x = 2.

  (a) State, with reasons, which post is taller.
  (b) Show that the minimum height occurs when x = 1

3
2ln .

  (c)  Find the exact value of the minimum 
height of the chain. [8 marks]

10. (a) Solve the equation sin sin2x xsin  for 0 2≤ ≤ π.
  (b)  Find the coordinates of the stationary points of the 

curve y x xin sx −x in2  for 0 2≤ ≤ π.
  (c) Hence sketch the curve y x xin sx −x in2 . [8 marks]
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Just as there is a rule for diff erentiating composite functions, 
there is a rule for diff erentiating products.

KEY POINT 18.4KEY POINT 18.4

Th e product rule

If y u x v( ) ( )x  then:
d
d

d
d

d
d

yd
x

u
v
x

v
u
x

= +u

Let us apply the product rule to the fi rst function in 
the previous paragraph.

With a more complicated function, we may need the chain rule 
as well as the product rule.

If you are interested 
in the proof, see Fill-
in proof 21 on the 
CD-ROM.

Worked example 18.5

Diff erentiate y xx ( )4 ( x −xxx .

This is a product so 
use the product rule. 
It doesn’t make any 

difference which 
function is u( )x  and 

which is v( )x

Let u = x4  and v = 3 5−2

d
d

u
x

x= 4 3,   
dv
dx

x= 6

Apply the product rule
d
d

d
d

d
d

y
v

vu
u

x x x
= +v

= ×( ) 64 3 4+ x× 6)4 4++

= +12 0 65 320 5x x− 205 20 x

= 18 05 320x x− 205 20

After applying the 

product rule you do 

not need to simplify the 

resulting expression 

unless the question 

clearly tells you to do so.

exam hint
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606 Topic 6: Calculus

Exercise 18B
1. Use the product rule to diff erentiate the following:

 (a) (i) y x x2 cos  (ii) y x x−1 sin

 (b) (i) y x x−2 ln  (ii) y x xln

 (c) (i) y x x= x3 2 1+x  (ii) y x x−1 4

 (d) (i) y xx2 t n  (ii) y xx+1 3

2. Find ′f x′ )x  and fully factorise your answer:

 (a) (i) f x( )x = ( )x +x ( )x) (x −4 5( )(  (ii) f x( )x = ( )xx ( )) (x +7 4( )( +

 (b) (i) f x x x( ) = ( ) ( )2 1xx 1 34 3( )1 3  (ii) f x x x( ) = ( ) +( )41 x− ) ( 15 2( )4( 1

 Diff erentiate y x x( )3 2x x−x +2 2)2x + e  giving your answer in the 
form P x( )x e2  where P( )x  is a polynomial. [4 marks]

 Given that f x x x( )x = 2 3e , fi nd ′′ ( )f x′′ (  in the 
form ax bx c x2 3b c+ +bxbx( )e . [4 marks]

3.

4.

Worked example 18.6

Diff erentiate y xx ( )4 ( 5x −xxx  and factorise your answer.

This is a product so use the product 
rule. It doesn’t make any difference 

which function is u( )x  and which 
is v( )x

Let u = x4  and v = ( )− 5

d
d

u
x

x= 4 3

    

v( )x  is a composite function, so use 
chain rule

d
d

v
x

= ( )xx ( )x5( ) (4

= ( )30 − 4x(

Now apply the product rule
d
d

d
d

d
d

y
v

vu
u

x x x
= +v

= ×( ) ( )( ) 30 −45 43 + ( x×) 30) 4 (+ (+ (

We are asked to factorise the 
answer, so look for common 

factors

= ( )− ( )⎡⎣⎡⎡ ⎤⎦⎤⎤2 ( 2) ⎡⎡⎡ 53 (( 4 2) + 15(( x) +− 15) + 15

= ( )− ( )2 ( ) (3 (( 4 +(( − ++

= ( )− ( )2 ( ) ( −3 (( 4((
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 18 Further differentiation methods 607

  Find the x-coordinates of the stationary points on the curve 
y x x( )x −+x 5 2e . [5 marks]

 Find the exact values of the x-coordinates of the stationary 
points on the curve y x x( ) −( )3 1x +x 35 3( )3 . [6 marks]

 Given that y x xsin2  for x ∈[ , ]2, π :

 (a)  show that the x-coordinates of the points of infl exion 
satisfy cos si2 2sin x

 (b) hence fi nd the coordinates of the points of infl exion.
 [6 marks]

  Find the derivative of sin( )x xe  with respect to x . [5 marks]

  (a) If f x x x( ) = ln , fi nd ′f x′ )x .

 (b) Hence fi nd ∫ ln x xd .
 

[5 marks]

  Find the exact coordinates of the minimum point of the curve 
y x x= ≤xx ≤, 0 π . [6 marks]

  Given that f x x x( ) += x2 1 , show that f x
x a bx

x
′ ( )x = +( )

+2 1
 

where a  and b  are constants to be found. [6 marks]

12.        Write y xx  in the form y f x= ( )xe .

         Hence or otherwise fi nd d
d

yd
x

.

           Find the exact coordinates of the stationary points of the 
curve y xx . [8 marks]

5.

6.

7.

8.

9.

10.

11.

(a)       

(b)       

(c)       

18C   Differentiating quotients using the 
quotient rule

A combination of the product rule and chain rule provides us 
with a method for diff erentiating quotients such as:

y
x x

x
=

−( )
2

2

4 1+x 2
3

We can express it as y ( )x x−x ( )−2x + 3x) −(  then using the 
product rule and taking

u ( )x x−x x +  and v x −x(( )−3 2

⇒ =d
d

u
x

x2 4−x
 
and 

d
d

v
x

= ( )−( )− (x −) 3
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608 Topic 6: Calculus

we have:
d
d

yd
x

x x= ( )xx ( )x − +( )( )− ( )−( ) (− )( )( )) ((− 4x) −x+ () ( 12 )(x −)(2 2 3

Aft er tidying up the negative powers and fractions, this 

simplifi es to d
d

yd
x

x= −
( )x −
2 1x −x 2

3
.

Th is process is laborious, but it can be applied to a 

general function of the form 
u x
v x

( )
( )  to produce a new rule for 

diff erentiating quotients.

Th e details are given in the Fill-in proof 22 on the CD-ROM, 
but you only need to know how to use the result.

KEY POINT 18.5KEY POINT 18.5

Th e quotient rule

If y
u
v

= ( )x
( )x

 then d
d

d
d

d
dyd

x
v ud

d

v

u
x

v
x=

2

Worked example 18.7

Use the quotient rule to diff erentiate y
x x

x
=

−( )
2

2

4 1+x 2
3

. Simplify your answer as far as possible.

This is a quotient.
Make sure to get u and v the 

right way round

y
u
v

= , u = x x−2 4 1+x 2 , v = ( )− 2

d
d

d
d

d
dy v ud

d

v

u vdu
x

x xdu
=

2

Use chain rule to differentiate v then 
substitute the appropriate values into 

the quotient rule

=
⎡⎣⎡⎡ ⎤⎦⎤⎤

( )
( )−

( )− 2( )( )−− ()) ++2

2 2

( )− ( )−x 3

Cancel a factor of (x − 3) =
( ) ( )+

( )−
− ( 2

3

)− −( )− 3x

= +
( )−

2 0 1+ 2 2− 8 2− 42 210 1+ 2 2
3

x 1− 0 x x+ 8 = −
( )−
2 1− 2

3

x

© Cambridge University Press 2012

Not for printing, sharing or distribution.



 18 Further differentiation methods 609

In Section 16E we stated the result that the derivative of tan x 
is sec2x. We can now use the quotient rule, together with the 
derivatives of sin x and cos x, to prove this result.

Th e quotient rule, like the product rule, oft en leads to a long 
expression. You do not need to simplify this expression unless 
asked to do so. However, sometimes product and quotient rule 
questions are also used to test your skill with fractions and 
exponents, as in the following example.

Worked example 18.9

Diff erentiate 
x

x +1
, giving your answer in the form 

x c
k p

+
( )x +

 where c k p, ,k ∈N.

This is a quotient y =
+
x
x 1

, u = x, v = + ( )x + (1 ( += (
1
2

Worked example 18.8

Prove that 
d

dx
x( )tan x 2 .

We know how to differentiate 
sinx and cosx , so use them to 

express tanx

tan
sin
cos

x
x
x

= , u v= =sin cosx x,

Use quotient rule d
d

d
d

d
dy v ud

d

v

u vdu
x

x xdu
=

2

 = ( )
( )

cos co i (x (− in
2

 = cos
cos

2 2+ i
2

x xs+ in2+ s+ in
x

sin cos2 2 1=2cos xcos2cos  = =1
2

2

cos
sec

x
x
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610 Topic 6: Calculus

Exercise 18C
1. Diff erentiate using the quotient rule:

 (a) (i) y
x
x

= −
+

1
1

 (ii) y
x
x

= +
−

2
3

 (b) (i) y
x
x

= 2 1x +  (ii) y
x
x

=
−

2

1

 (c) (i) y
x

x
=

+
1 2−

22
 (ii) y

x
x

= −
+

4
1

2

 (d) (i) y
x

x
= ln3  (ii) y

x
x

= ln2
2

 Find the equation of the normal to the curve y
x

x
= sin

 at the 

point where x = π
2 , giving your answer in the form y mx c= +mx  

where m and c are exact. [7 marks]

2.

continued . . .

Use quotient rule d
d

d
d

d
dy v ud

d

v

u vdu
x

x xdu
=

2

d
d

y
x

=
( )

( )x + ( )x

x

−× ×) (x +
1
2

1
21

2
2

As we want a square root in the 
answer, turn the fractional 

powers back into roots
=

+ −

+

x
x
x

x

1
2 1+x
1

Remove ‘fractions within fractions’ 
by multiplying top and bottom 

by 2 x +1

= ( )
( ) +
2( +

2( + 1
x) −+

x)+

Notice that x x x xx= x
3
2 3 = +

( )
x 2

2 ( + 3
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 18 Further differentiation methods 611

 Find the coordinates of the stationary points on the graph of 

y
x
x

=
2

2 1x −
. [5 marks]

 Th e graph of y
x a
x

=
+ 2

 has gradient 1  at the point ( , )0  and 

a ≠ −2. Find the value of a. [5 marks]

  Find the exact coordinates of the stationary point on the curve 

y
x

x
= ln

 and determine its nature. [6 marks]

  Find the range of values of x  for which the function 

f x
x

x
( ) =

−

2

1
 is increasing. [6 marks]

 Given that y
x
x

=
+

2

1
 show that 

d
d

yd
x

x ax b
p= ( )

( )x2(x +
, stating clearly 

the value of the constants a, b and p. [6 marks]

  Show that if the curve y f ( )x  has a maximum stationary 

point at x a  then the curve y
f x

= ( )
1

 has a minimum 

stationary point at x a  as long as f a)a ≠ 0. [7 marks]

3.

4.

5.

6.

7.

8.

18D   Implicit differentiation

Th e functions we have diff erentiated so far have been of the form 
y f ( )x , but we will also meet functions that are not expressed 

in this form. For example, the coordinates of a point on the circle 
shown in the diagram satisfy the equation x y2 2 16=y2y . Such 
functions are said to be implicit (and those in the form y f ( )x  
are said to be explicit).

Rather than trying to rearrange the equation, we can just 
diff erentiate the equation term by term with respect to x:

d
d

d
d

d
dx

x
x

y
x

2 d( ) + = ( )16( )y( )2y2y

Note that care is needed when diff erentiating y2  as it is a 
composite function. We will need the chain rule:

d
d

d
d

d
d

d
d

y
x

y
yd

yd
x

y
yd
x

2yd2

2
( )

=
( )

× =y

x

y

(x, y)

x2 + y2 = 16

y

x

4

4
−4

4

−4
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612 Topic 6: Calculus

Th e chain rule will be needed when diff erentiating any terms 
involving y.

KEY POINT 18.6KEY POINT 18.6

When diff erentiating implicitly, we need to use:
d

d
d

d
d
dx yd

f y
yd
x

[ ]f y)y = ( )⎡⎣⎡⎡ ⎤⎦⎤⎤ ×

We can now fi nd 
d
d

yd
x

 for the equation of the circle above.

d
d

d
d

d
dx

x
x

y
x

2 d( ) + = ( )16( )y( )2y2y

 
⇒ =2 2+ 0x y+ 2+ y

x
dyy
d

 
⇒ =2 2= −y

y
x

x
dyy
d

 
⇒ = −d

d
yd
x

x
y

Notice that the expression for 
d
d

yd
x

 will oft en be in terms of both

x and y. Sometimes implicit diff erentiation may also need the 
product rule.

Worked example 18.10

Find an expression for 
d
d

yd
x 

if ex + x sin y = cos 2y.

Differentiate term by term, using 
chain rule on all y terms

d
d

d
d

d
dx xd x

( )xe + ( )x = ( )

x sin y is a product, so use the 
product rule and the chain 

rule on all y terms 

⇒ + ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = −× + ×x x

x x
cos s+ in sy

y
y y

yd
d

d
d

1 2 2sin

Group the terms involving 
d
d
y
x

⇒ + = − −
x x

xs+ siny
y

y
y

y
d
d

d
d

2 2sin e

⇒ ( )+ = − −
x

x+ sin+ y
y

d
d

e

⇒ =
+

d
d

y y−
y yx x

xe s−x in
cos +y + 2 2sin
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 18 Further differentiation methods 613

If we are only interested in the gradient at a particular 
point, or we are given the gradient and need to fi nd the x- 
and y-coordinates, we can substitute given values into the 
diff erentiated equation without rearranging it.

Worked example 18.11

Find the coordinates of the turning points on the curve y3 + 3xy2 − x3 = 27.

Differentiate each term with 
respect to x but notice that the 

term 3 2xy  will 
need the product rule

d
d

d
d

d
d

d
dx xd x x

dd( )y 3 + ( )xyxy 23 − ( )x3x = ( )27

Use the chain rule on all y terms ⇒ + =⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠
⎞⎞ 3−⎠
⎞⎞+ ×3 + ⎝

⎛
⎝⎝
⎛⎛⎛⎛

⎠⎠
⎞⎞⎞⎞ 0× 22 ⎛⎛⎛ ⎞⎞⎞ 3+ × ⎞⎞⎞+ ⎛⎛⎛⎛⎛⎛⎛⎛ ⎞⎞⎞⎞⎞⎞3 2×y

y
y

y
y

d
d

d
dx

x
x

⇒ + + =3 6+ 3 3− 02 2+6+ 3 2y
y

y
y

y
d
d

d
dx

x
x

x

We know the value of 
d
d
y
x

For stationary points, d
d

y
x

= 0
⇒ − =3 3− 02 23y x

⇒ ( )− ( )+ =)− ()( +)( 0

⇒ =y o= yx x= −or y

We have found a relationship 
between x and y at the 

stationary points, to actually 
fi nd the points substitute back 

into the original function

When x = y :
x3 + 3xx2 − x3 = 27
⇒ 3x3 = 27
⇒ x3 = 9

⇒   x = 93

∴( )  is a stationary point

When x = −y :

(–x)3 + 3x(−x)2 − x3 = 27
⇒ −x3 + 3x3 − x3 = 27
⇒ x3 = 27
⇒ x = 3
∴ (3, −3) is a stationary point
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614 Topic 6: Calculus

One application of implicit diff erentiation is to diff erentiate 
exponential functions with a base other than e.

Worked example 18.12

Show that 
d

dx
x5 5x 5( ) ln .

Take ln of both sides to ‘remove’ 
the power

Let y = 5x

Then ln lny = x 5

We can differentiate implicitly ⇒ ( ) =d
d

d
dx x

( )
d

( lx n )

Remember that lna is a constant ⇒ =1
5

y
yd

dx
ln

⇒ =d
d

y
y

x
xln ln5 5= 5

We can use this procedure, and a similar one for y xlo  (using 
the change of base rule), to derive the following general results:

KEY POINT 18.7KEY POINT 18.7

d
dx

a axa( )ax ln

d
dx

x
x aalog

ln
( ) = 1

Although these results 

are given in the 

Formula booklet, you 

could be asked to 

prove them.

exam hint

Exercise 18D
1. Find the gradient of each curve at the given point:

 (a)  (i) x y2 2 7y2y2y  at ( , )1,  (ii) 2 63 3x y  at ( , )2,

 (b)  (i) cos ix ys+ =in ysin 0  at ( , )π

(ii) tan tx yta =t n ytan 2  at π π
4 4

,⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞

 (c)  (i) x y y2 2 2xy yx 2y 0xyxxyx  at ( , )2,

(ii) 3 3 212 2y y3 =  at ( , )3,

 (d)  (i) x yy xey e=xeyy 2  at ( , )1,   (ii) x y
x
y

ln − = 2  at ( , )1,
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 18 Further differentiation methods 615

2. Find 
d
d

yd
x

 in terms of x and y:

 (a)  (i) 3 152 3x y  (ii) x y4 2 2y2 0y2y

 (b)  (i) xy x y2 24 6x y2x− 4x yx  (ii) y xyx2 7=xyx

 (c)  (i) 
x y
x y

y
+ = 2  (ii) 

y
xy

2

1
1

+
=

 (d) (i) x y xy =y4 2ln  (ii) 3 2x y y xi c2 os in=2 yc2 os

3. Find the coordinates of stationary points on the curves given by 
these implicit equations:

 (i) −x + y y2 2++ 1=xy y+x 2+xy +x 3  (ii) 2 282 2x xy yx

4. Find the exact value of the gradient at the given point:

 (a)  (i) y x= 3  at ( )1 3,   (ii) y x= 5  at ( )2 25,

 (b)   (i) y
x

= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

2
 when x = −2  (ii) y

x

= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

3
 when x = −1

 (c)  (i) y x= 23  when x = −1  (ii) y x= 42  when x = 1
4

 (d) (i) y x= −33  when x = 2  (ii) y x= −51  when x = 2

5. (a)  On Fill-in proof 18 ‘Diff erentiating logarithmic functions 
graphically’ on the CD-ROM we constructed an argument 

which suggested that 
d

dx x
( )xln = 1

. Use the fact that ln x  

is the inverse function of ex  and implicit diff erentiation to 
prove this result.

 (b) Show that 
d

dx
x

x aalog
ln

( ) = 1
.

 (c)  Diff erentiate lnkx  and ln xn  using chain rule. What do you 
notice? Why is this the case? [6 marks]

 Find the gradient of the curve with equation 
x y y2 2 1xy yx 2y 0xyxxyx =1  at the point (1, 2). [6 marks]

 Find the equation of the tangent to the curve with equation 
4 252 23x x33 y yxx3 yx =  at the point (2, −3). [6 marks]

 A curve has implicit equation x yy2 ln . Find an expression for 
d
d

yd
x

 in terms of x and y. [6 marks]

6.

7.

8.
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 9. Find the coordinates of the stationary point on the curve 
given by e e ex xy =e xe 2 2. [6 marks]

10. Th e line L is tangent to the curve C which has the equation 
y x2 3x  when x = 4 and y > 0.

       By rearranging the curve into the form y f ( )x  or 
otherwise, sketch C.

       Find the equation of L.

       Show that L meets C again at the point P with an 
x-coordinate which satisfi es the equation
x x3 29 2x2 4 1x 6 0x2x 16 .

       Find the coordinates of the point P. [10 marks]

(a)       

(b)       
(c)       

(d)       

18E   Differentiating inverse 
trigonometric functions

Implicit diff erentiation can also be used to fi nd the 
derivatives of the inverse trigonometric functions 
y x y x y xxr in , yy r yx r t nnd .

We can establish the results for the inverse cos and tan functions 
similarly giving:

Worked example 18.13

If y xarcsin , fi nd 
d
d

yd
x

 in terms of x .

We know how to differentiate sin, 
so express x in terms of y

y = arcsinx  ⇒ =i y x

Differentiate each term with respect 
to x, remembering the chain rule

⇒ =y
yd

dx
1

⇒ =d
d

y
yx

1
cos

We want the answer in terms of x, 
so we need to change cos to sin

=
−

1
1 2sin y =

−
1

1 2x
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 18 Further differentiation methods 617

KEY POINT 18.8

y x
y
x x

=x
y

−
r in

dyy
d

1
1 2

y x
y
x x

=x
y −

−
arccos

dyy
d

1
1 2

y x
y
x x

=x
y

+
arctan      

dyy
d

1
1 2

Exercise 18E

1. Find 
d
d

yd
x

 for each of the following:

 (a)  (i) y x( )r 3(  (ii) y x( )r 2(

 (b)  (i) y
x= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞arctan

2
 (ii) y

x= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞arctan

2
5

 (c)  (i) y x xarcsin  (ii) y x x2 arccos

 (d) (i) y ( )x +xt  (ii) y xarcsin( )x

  Find the exact value of the gradient of the graph of 

y
x= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞arccos

2
 at the point where x = 1

3
. [5 marks]

2.

Worked example 18.14

Diff erentiate:

(a) y xr t n 4   (b) y xr s 3xx −x

Multiply the standard result by 4, the 
derivative of 4x (using chain rule)

(a) 
d
d

y
x

= ×1
1 +

4
2( )x4

     
= 4

1 1+ 6 2x

Again using the chain rule multiply 

by 
1
2

1
2( )3x − − , the derivative of 

x − 3

(b) d
d

y
x

= −

( )
× ( )x − −1

1 − ( x −x

1
22

1
2

    
= −

( )
×1

1 − ( −
1

2 3−

     
= −

( )− ( )−
1

2 ( )(
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618 Topic 6: Calculus

  Given that y
x= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞arcsin

3
2

, show that 
d
d

yd
x x

= 3
4 9− 2

.
 [5 marks]

  Given that x yr t n = 1, fi nd an expression for 
d
d

yd
x

. [5 marks]

 (a) Find 
d

dx
( ax r in )x . [5 marks]

 (b) Hence fi nd ∫arcsin x xd . [6 marks]

 Show that the graph of y xarcsin( )x  has no points of 
infl exion. [6 marks]

3.

4.

5.

6.

Summary

• Th e chain rule is used to diff erentiate composite functions.

If y f u( )  where u g( )x , then 
d
d

d
d

d
d

yd
x

yd
u

u
x

= ×y
.

• Th e product rule is used to diff erentiate two functions multiplied together.

If y u x v( ) ( )x , then 
d
d

d
d

d
d

yd
x

u
v
x

v
u
x

= +u .

• Th e quotient rule is used to diff erentiate one function divided by another.

If y
u
v

= ( )x
( )x ,

 
then 

d
d

d
d

d
dyd

x
v ud

d

v

u
x

v
x=

2
.

• Th e derivatives of the reciprocal trigonometric functions are:
d

dx
x xtan( )sec x  

d
dx

x xcot( )csc x  
d

dx
xc( )cot x 2

• Th e derivative of an exponential function is:
d

dx
a a ax xa( ) ln

• Th e derivative of a log function is:

 
d

dx
x

x aalog
ln

( ) = 1

• Th e derivatives of the inverse trigonometric functions are:

 

d
dx x

( )xarcsin =
−
1

1 2
 

d
dx x

( )xarccos = −
−
1

1 2
 

d
dx x

( )xarctan =
+
1

1 2

• In an implicit equation, diff erentiate each term separately noting that for functions of y  the 
chain rule needs to be used:

d
d

d
d

d
dx yd

f y
yd
x

[ ]f y)y = ( )⎡⎣⎡⎡ ⎤⎦⎤⎤ ×
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 18 Further differentiation methods 619

Introductory problem revisited

Given a cone of fi xed slant height 12 cm, fi nd the maximum volume as apex angle θ 
varies.

First we need to write an expression for the volume of the cone. Th en we can diff erentiate 

with respect to θ and solve 
d
d
V
θ

= 0  to fi nd the value of θ at which the maximum occurs.

V r h
1
3

2π

Using the right-angled triangle highlighted in the diagram:

r = 12sinθ

h = 12cosθ

Th erefore, substituting into the formula for V we have:

V = ( ) ( )1
3

2π )) ( ))2)) ( = 12
3

3
2πsin2 θ θcos

For stationary points, 
d
d
V
θ

= 0.

d
d
V
θ

= [ ]θ θ( )θ θθ θ ( )θ θθ−12
3

3

π θ θ

   
= [ ]12

3
0]− =

3

π ]]]]

⇒ −2 0− =2 3i θ 2 θ

⇒ = =i θ θ= θ   or 02 2θ s−θθ in

sinθ = 0  has no valid solutions, since for a cone, 0 90°θ .
2 02 2θ θθ2 ⇒ 2 tan2  θ = 2

⇒ =t θ 2  (tanθ = − 2  has no solutions 0 90°θ )

Th erefore the maximum volume occurs when tanθ = 2 , which 

means sinθ = 2
3

 and cosθ = 1
3

.

Th erefore, substituting into V = 12
3

3
2πsin2 θ θcos :

VmaVV x =
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞12

3
2
3

1
3

3 2

π =
12 2 3

3

3

3

π = 4 2 33 π = 128 3π

θ

12 cm

r

h
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620 Topic 6: Calculus

Short questions

 Find 
d
d

yd
x

 for each of the following:

 (a) y x x2 arcsin
 (b) x yy 4 2

 [7 marks]

 Diff erentiate f x( ) = ( )x−arccos( . [4 marks]

 Find the exact value of the gradient of the curve with equation 

y
x

=
−
1

4 2
 when x = 1

2
.
 

[5 marks]

 Find the equation of the normal to the curve with equation 
4 3 562 2 3y y3 =  at the point (–5, 2). [7 marks]

 Given that y xarctan( )x  fi nd 
d
d

2

2

y
x

.
 

[5 marks]

 Find the gradient of the curve with equation 4 52i x y y  

at the point 
π π
6 3

,⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞. [6 marks]

 Th e graph of y x kx−e  has a stationary point when x = 2
5

. 
Find the value of k. [4 marks]

 A curve has equation f x
a

b
a b

cx
( )x =

+ −e
, ,a ≠ , 0b >b c .

 (a) Show that ′′ ( ) = −( )
+( )

− −(
−

f x′′ ( ac b
b

cx cx

cx

2

3
e e(cx

e
.

 (b) Find the coordinates of the point on the curve where ′′ ( ) =f x′′ ( 0.
 (c) Show that this is a point of infl exion. [8 marks]
 (© IB Organization 2003)

 Find the coordinates of stationary points on the curve with equation 

(y − 2)2 ex = 4x. [7 marks]

1.

2.

3.

4.

5.

6.

7.

8.

9.

Mixed examination practice 18
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 18 Further differentiation methods 621

Long questions

 A curve has equation y
x

x
=

2

1 2−
.

        Write down the equation of the vertical asymptote of the curve.

         Use diff erentiation to fi nd the coordinates of stationary points on the 
curve.

        Determine the nature of the stationary points.

        Sketch the graph of y
x

x
=

2

1 2−
.
 

[15 marks]

2. Th e function f is defi ned by f x
x

x
( ) =

2

2
, for x > 0.

    (i) Show that f x
x x

x
′ ( )x = 2 2x x

2

2 l
.

  (ii)  Obtain an expression for f x″ )x , simplifying your answer as far as 
possible.

       (i) Find the exact value of x satisfying the equation f x′ ( )x = 0.
  (ii) Show that this value gives a maximum value for f x)x .

        Find the x-coordinates of the two points of infl exion on the graph of f.  
 [12 marks]

 (© IB Organization 2003)
3. Let f x x( )x = arccos( )1 9− 2  for 0

1
3

< <x .

        Show that f x
x

′ ( )x = 3
1 9− 2

.

        Show that f x″( )x > 0  for all x ∈] , [
1
3

.

         Let g x kx( ) = arccos( ). If g x pf′ ′pf( )x = − ( )x  for 0
1
3

< <x , fi nd 
the values of p and k. [12 marks]

4. A curve is given by the implicit equation x xy yx2 2y 12xyxxyx = .

        Find the coordinates of the stationary points on the curve.

        Show that at the stationary points, x y
y

x
( )2 2y

y) =
2

2

d
d

.

        Hence determine the nature of the stationary points. [16 marks]

5. If f x x( ) = sec , 0 ≤ ≤x π the inverse function is f x x( )x = arcsec .

        Write down the domain of arcsec x.

        Sketch the graph of y xarcsec .

        Show that the derivative of sec x  is sec tanx xtan .

             Find the derivative of arcsec x with respect to x, justifying 
carefully the sign of your answer. [12 marks]

1.

(a)       

(b)       

(c)       
(d)       

(a)          

(b)       

(c)       

(a)       

(b)       

(c)       

(a)       

(b)       
(c)       

(a)       

(b)       

(c)       

(d)       
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622 Topic 6: Calculus

19

Having extended the range of functions we can diff erentiate, 
we now need to do the same for integration. Sometimes we 
will be able to use results from the previous chapter, but in 
other cases we will require new techniques. In this chapter we 
look at each of these in turn and then face the challenge of 
selecting the appropriate technique from the list of options 
we have.

19A  Reversing standard derivatives
In chapter 17 we reversed a number of standard derivatives 
that had been established in chapter 16 to give us this list of 
functions we could integrate.

x
n

x c

x
x x c

x

n

xx

dx x nx x 1

e dx

d

d

+
+ ≠c

+x

= +x

+

∫
∫
∫
∫

1
1

1

,

l

sin cx xd = − os cc

x ccos sx x id = +xsin∫

Further 
integration 
methods

Introductory problem

Use integration to prove that the area of a circle of radius r 
is equal to πr2.

In this chapter you 
will learn:

 to integrate using • 
known derivatives

 to use the chain rule • 
in reverse

 to integrate using • 
trigonometric identities

 to integrate using • 
inverse trigonometric 
functions

 to use the product rule • 
in reverse (integration 
by parts)

 to integrate using a • 
change of variable 
(substitution)

 to integrate using • 
the separation of 
a fraction into two 
fractions.

These are all 

given in the 

Formula booklet.

exam hint
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In chapter 18 (Key point 18.3) we diff erentiated sec x, csc x and 
cot x. We can now reverse these standard derivatives too and 
add them to our list:

 
sec dx xd x c= +x∫ ta

 sec t n dx xtan x xsec c= +xsec∫
 csc cot dx xcot x xcsc c+∫
 

csc d cotx xd x c= − +∫
Th e chain rule for diff erentiation (chapter 18A) allows us to go 
further and deal with integrals such as 2cos(2 )dx x)d∫ . Here we 
think about integrating cos to sin and then consider what the 
chain rule would give us if we diff erentiated back. In this case 

the chain rule would give the 2 anyway as 
d

d
(sin2 ) 2

x
x) cos22  

(2 is the derivative of 2x) so we have the correct integration 
straight away:

2 2cos d i( ) x xs c= +2in x2sin∫
We may have a similar question in which we do not have the 
exact derivative and then we need to compensate by cancelling 
out any unwanted constant generated by the chain rule.

For example, in fi nding ( )4 x)4∫ d  we proceed as before 

integrating ( )4 to 
1
5

5( )  but now when we diff erentiate back the 

chain rule gives us an unwanted 2:
d

dx
1
5

25 42( )2 3x⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ = 2( )2 3x2 32x

so we divide by 2 to remove it:

∫( ) × ( ) + = ( ) +− 1
2

1
5

− 1
10

−4 5( )1 1
x ×= × ( c = ( cd .

You may notice a pattern here, we always divide by the 
coeffi  cient of x. Th is is indeed a general rule, which follows 
simply by reversing the special case of the chain rule from 
Key point 18.2.

KEY POINT 19.1KEY POINT 19.1

Th e reverse chain rule

∫ = ( ) +f a∫∫ b x
a

F a( x b+ c)ax b+ d
1

where is the integral of f x( ) )x .

These are not given in 

the list of standard 

integrals in the 

Formula booklet, but 

can be deduced from 

the list of standard 

derivatives.

exam hint

This rule only applies 

when the ‘inside’ 

function is of the form 

(ax + b)!

exam hint
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624 Topic 6: Calculus

With this shortcut we do not need to work through the chain 
rule every time.

Exercise 19A
1. Find: 
 (a) (i) 5 4 x( )3x 3∫ d  (ii) x( )x∫ 5 d

 (b) (i) 7 x( )4 5x 5∫ d  (ii) 
3

x( )1
8 1x 1+∫ d

 (c) (i) 4 3 1
2

6−( )∫ x x) d  (ii) ∫( )− 8 x) d

 (d) (i) ∫ 2 1x x1− d  (ii) ∫ ( )−7( 3 4 x) / d

 (e) (i) ∫ +
1

2 3
4 x

xd  (ii) ∫ ( )
6

− 2 xd

2. Find these integrals:
 (a) (i) 3e d3 x∫  (ii) e dx∫
 (b) (i) 4

2 1

e d3
x

x∫  (ii) e d
1 x x∫

 (c) (i) −∫ 6e d−3 x  (ii) 
1
4e

d
x

x∫
 (d) (i) 

−
∫

2
4e

d
x

x
/

 (ii) e d−∫
2 x x

Worked example 19.1

Find the following:

(a) 
1
2

e d4 x∫  (b) 
2

5 −∫ x
xd

Integrate e( ) to e( ) and divide by  
the coeffi cient of x

(a) ∫ = × +1
2

1
2

1
4

4 4e d4 e xx c

 
= +1

8
4e x c

Integrate 
1

( )  to ln  and divide 

by the coeffi cient of x

(b) ∫ − −
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠
⎞⎞ − +2

5⎛2⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠5

1
1x

x x= −5⎛2⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞d c

 = − − +2 5 x c
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3. Find:
 (a) (i) 

1
4x

x
+∫ d  (ii) 

5
5 2

x∫ d

 (b) (i) 
2

3 4
x∫ d  (ii) 

−
∫

8
2 5−

xd

 (c) (i) 
−

∫
3

1 4− x
xd  (ii) 

1
7 2∫ x

xd

 (d) (i) 1
3

5
−

−∫ x
xd  (ii) 3

1
3

+
−∫ x

xd

4. Integrate the following:
 (a) −∫ csc cot dx xcot x

 (b) 3 sec d2 3 x xd∫
 (c) sin d( )∫ xd

 (d) csc d
1
4

xd⎛
⎝⎝⎝

⎞
⎠⎠⎠∫

 (e) 2 cos d4x xd∫
 (f) sec tan d

x x
x

2 2∫

5. Two students integrate 
1

3x
xd∫  in two diff erent ways.

 Marina writes:
1

3
1
3

1 1
3x x

x x cd d
1

x d
1

xd +∫∫∫ ln

 Jack uses the special case of the reverse chain rule and 
divides by the coeffi  cient of x:

1
3

1
3

3
x

x x3 cd +3x3∫ l

 Who has the right answer?

6. Given that 0 1 and the area between the x-axis, the

lines x a2, x a and the graph of y
x

=
−
1

1
 is 0.4, fi nd the 

value of a correct to 3 signifi cant fi gures. [5 marks]
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626 Topic 6: Calculus

19B  Integration by substitution
Th e shortcut for reversing the chain rule works only when the 
derivative of the ‘inside’ function is a constant. Th is is because a 
constant factor can ‘move through the integral sign’, for example: 

cos sind dcosx xd x c∫ ∫cos2 d ∫∫×∫ +1
2

2 2cos
1
2

coscoscos
1
2

2

Th is cannot be done with a variable: x xsin dx∫  is not the 
same as x xsin dx∫ . So we need a diff erent rule for integrating 
a product of two functions. In some cases this can be done by 
extending the principle of reversing the chain rule, leading to 
the method of integration by substitution.

When using the chain rule to diff erentiate a composite function, 
we diff erentiate the outer function and multiply this by the 
derivative of the inner function; for example

d
dx

xcos( )x2(x( 2( )sin ( )x2 ×)xcos(x

We can think of this as using a substitution u x= +x2 2, and then 
d
d

d
d

d
d

yd
x

yd
u

u
x

= ×y
.

Let us now look at x x xcos( )2 2+∫ d .
As cos( )x2 2+  is a composite function we can write it as cosu, 
where u x= +x2 2. So our integral becomes x xs du∫ . We know 
how to integrate cosu, so we want to change our variable to 
u. But then we need to be integrating with respect to u, so we 
should have du instead of dx. Th ose two are not the same thing, 
but they are related because u x

u
x

x= +x ⇒ =2 2 2
d
d

.

We can now ‘rearrange’ this to get d d
x

u
1

2
.

Substituting all this into our integral we now have

u u

u c

x
ucos

cos

si

1
2

1
2

1
2

=

+u= sin

⎛
⎝⎝⎝

⎞
⎠⎠⎠∫ ∫x cos( )2 2+

∫

ducx os
1⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠∫

d

Th is answer is in terms of u so we need to write it in terms of x.

x x ccos( d2 1
2

+ 2 +∫ ) sxdd
1
2

xdxd ( )x2x 2+ 2

A word of warning here: 
d
d

u
x

 is not really a fraction, so it is not 
clear that the above ‘rearrangement’ is valid. However, it can 
be shown that it follows from the chain rule that it is valid to 

replace dx by 1
′ ( )( )ff ′ (( d .u

Another method for 
integrating products 
is integration by 
parts, the reverse 
of the product rule. 
We will meet this in 
Section 19F.
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 19 Further integration methods 627

You may have noticed in all of the above examples that, aft er 
making the substitution, the part of the integrand which was 
still in terms of x cancelled with a similar term coming from 

d
d

u
x

. 

For example, in (b), u ux
x

x2
2

1 1
33

e du 1
du∫ ∫x xx2 3 dx3 4 ∫uxx e du∫ . 

Th is will always happen when one part of the integrand is an 
exact multiple of the derivative of the inner function, and can be 
explained by looking at the chain rule.

Worked example 19.2

Find the following:
(a) sin c5 x xcos xd∫  (b) x x2 3 dx3 4∫  

It is helpful here to think of sin5 x  
as ( )sinx 5. Therefore the inner 

function is sin x

(a) Let u = sinx

 Then d
d

d d
u

u
x

d
x

= ⇒x
cos

1

Make the substitution ∫ ∫ cosx
5 1

d∫ c∫ o x∫ c∫ os5 1
∫∫∫ u

 
= ∫u u∫∫ 5d

 
= +1

6
6u c+

Write the answer in terms of x  
= +1

6
6sin x c

ex3 4+  is a composite function with 
inner function x3 4+

(b) Let u = +x3 4

 Then d
d

d d
u

u
x

d
x

= ⇒x3
1

3
2

2

Make the substitution
x

2
2

1
3

d2x
1

ex2x∫ ∫x2 x3e d u

 
= ∫

1
3

e du

 
= +1

3
eu c

Write the answer in terms of x
 

= ++1
3

3 4ex c
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For example, consider the integral 
4( )2 3x 3 ( )3 52x x 5+ 3∫ d .x

To fi nd this integral, think about what we would need to 
diff erentiate to get 4( )2 3 ( )3 52x x32 33 . As 2 3 is the 
derivative of x2 3 5x+ 3x  we know that we would get 2 3 ‘for 
free’ when diff erentiating some power of x2 3 5x+ 3x  using the 
chain rule. In this case to end up with 4( )x2 3 5x+ 3x  we would 

want to be diff erentiating 
1
5

5( )3 52x x32 + 33 , that is

d
dx

1
5

5 4( )x 3 5x2 + 3x⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ( )2 3x2x ( )x 3 5x2 + 3x

and therefore:

1
5

4 5x c( )2 3 ( )3 52x x32 ( )3 52x x 5+2x +33∫ d

Th is is the same answer we would get by using the substitution 
u x= +x2 3 5x − . If you notice that you can integrate an 
expression by reversing the chain rule, you can just write down 
the answer without any working. However, if you are not sure, it 
is safer to go through the whole process of substitution.

In some cases this cancelling of the remaining x-terms will not 
happen and you will have to express x in terms of u. Th e full 
method of substitution will then be as follows:

KEY POINT 19.2KEY POINT 19.2

Integration by substitution

1. Select a substitution (if not already given).

2.  Diff erentiate the substitution and write dx in terms 
of du.

3.  Replace dx by the above expression, and replace any 
obvious occurrences of u.

4. Simplify as far as possible.

5. If any terms with x remain, write them in terms of u.

6. Work out the new integral in terms of u.

7. Write the answer in terms of x.

For the integral in the next example there are two possible 

substitutions. As there is a composite function 4 1x , we 
could use the ‘inner’ function: u x4 1x −x . However, we must 
always use the substitution we are given.

You will nearly 

always be told which 

substitution to use. If 

you are not, look for 

a composite function 

and take u = ‘inner’ 

function.

exam hint
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 19 Further integration methods 629

When limits are given, we must change them too. Th en there is 
no need to change back to the original variable at the end.

KEY POINT 19.3KEY POINT 19.3

When evaluating a defi nite integral using substitution, add 
the following step to the process in Key point 19.2:

Step 3a. Write the limits in terms of u.

Worked example 19.3

Find x x x4 1x∫ d  using the substitution u x4 1x −x .

Differentiate the substitution u = 4 1−x

⇒ =
−

d
d

u
x x

4
2 4 1

... and write dx in terms of du 
(Key point 19.2 Step 2)

 
= 2

u

∴d d= 1
2

ud

Replace those parts that we 
already have expressions for, 

and simplify if possible 
(Steps 3 and 4)

x 4 1
1
2

x u∫ ∫d dx
1

ux u∫

 
= ∫

1
2

2xu u2d

There is still an x remaining, 
so replace it by using 

u x u⇒ =x +4 1x −x 1
4

2
 

(Step 5)

 
= +

∫
1
2

1
4

2
2u

u u2 d

Now everything is in terms of 
u so we can integrate (Step 6)  

= ∫
1
8

4 2+u u++ ud = ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +1

8
1
5

1
3

5 3+ 1
u u++ c

Write the answer in terms of x 
using u x4 1x −x  (Step 7)  

= ( ) + ( )⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +1

8
1
5

1
3

−
3( )5 1) + (− c

© Cambridge University Press 2012

Not for printing, sharing or distribution.



630 Topic 6: Calculus

Th e next example shows one of the most common uses of 
substitution; integrating a quotient where the numerator is a 
multiple of the derivative of the denominator.

In the above example it is possible to write down the result of 
the integration without using the full substitution method, if we 

notice that x − 3 is half of the derivative of x2 6 7x6x , 

and so 
x

( )x − × 1
6 7x +x2

 comes from diff erentiating 

1
2

6 72ln x x62 66 .

Worked example 19.4

Evaluate 
x

x
x

−
∫

3
6 7x +x20∫∫

1
d  giving your answer in the form a ln p.

This is of the form ‘something’ × 1
( )

so the ‘inner’ function is x2 6 76x

Let u = x −2 6 7+x .

Then 
d
d

d d
u

u
x

= ⇒ =dd2 6xx
1

2 6x −

Write limits in terms of u Limits: x = 0 ⇒ u = 7, x = 1 ⇒ u = 2

Make the substitution x
x∫ ∫x
x

3 3x −
6 7x +x +x

1
2 6x −0∫∫

1

7∫∫ d∫x = 3x∫ 1
u

u

Simplify 2 6 2 36 26 ( )
 

= ∫ 1
27∫∫

2

u
ud

 
= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

1
2 7

2

ln u

 
= ( )1

2
−

 
= ⎛

⎝
⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

2
2
7

ln

© Cambridge University Press 2012

Not for printing, sharing or distribution.



 19 Further integration methods 631

Th is particular case of substitution, where the top of the fraction 
is the derivative of the bottom, is defi nitely worth remembering:

KEY POINT 19.4KEY POINT 19.4

f x
f x

x f c′ )x
)x

d ( )x +∫

Th e next example shows that the substitution can also be 
given as x in terms of u (or θ in this case). It also illustrates 
that substitutions can lead to integrals where the use of 
trigonometric identities is required.

We will see more 
examples of using 
trigonometric identi-
ties in the next 
section.

Worked example 19.5

Use the substitution x = secθ  to fi nd the exact value of x x2
2

2
1( )−( )3 2∫∫ d .

Differentiate the substitution and 
express dx in terms of dθ

x = secθ

⇒ =d
d

sec ta
x
θ

θ θtan

 d dθ θ θ

Change the limits When x = 2 :

sec coθ θcos

θ

⇒ =

⇒ =θ

1
2

4
π

When x = 2 :

secθ θ

θ

⇒ =

⇒ =θ

1
2

3

co

π
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continued . . .

Exercise 19B
1. Either by using a suitable substitution, or by considering the 

chain rule, fi nd these integrals:
 (a) (i) x x3( )x2 3+∫ d  (ii) 3 5 x( )12∫ d

 (b) (i) 2 5 4x 5 x( )( )3 15 42x3 x 415∫ d

 (ii) x3( )x2 2xx ( )x3 23x3x 5−x23∫ d

 (c) (i) 
2

32

x
x

x
+∫ d  (ii) 

6 12
6 1

2

3x x63
x

66∫ d

 (d) (i) 4 3 35s s3 inx x3sin xd∫  (ii) cos i2 2sin3x xs 2sin xd∫
 (e) (i) 3 2x xd3 2 13 1x∫  (ii) 3 2x xd2x∫
 (f) (i) 

e
e

d
2 3

2 3 4
x

+∫  (ii) 
cos

sin

x
x

x
3 4∫ d

Replace those parts that we 
already have expressions for. 

Remember that sec2 1θ θtan1

3 3

2

2

4

3( )2( )−( )2∫ ∫∫
3

2

2
2( )x2 1− − d2( )2 122∫xxx sec taθ θtan θ

π∫∫
π

= ( )−∫ c tan
33

θ)) s)) ec2 θ θd
π 4∫∫
π

= ( )∫ c tanθ))− s)) ec θ θ3

4
d

π∫∫
π 3

= ( )∫ cθ))− s)) ec θ2 d
π 4∫∫
π 3

We seem to be stuck; writing 
everything in terms of sin and cos 

often helps

= ∫
1 2

2

3

cos
cos
sinθ

θ
θ

θd
π 4∫∫
π

= ∫
cos
sin

θ
θ

θ
2

3
d

π 4∫∫
π

Writing this as 
1

sin
cos
sinθ

θ
θ

, we 

now have a standard derivative 
(Section 19A)

= ∫ cscθ θ θcot dθ
π 4∫∫
π 3

= [ ]− = −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ( )− −]]
π

π

4

3 2
3

2) = 2
3
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 (g) (i) 32 22 32sec t22 2 a x2tan xd∫  

  
(ii) 6

4 4
6se tc6 an

x x
x⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞∫ d

 (h) (i) csc c t4 x xcot xd∫  

  (ii) 
csc2 2

3 2cot
x

x
x( )∫ d

 (i) (i) 
x

x
x

3 2−∫ d  

  (ii) 2e e d−∫ 4 1+x e1+ x

2. Use a suitable substitution to show that tan ln secxx x c= +ln sec x∫ .

3. Find the following integrals using the given substitution:
 (a) (i) x x u x+∫ 1x=u +1 dxdx,   

  (ii) x x u x2 2u x2− u2∫ d ,xdxxx

 (b) (i) 2 5 57 xu( ) = −x∫ d ,x  

  (ii) x ( )x +∫ 3u x= +x)5 d ,x

4. Find the following using an appropriate substitution:
 (a) (i) x x x2 1x 4( )∫ d  (ii) 9 5 x( )3 2x3 +∫ d

 (b) (i) x x x−∫ 3 d  (ii) x x( )x + −∫ 5) 6 d

 (c) (i) 
x
x

x
2

5−∫ d  (ii) 
4

3 x
( )5

( )2 3∫ d

5. Use the given substitution to evaluate these defi nite integrals:

 (a) (i) 
x

x
u x

4
4

2

2

3

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = −4∫2

d ,x  

  (ii) 
x

x
u x

3

21

3

2
2

+( )
= +x∫1

d ,x  

 (b) (i) cos
sin

θ
θ

θsin
10

6

+∫0
d ,θθ

π
 

  (ii) sin
cos

θ
θ

θcos
10 +∫0

d ,θθ
π 2

 (c) (i) 
1

4 9
2
320

1 3
=∫0 x

xd ,x
/

sinθ  

  (ii) 1
1 4

1
220

1 4

∫0 x
xd ,x  c=x osθ  

The integral of tan 

is not given in the 

Formula booklet, 

and is worth 

remembering.

exam hint

When an unusual 

substitution is 

required it will 

always be given in 

the question.

exam hint
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 6. Find the exact value of 2 1 2

0

2
x x1( )∫0

d2 11x2 + −x . [6 marks]

 7.  Evaluate 
2

122

5 x
x

x
−∫2

d , giving your answer in the 

form ln k. [4 marks]

 8.  Use the substitution u x −x 2 to fi nd 
x

x −∫ 2
d .x  [6 marks]

 9. (a) Show that ( ) is a factor of x3 1− .

  (b) Find 
2 1

1

2

3

x x
x

x
−∫ d . [4 marks]

 10. Use the substitution u xln  to fi nd 
sec

2x
x

( )ln( )2ln(x
∫ d . [6 marks]

 11. Find 
cos

sin

x
x5

d .x∫  [3 marks]

 12. Evaluate 
3 3

3 3

2

21

3 x
x x32

( )2 3x 3 − 3
33∫1

d .x  [6 marks]

19C   Using trigonometric identities in 
integration

Sometimes it is necessary to rearrange the expression before 
reversing a standard derivative or using a substitution. In 
this section we will take a more systematic look at using 
trigonometric identities in order to integrate a wide range of 
functions.

As seen in the previous section, the presence of the cos x in
sin c3 x xcos xd∫  makes it possible to apply the reverse chain rule 

(or a substitution) but how do we cope with just sin ?3 d∫  As 
a mixture of sin and cos helps us in the use of the reverse chain 
rule, we aim to introduce cos by using sin .2 2 1x xcos =2 xcos2cos

exam hint

If you are asked to 

do an integral like 

this in the exam you 

will be given a hint, 

as in the example 

below.
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 19 Further integration methods 635

Th e same trick does not work for sin2 x xd∫ , as we can only 
rewrite it as 1 2−∫ cos x xd  which we also cannot integrate. 
Instead we notice that sin2 x  appears in one of the versions of 
the double-angle formulae for cos :2  cos in2 1 2 2x xsin2 , and 
we know how to integrate cos2x .

Worked example 19.6

(a) Show that sin cos sin .3 2sin cosx xsinsin x xsin−xsinsin

(b) Hence fi nd sin3 x xd∫ .

Introduce cos2x by using sin cos2 2 1=2cos xcos2cos ; 
to do this we need to ‘split’ sin3x

(a) sin ii3 2x xsini 2

 = ( )sinx

 = sin cos sinx xc− os x2

We can use the result from part (a) (b) 2 xdsin cosin di2x cos2 sin∫ ∫sin3 x dx sinx

Use a substitution u xcos u
u

u u

= ⇒

− ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠∫ ∫

s⇒ = − in

sin c= − os sin
sin

x
x

xx x x
x

d
d

d d3 2 1

 

= − +

= − + +

∫cos

cos cos

x

x x+ c+ os

u u

c

2

31
3

d

Double angle identi-
ties were covered in 
Section 12A.

Worked example 19.7

Find sin2 x xd .

Write an alternative expression for 
sin2x by using a double angle identity

 cos i2 1 2 2x xsin1 2 2

⇒ in (= cos )2 1
2

1(= cos1 − cos

∴ ( )∫ ∫
1
2

xd( )∫ c(∫= os
1

1 2c− os x)

 
−= ∫

1
2

1
2

2cos x xd

Remember to divide by the coeffi cient 
of x when integrating cos 2x

= +1
2

1
2

1
2

2x x− 2i c

= +1
2

1
4

2x x− 2i c
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636 Topic 6: Calculus

A similar method is used to integrate cos2 x and should be 
learnt.

KEY POINT 19.5KEY POINT 19.5

To integrate sin2 x , use cos in .2 1 2 2x xsin2

To integrate cos2 x, use cos .2 2 12x xcos2 −xcos2

Th e methods from Worked examples 19.6 and 19.7 can be 
extended to deal with any powers of sin x  and cos . Th e 
method from Worked example 19.6 can be applied to any odd 
power, for example:

sin sin sin c cos in5 2sin 2 2 2 2 4cos1 1sin2 2 2xsin2sin xcoscos2 xcos2 xsin( ) (( ) +(( )
which can be integrated using the reverse chain rule.

For even powers, we can use the identity from Key point 19.5, 
for example

cos
cos

cos4 2 2
2

21 2cos
2

1
4

1
2

2
1
4

2xcos2cos
x

x xcos2 2( ) = ⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ = + +

and then the double angle identity has to be used again to relate 
cos2 2x  to cos 4x.

Th is becomes increasingly complicated for larger powers. 
Luckily, there is a ready-made alternative from the unlikely 
source of complex numbers. We saw in chapter 15 that we could 
use De Moivre’s Th eorem to generate expressions for powers of 
sin and cos in terms of multiple angles.

You will be expected 

to recall this method 

without hints.

exam hint

See Worked exam-
ple 15.25 in Section 
15H to remind you 
of this method.

Worked example 19.8

(a) Show that cos cos6 1
16

6
3
8

4
15
16

2
5
8

x xcos6 x xcos= +6xcos6 + +2xcos2 .

(b) Hence fi nd cos6 x d .x∫

We derived similar identities in 
Section 15H, so we will not 

repeat it here

(a) See Section 15H for how to do this.

Use the result from part (a) (b) cos6 1
16

6
3
8

15
16

5
8

x xdcos cos cos
1

6
3

4
15

2
5

x xcos 4dx xcos6x cos2x∫∫∫

Don’t forget to divide by the 
coeffi cient of x  

= + + + +1
96

6
3

32
4

15
32

2
5
8

sin6 i sinx x+ 4s+ in x x+ c
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Don’t worry if this seems complicated – a question like this will 
always be split into several parts, as in questions 10 and 11 in 
Worked exercise 19C at the end of this section.

We shall now integrate tan x and its powers. We have already 
integrated tan x as an application of the reverse chain rule in 
Exercise 19B, question 2: tan lx d .ln secx x cln sec x∫  However, 
this does not help when trying to integrate more complicated 
functions, for example tan2 x. We do, however, have an identity 
relating tan2 x to something we know how to integrate: 
1 2 2+ 2ta 2 x x2s= ec .

Th is identity was 
derived in chapter 12.

Worked example 19.9

Find tan2 2x xd∫ .

We have an identity relating 
tan2( ) to sec2( ), which we 

know how to integrate

2 xdsec 2sec d2 22sec 1x 1∫ ∫tan2 d 2sec2sec x

Use the standard result for 
integrating sec2( ), remembering 

to divide by the coeffi cient of x

= +1
2

2tan x x− c

Th e same identity is used in integrating any power 
of tan x.

KEY POINT 19.6KEY POINT 19.6

To integrate tann x  use the identity 1 2 2+ 2tan2 x x2s= ec  and 

the fact that 
d

dx
xsec .( )tan x 2
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638 Topic 6: Calculus

Th e above examples illustrate standard methods used to 
integrate powers of trigonometric functions. Many other 
trigonometric integrals can be rearranged into a form where 
we can simply reverse a standard derivative. Here we give one 
example of using trigonometric identities to do this.

Worked example 19.11

Find 
sin

sin
.

4
23

x
x

xd∫
As we have 4x and 2x, apply the double 

angle identity for sine

sin
sin sin

cos
sin

4
2

2 2sin 2
2

2 2cos
2

3sin

2

x
x

x xcos2
x

x

x
x

x

d
s n co2sin xcos2

d

∫ ∫
sin
sin

4
23 2
x
x

dx

∫=

Worked example 19.10

Find tan .3 d∫
Introduce sec2x by using 

tan sec2 2sec 1xsec x2sec −xsec2sec
tan3 2 xdtana 2d x∫ ∫

 
= ( )∫ tan x xd

We integrate the two terms separately  
sec ta= sec ∫∫ 2 xtantan xd dta∫x xtan− ∫

We can apply the reverse chain 
rule (or a substitution u xtan ) to 

sec tan2 xtan  because 
d

dx
xsec( )xtan = 2

( ) integrates to 
1
2

2( )

First integral:

sec ta tan2 21
2

xtan x∫ = ( ) + c

We found ∫ tan x in the previous 
section

Second integral:
tan ln secxx xd∫ +ln secx c

tan tan l ec∴ tan − +l∫ 3 2tan
1
2

x xln sec− ln secd c
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Exercise 19C
1. Simplify to get standard integrals, and then integrate:

 (a) 
tan
cos

3
3

x
x

xd∫
 (b) 

1
2sin x

xd∫
 (c) sin cos cos sin5 5cos coscos xsin x∫ d

 (d) 3 2
22∫ sin

x
x

xd

 (e) cos
cos in

2x
x xsin

x
+∫ d

2. Use trigonometric identities before using a substitution (or 
reversing the chain rule) to integrate:

 (a) cos3 2sinx xsin2sin xd∫
 (b) 

cos
sin

3

2

x
x

xd∫
 (c) sin cos xcos xe dcos x∫
 (d) tan a4 63 36tan x3tan6tan x∫ d

 (e) 
sin

cos
2 2c

1 4cos
x xcos2cos

x
x∫ d

3. Find the following integrals:
 (a) (i) 2 2cos x xd∫  (ii) cos2 3x xd∫
 (b) (i) 2

2
2tan

x
x⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠∫ d  (ii) tan2 3x xd∫

continued . . .

Check if this can be manipulated into the form 
of one of our standard derivatives. If we 

cannot see it immediately, it is a good idea to 
try and split the expression into a product of 

two trigonometric functions

= ∫2
1
2

2
2sin

cos
sinx

x
x

xd

= ∫2 2∫ 2csc c2 otx x2cot xd

Remember to divide by the coeffi cient of x
= − +csc2x c
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4. Find the exact value of the following:

 (a) (i) sin2
0

2x xd
π

∫0
 (ii) tan2

0

2

6
x

x⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞∫0

d
π

 (b) (i) 
/

x( )tan x∫ 2

0∫∫
4

d
π

 (ii) 2

4
( )1 2∫ /

x) d
π∫∫
π

5. Th ree students integrate cos sinx xsin  in three diff erent ways:
 Amara uses reverse chain rule with u xsin :

d
d

u
x

so= cos ,x

udu∫ ∫cos sinx xsin dx

= +1
2

2si x c+

 Ben uses reverse chain rule with u x :

d
d

, so
u
x

x= −sin

udu∫ ∫cos sin xsin dx

= − +1
2

2cos x c+

 Carlos uses a double angle formula:

xdsin xsin∫ ∫cos sinx xsin dx
1
2

= − +1
4

2cos x c+

 Who is right?

6. Find sin2

3
x

x⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞∫ d . [5 marks]

7. (a) Show that tan sec t n .3 2t n secx xtantan x xtansecsecxtantan
 (b) Hence fi nd tan3 x xd∫ .

 
 [6 marks]

8. Given that tan ( )
/

0

12 4
12

kx xd
π π

∫0
= −

 fi nd the 
value of k. [6 marks]

9. (a)  Use the formula for cos( )A B  to show that cos2 2 12x xcos2 −xcos2

 (b) Hence fi nd cos sin2x xsin xd∫ . [7 marks]
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10.  (a) Show that sin sin3 2sinθ θsinsin θ θcos2cos−θsinsin .

  (b) Hence fi nd the exact value of sin .3
0

3

3
x⎛

⎝
⎞
⎠∫0

d
π

 [7 marks]

11.  A complex number is defi ned by z = cos .θ θ+ s+ in
 (a) (i) Show that 

1
z

= cos .θ θs− in

  (ii)  Use De Moivre’s Th eorem to deduce that:
z

z
n

n
− =1

2isin .nθ ..

 (b) (i) Expand z
z

−⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞1 5

.

  (ii) Hence fi nd integers a, b and c such that:
16 35sin5 in3 .θ θ θ θsinbθ5s θ5i 5sin

 (c) Find sin .5 2 d∫  [14 marks]

19D  Integration using inverse 
trigonometric functions

In the last section we saw examples of similar-looking integrals 
that required very diff erent methods: sin cos2 xcos xd∫  could 

be done by reversing the chain rule. But sin2 x xd∫  required 

the more complex method of substituting with a trigonometric 
identity; without the derivative of sin x the integration was more 
diffi  cult.

Similarly, consider 
x

x
x

1 2−∫ d  and 
1

1 2−∫ x
xd .

Th e fi rst integral features a function ( ) and a multiple of 
its derivative ( ), so we can apply the reverse chain rule: 

x
x

x x c
1

1
2

2

−
− +x2∫ d . However, the absence of the 

derivative of ( ) in the second integral means that we need 
another method.

Fortunately, we have already met the expression 
1

1 2− x
 in 

chapter 18 as the derivative of arcsin x . In the same chapter we 

saw that the derivative of arctan x is 1
1 2+ x

. Th is means that: 

1
1

1
12 2− +∫ ∫

1
1 2x x

x x== d r t n .

Th ese results are 
given in Key point 
18.8.
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We can extend these results slightly to include expressions of the 

form 
1

2 2a x2
 and 1

2 2a x2
. For example, to integrate 1

16 2+ x
 

we can take out a factor of 1
16

 to turn the denominator into the 

form 1 2+ Y  and then use a substitution:

 1
16

1
16 1 16

2+ +( )∫ ∫
1

16 2+ x
x

x
d

1
∫ 2( )∫=

 =
+

× =∫
1

16
1

1
4

42Y
Y

x
d  Y where

 =
+∫

1
4

1
1 2Y

Yd

 = 1
4

arctanY c+

 
= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +1

4 4⎝⎝⎝arctan
x

c

We can use this method to obtain the general result for the two 
integrals:
KEY POINT 19.7KEY POINT 19.7

1 1
2 2a x2 a

x
a

c⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ +∫ d a

1
x = rctan

1
2 2a x2

x
a

c⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ c∫ d ax = rcsin ( )x a<x

It is worth noting several things about these; fi rst of all, the 

arctan result has a factor of 1
a

 and the arcsin one does not. 

Secondly, the arcsin result only applies when x a<  because of 
the presence of the square root. Finally, you may be wondering 
why there is no corresponding result with arccos; if you look 
back at Key point 18.7 you will see that the derivative of 

arccos x  is −
−
1

1 2x
, which, according to the Key point above, 

would integrate to −arcsin x . Th is is because the graphs of the 
arcin and the arccos functions are related through a refl ection 
and a translation.

You may wonder 
whether there are rules 
for integrating 

1
2 2x a2

 when x a>  or 

1
2 2x a2 . These require the 

study of hyperbolic functions, 
which are in many ways 
similar to trigonometric 
functions, and can be used 
to describe some important 
curves, such as the shape of 
a hanging chain.
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When working through an integration, we may fi rst need to put the expression into the correct 
form. As there is an x2 term in the derivatives of both arcsin x and arctan x, this oft en involves 
completing the square. (For a reminder of this term, see glossary on CD-ROM.)

Worked example 19.12

Find the value of:
1

1 9 2∫ x
xd

This is similar to the derivative of arctan x 

but x2 has been replaced by 9 32 2x3(( )
So reverse the standard derivative, 

remembering to divide by the 
coeffi cient of x

(a) 
1

1 9
1

1 3 2( )∫ ∫
1

1 9 2x x
xd

1
2∫=

 
= +1

3
arctan( )3 c

Worked example 19.13

Find 
3

4 4 82−4 +∫ x x4
xd .

This is not a reverse chain rule integral 
and there is a square root in the 

denominator, so perhaps arcsin? The 
only way of producing 1 2− X  in the 
denominator is to start by completing 

the square to get C X 2

3
4 8

3
−4 + −( )4 4 824 −∫ ∫

3
4 4 82 +x x44 4

xd
3

∫=

=
− ( ) −⎡

⎣
⎤
⎦
⎤⎤

∫
3

2 1+ 1 8−2x
xd

=
+( )∫

3

9 2− ( 1 2x
xd

Now reverse the standard derivative, 
remembering to divide by the 

coeffi cient of x which is 2

=
+( )∫3

1

3 2− ( 12 2x
xd

= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +3

2
2 1+

3
arcsin

x
c

Exercise 19D
1. Find the following:

 (a) (i) 
1

1 2 2∫ x
xd  (ii) 

1
1 5 2∫ x

xd

 (b) (i) 
1

1 3 2∫ x
xd  (ii) 

1
1 4 2∫ x

xd
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19E   Other strategies for integrating 
quotients

We now have a number of techniques to use when integrating 
a quotient of functions; we can reverse a standard derivative, 
apply the reverse chain rule or use an inverse trigonometric 
function. However, there are occasions when none of these 
methods seem to be useful. In such cases our only remaining 
option is to split the fraction into two separate fractions, each of 
which we can solve.

Th e easiest way to do this is to split the numerator.

 (c) (i) 
9

92x
x

+∫ d  (ii) 
10

102x
x

+∫ d

 (d) (i) 
2

25 2−∫ x
xd  (ii) 

5
4 2−∫ x

xd

2. By fi rst completing the square, fi nd the following:

 (a)  (i) 
1
4 52x x42

x
+ 44∫ d  (ii) 

1
6 102x x62

x
66∫ d

 (b)  (i) 
1

8 152
x∫ d  (ii) 

1
2 2x x

x∫ d

 (c)  (i) 
6

10 272x x102
x

+ +10x10∫ d  (ii) 
5

4 122−4∫ x x12
xd

3. Find the exact value of 
3

1 4 20

3 2

∫0 x
xd

/
.  [4 marks]

4. (a) Write 2 4 112x x +4x4  in the form 2 2x p q+( ) + .
 (b) Hence fi nd 

3
2 4 112x x

x
+4x4∫ d . [5 marks]

5. (a) Write 1 6 3 2−6x x3−  in the form a2 23( )x b−x . 

 (b) Hence fi nd the exact value of 
1

1 6 3 21

2

−6∫1 x x3−
xd .  [5 marks]

6. Show that 10
4 24 61 423

5 5

x x
x

2424
=∫3

d .
π   [6 marks]

7. By using the substitution u x= e , fi nd the exact value of 

1
0

1
2

3

e e
d

x xe
x∫0

ln

. [6 marks]
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Sometimes it is not obvious how to split the numerator.

Worked example 19.14

Find
x

x
+
−∫

1
1 2

d .x

Split the fraction into two
x

x x
x

x
x

+
−

+
−∫ ∫

x
∫

1 1x
∫1 1x− x 12x∫ 1∫ 2

d
x

∫x = x
d

The fi rst part can be integrated 
using the reverse chain rule 
or the substitution u x1

First integral:

Let u = −1 2x , so 
d
d

d d
u

u
x

x
x

= − ⇒ =dd2
1

2

∴
−∫ ∫
x

x

x
x1
1

22
d−∫= x 1

u
u

 
= −∫ −1

2

1
2 du u2 d

 = − + = − − +u c+ c1 2x

We recognise the second part as 
the derivative of arcsin

1
1 2−

= +∫ x
x x= a c id c

 

∴ +
−

− + +∫ arcsin
x

x
x x= − − x

1
1

1
2

2d c

Worked example 19.15

Find 
4 19

12 412

x
x x2 + +12x12∫ d .x

No obvious options, so split 
the fraction into two

However, simply writing this as:
4

41
19
12 412 212 41

x
x2 x2+ +12x1212

+
+ +12x12

is no use as we still can’t integrate

Instead, make the numerator of the fi rst 
fraction a multiple of the derivative of the 
denominator in order to apply the reverse 

chain rule and then hope to be able to 
deal with the resulting second fraction

4 19
12 41

41 12 41
4 24 5

2

2

x
x x122

x

x x12 x x122
x

+ +12x12

=
+x12 + +12x12

∫

∫ ∫41
4 24

2 12 41x2

x
+12x1212

d

d
5

∫x −
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We should always check whether the fraction can be simplifi ed 
before trying to split the numerator.

continued . . .

Th e fi nal type of functions to consider are improper fractions. 
Th ese can be integrated by splitting them into a polynomial plus 
a proper fraction.

You will need the 
method of compar-
ing coeffi  cients from 
Section 3A.

This works; second fraction can be 
integrated with the arctan function 

(after completing the square)

=
+ +( )∫ ∫+ +

4 2++ 4
41

5
6 5) +2x x++ 12 x

xd∫− 5
2

=
+ +⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
∫ ∫+ +

2
2 1++ 2

41
1

6
5

1
2x x++ 12 x

xd∫− 1
2

Apply reverse chain rule to the fi rst 
fraction (it is of the form u

u
′) and 

arctan to the second

= ( ) +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+2 ( + + 5) − 6
5

l arctan+ x
c

Worked example 19.16

Integrate
x

x
+

−∫
4

12 5 2xx 2
d .x

Check whether the polynomial 
factorises

x
x

x
x x

x

x
x

+
−

+
( ) +( )

=

∫ ∫
x

x
+

−

∫

4
12 5 2xxxx

4
3 2− 4

1
3 2−

d
x +

( )( )∫x = 4

d

We now have a standard integral, 
just remember to divide by the 

coeffi cient of x

= +1
2

3 2−ln x c
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Exercise 19E
1. By fi rst simplifying, fi nd:

 (a) 
2

2 x
( )4 92

( )2 3∫ d
 

(b) 
x

x
x

+
∫

3
6 1− 3 5xx 2

d

2. Find the following by splitting the numerator:

 (a) 
5 1

62x
x

+∫ d
 

(b) 
x

x
x

−
−∫

3
4 2

d

Worked example 19.17

(a) Find constants A B C, B and  such that:

x
x

Ax B
c

x

2 5
2 2x

+
+

= +Ax +

(b) Hence fi nd 
x
x

x
2 5

2
+
+∫ d .

We can multiply both sides by x + 2 to get rid 
of fractions

(a) x2 2xx5+ 5 ( )( ) +x C

Setting x = −2 will eliminate the fi rst term on the 
right, so we can fi nd C

When x = − 2:

 ( ) = −( )( )5) +) 2 0)(2 A +
 ∴ =C 9

To fi nd A and B we need to expand 
the brackets and compare coeffi cients

 x x x2 25 2x2 2 9+xA2x2x 2 Bx 2+ 2
x2 terms: 1 = A 

x terms: 0 2 2 22 = 2A B+

The result from part (a) allows us to use 
standard integrals

So

 
x
x

x
x

2 5
2

2
9

2
+
+

= −x +
+

(b) 
x
x x

x
2 5

2
9

2
+
+ +∫ ∫

x
x

2 5
2

+
+

dx 2
9−x +∫x

 = + +1
2

2 9+ 22x − 22 xln C
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 (c) 
8 23

8 252x x82
x

+ 88∫ d
 

(d) 
x

x
x

−
− +x∫

5
6 7x −2

d

3. Find the following by splitting into a polynomial and a 
proper fraction:

 (a) (i) 
x
x

x
+
+∫

1
2

d  (ii) 
2 3

1x
x

−∫ d

 (b) (i) 
x
x

x
2 2

3
+
−∫ d  (ii) ∫

+
+

x x+
x

x
2 2 1−

5
d

 (c) 
x

x
x

2

2

5 1x
3

+ 5x
+∫ d

4. (a) Show that 1
2

1
3

5
62x x2 x x2

=
+

=
+ −x

.

 (b)  Hence fi nd 
5

62x x2
x

+ −x∫ d  giving your answer in the 

form ln .c( )f x( ) +  [5 marks]

5. Find the exact value of 
4

420

2

x
x

+∫0
d . [4 marks]

6. (a) Show that 
5

2
1

2
2

12

−
+ −

=
−

+
+

x
x x− x x1+

.

 (b)  Given that 
5

2 20

1 −
+ −∫0

x
x x−

d ,x k=  fi nd the 

value of k. [6 marks]

7. Find 
4 5
1 2x

x
−∫ d . [5 marks]

8. (a) Write 2 8 172x x8 +8x8  in the form a x p q−( ) +2 .

 (b) Hence fi nd 
2 8

2 8 172x x8
x

+8x8∫ d . [7 marks]
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19F   Integration by parts
In Section B we saw cases where we could integrate products of 
functions by using the reverse chain rule or a substitution, but 
we cannot yet solve integrals such as x xsin dx∫  or x x2e dx∫ .

In order to deal with these we return to the product rule for 
diff erentiation (Key point 18.4).

d
d

d
d

d
dx

uv u
v
x

v
u
x

( ) = +u

Integrating with respect to x we get:

uv
v
x

v
u
x

x= ∫ ∫u
x∫ ∫
v

x +u x
d
d

d
d

d

⇒ ∫ ∫=v
x

= v∫− u
x

x
d
d

d
d

d

KEY POINT 19.8KEY POINT 19.8

Th e integration by parts formula.
v
x

v
u
x

x
d
d

d
d

d∫ ∫u
v
x

x uv
d
d

d uv

When using integration by parts, the challenge is deciding 

which of the functions is to be u and which 
d
d

v
x

. Th e aim is to 

select them so that the product v
u
x

d
d

 is easier to integrate than 

the original product. Th is oft en (but not always) means that you 
choose u to be a polynomial.

Worked example 19.18

Find x xsin dx∫ .

This is a product to which we can’t 
apply the reverse chain rule, 

so try integration by parts
Choose u to be the polynomial part

u
v= =x
x

xand
d
d

sin

⇒ = = − cos
d
d

and
u

v
x

x1

Apply the formula uvd
d

d
ud

dx
xdv

x∫ ∫u
vd

d
d u

x
uvuv

x( ) d( )xco∫ ∫x i ( )d xxx( )xco( )xx xx

 
= − + ∫x x x xcos c+ ∫x os d

 = − + +x x xcos s+x in c
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It may be necessary to use integration by parts more than once. 
As long as the integrals are becoming simpler each time, you are 
on the right track! Th e next example also shows you how to deal 
with the limits.

Worked example 19.19

Find the exact value of x x2
0

2
dx

ln
.∫0

This is a product to which we 
can’t apply the reverse chain 

rule, so try integration by parts
Choose the polynomial as u

u
v= =x
x

x2 and
d
d

e

⇒ = =d
d

and e
u

v
x

x x2

Apply the formula
Put in the limits on the uv part 

straight away

v u
v

d
d

d
dx x∫ ∫u

v
uv

d
dx

= uv

x
0

2

0

2ln ln
dxx2 exx∫ ∫x x2

0

2

0

2

0
e lnln

0

2

0

lndx [ ]2x x2e

We have to integrate a product 
again, so use integration by 

parts again
Choose u to be the polynomial 

again

(If we used u
v
x

xx= =e axx nd d
d

2  

we would end up back where 
we started!)

u and
v= =2x
x

xd
d

e

⇒ = =d
d

u
and v

x
x2 e

Apply the formula again and 
use the limits

So,

0

2

0

2
x

l ln
d2 x2e22∫ ∫2 0

2

0

2

0
x xe lnln

0

2

0dx ln[ ]2xe = [ ] [ ]] [0

2

0

2] [] [] − [0] [ln ln

Put both integrals together, 
making sure to keep track 
of negative signs by using 

brackets appropriately

Therefore,

x2 x x 0

2

0

2
xxe lnln

d [ ]x2x exx { }0

2

0

22

00

ln ln[ ]x2x xex [ ]x2e2∫0    

 = ( ) ( )− )( )−) + () () + () − (−   

 = − +2 4 2 22( )2 l
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Sometimes it seems that we are getting nowhere, as the new 
integral resulting from integration by parts is no easier than the 
original. However, as long as things are not getting worse, they 
will eventually get better as the following example shows.

Worked example 19.20

Use integration by parts to fi nd ex co .xs x d∫

This is one of the rare occasions 
when it makes no difference which 

way round we choose u and d
d
v
x

u
v= =cosx
x

xand
d
d

e

⇒ = −d
d

and
u

v e=
x

x xsin

Applying the formula, the new 
integral is no better but also no 

worse than the original

v u
v

d
d

d
dx x∫ ∫u

v
uv

d
dx

uv

x( ) dexe( )i∫ ∫ex xcos d exx xcos excos

 
cos= +cos ∫+ ∫ xe x e di xsinx

With no other option, we proceed 
with a second integration by parts

We need to be consistent and 

choose u and 
d
d
v
x

 in the same way 

as before to avoid undoing what 
we have just done

u
v

e= =sinx
x

xand
d
d

⇒ = =d
d

and
u

v
x

x xcos e

It seems that no progress has been 
made as we have ended up with 

the integral we started with (except 
with a different sign)

So,
xdexeco∫ ∫ex xsin d xx x xsin exexsinxe

However, when we put everything 
together it becomes apparent 

that the different sign allows us to 
rearrange and fi nd an expression 

for ∫e∫∫ xx s dx

Therefore,

{ }xdexexeco∫ ex co d execo xexe { xxin exx

⇒ = +∫2∫ ex x= xx x+ e+ xc= ex= e os id

⇒ = +( ) +∫
ex
x

x x+c= ( os id
2

c
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We are able to diff erentiate and integrate ex but so far we have 
only been able to diff erentiate ln x.

In order to be able to integrate ln x, we can use integration by 
parts. Th is might not seem an obvious method at fi rst because 
there is no product of functions here, but with a little creativity 
we can proceed.

Although this example only shows how to integrate ln x, in most 
other cases of integration by parts involving ln x we would still 
let ln x = u. Th e choices for u and v in the common cases are 
summarised below.

KEY POINT 19.9KEY POINT 19.9

When integrating x f x( )x d∫  by parts, choose u = xn in all 
cases except when f(x) = ln x.

Worked example 19.21

Find ln .x xd∫
The seemingly trivial step of writing 

ln x as the product of 1 and ln x 
sets up integration by parts

xdlnx∫ ∫lnxdx

Cannot integrate lnx so let u xln u
v= =lnx
x

and
d
d

1

⇒ = =d
d

and
u

v
x x

x
1

Apply the parts formula v u
v

d
d

d
dx x∫ ∫u

v
uv

d
dx

= uv

l

l

1

1

= −

= − +

∫ ∫ln ( )1 × ln

∫

x

x xlnln x

x xlnln x

x
d

1
∫( )= x∫−

d

c
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Exercise 19F
1. Use integration by parts to fi nd the following:

 (a) (i) x xcos2 dx∫  (ii) x
x

xsin
2

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠∫ d

 (b)  (i) 4 2x x2x−∫ d  (ii) x xx4 d∫
 (c)  (i) 2 5x x5 xl d∫  (ii) x x xln d∫
 (d) (i) x x x2 3cos d∫  (ii) x x x2 sin d∫
 (e) 

1
4

2x x2
x

e d44∫
 (f) 

ln x
x

x
3

d∫
 (g) x( )ln x∫ 2 d

2. Use integration by parts to fi nd the following:
 (a) arctan x xd∫  

(b) ln x( )2 1x 1∫ d
3. Evaluate the following exactly:

 (a) x x xcos d
0

π 2

∫0

 (b) 
ln x
x

x
21

2
d∫1

 (c) sin lnx ln x( )secxsec∫ d
0∫∫
π 3

 

4. When using the integration by parts formula, we start 

with 
d
d

v
x

 and fi nd v. Why do we not include a constant of 

integration when we do this? Try a few examples adding 
+ C to v and see what happens.

5. Find 3x x3x−∫ d . [5 marks]

6. Evaluate x x x5
1

ln .d
e

∫1
 [6 marks]

7. (a) Show that tan ln secxx x cd = +ln secx∫ .

 (b) Hence fi nd 
x

x
x

cos2
d∫ .  [8 marks]

8. Find the value of k such that arccos .
k

d∫ 0 5.
0∫∫  [7 marks]
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9.  Use the substitution x u+1  to fi nd the 

exact value of 
1
21

3
e d1 .x

−∫−
 [8 marks]

Summary

• Look for standard derivatives before attempting any more complicated methods. Th ey are 
given in the Formula booklet, but you may need to divide by the coeffi  cient of x.

• If the expression contains both a function and its derivative and the ‘inside’ function is of the 
form (ax + b) it is highly likely to be susceptible to the reverse chain rule or a substitution.

• Integration by substitution can also work in other situations, and you need to be able to use 
any given substitution. Th e steps of integration by substitution are given in Key point 19.2.

• When evaluating a defi nite integral using substitution, see Key point 19.3. 

• A particular case of substitution, where the top of the fraction is the derivative of the bottom, is 
worth remembering: 

 ′ ( )
( ) ( ) +∫

f ′ (
f ( x f c) +dx =

• Many integrals involving trigonometric functions can be simplifi ed using identities. 

Particularly useful identities are: cos ;2 1
2

( )1 2xcos2cos1
 
sin ;2 1

2
( )1 2xcos2cos

 
tan .2 2s 1x xsec2sec −xsec2sec  

For example, to integrate sin2x, use cos2x = 1 – 2sin2x; to integrate cos2x, use cos2x = 2cos2x – 1; 

to integrate tannx, use 1 + tan2x = sec2x and that d
dx

xs .( )tan x 2

• Th e integral of tan is worth knowing: tan l secxx x c∫ = +ln sec x . 

• Higher powers of sine and cosine can be integrated using De Moivre’s Th eorem.

• Integration can be done using inverse trigonometric functions: 1 1
2 2a x2 a

x
a

⎛
⎝⎝⎝
⎛⎛ ⎞

⎠
⎞⎞
⎠⎠ +∫ d a1x = rcta ;c⎛

⎝
⎛⎛n⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +  

1
2 2a x2

x
a c⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +∫ d ax = rcsin  ( )x a< .

• It may be necessary to split a fraction that contains two (or more) terms in the numerator into 
two separate functions before integrating each with the above methods. If the degree of the 
numerator is at least as large as the degree of the denominator, then write it as a polynomial 
plus a proper fraction and compare coeffi  cients.

• It may be possible to integrate a product of functions using the integration by parts formula:

• u
v
x

u
x

x
d
d

d
d

dv
ud

dx uvuv ∫∫

• Th e challenge with integration questions is oft en not in carrying out any of the above methods, 
but actually in selecting the correct method to use in the fi rst place. In the exam you will oft en, 
but not always, be told which method to use. For extra practice see the Extension worksheet 17 
‘Basic integration’. 
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Write down the integral to be 
evaluated

The area of the top half of the circle is given by:
A

r
r

r

2
2 2= −r 2

−∫−
x x2 d

State the method to be used Substitution: x = r cosθ

Introductory problem revisited

Use integration to prove that the area of a circle of radius r is equal to πr2.

You might fi nd 
Key point 5.1 from 
chapter 5 useful here.

In order to use integration, we need to think of a circle as a 
graph of a function. We saw at the beginning of chapter 18 
that the coordinates of a point on the circle with radius r 
satisfy the equation x2 + y2 = r2. (You are not required to know 
this equation for the exam!) In chapter 18 we used implicit 
diff erentiation to fi nd the gradient; in order to integrate we need 
an explicit expression for y in terms of x.

Th ere is a small problem: the equation of the circle above is a 
relation, not a function – the graph of a circle does not pass the 
vertical line test.

We can only integrate functions, but we can avoid the problem 
by considering only the top half of the circle and then doubling 
the answer we get for the area.

For the top half of the circle y > 0, so y r x−r2 2x . Now that 
you have done lots of integration practice, you may suspect 
that this one needs a substitution and it turns out that a useful 
substitution is x = r cos θ. Th is makes some sense, as we know that 
trigonometric functions are closely related to circles.

This is not one of the standard integrals, so if you have to 
do it in the exam you should be given a hint.

exam hint

Now that we have decided on the strategy we can carry out the 
integration. 

x

y

(x, y)
x2 +y2 = r2

y

x

r

r
−r

r

−r

x

y

(x, y)
y =

√
r2−x2

y = −√
r2−x2

y

x

r

r
−r

r

−r
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Hence the area of the whole circle is 2
2

2
2× =π πr

r , as required.

Differentiate
d
d
x
θ

θ= −r sin

 ⇒ =d d= − sinθ θd

Express the integrand in terms of θ r r2 2 2 2 2( )r ( )2) ( sin2 2)) ))2r 2)) = r ( θ

Notice that sin θ is positive on the 
top half of the circle

⇒ − sinr=−2 2x θ

Change the limits Limits:
when x = −r , cosθ = −1  so θ = π
when x = r , cosθ = 1 so θ = 0

Put everything together
A
2

0
= ( )r ( )∫ )))( ))))( r θd

π∫∫

Remove the minus sign by 
swapping limits and take the 
constant outside the integral

 
= ∫r 2 2∫0∫∫ sin θ θdθθ

π

Use the double angle formula to 
integrate sin2 θ  

= ∫r 2
0∫∫

1 2−
2

cos θ θd
π

 
−= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

r 2

02 4
θ θ2 π

 
−= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

−⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬r 2

2
2

4
π π2i

[ ]0

 
= πr 2

2

continued . . .
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Mixed examination practice 19

Short questions

 1. Find the exact value of cos ( )2
0

3x x) d
π

∫0
. [6 marks]

 2. Use integration by parts to fi nd x xcos2 dx∫ . [6 marks]

 3. Given that 
dx

x
m

3 1x
1

0
=∫0

d  calculate, to 3 signifi cant fi gures, 

the value of m. [6 marks]
 4. Find the exact value of 

1
420

12

cos x
xd

π

∫0
. [5 marks]

 5. Find the following integrals:

 (a) 
1

1 3∫ x
xd

  
(b) 

1
2 x

( )2 3∫ d  [6 marks]

 6. Find ln x xd∫ . [5 marks]

 7. (a) Simplify 
e e

e

−

− −

4 2

4 9

xe 2e−++
x  

(b) Hence fi nd 
e e

e

−

− −∫
4 2

4 9

xe 2e−++
x

xd . [6 marks]

 8. Find 
6 4

42x
x

+∫ d . [5 marks]

 9. (a) Show that x
x x

+ −
+

5 2
1

1
2( )x +1 ( )x 2+x

. can be written as

 (b)  Hence fi nd, in the form ln k, the exact value 

of 
x

x
+

( )x ( )x∫
5

)(x +5∫∫
7

d . [8 marks]

 10. Find 
1

x x
x

ln
d∫ . [6 marks]

 11. Using the substitution u x −x
1
2

1, or otherwise, 

fi nd x
x

x
1
2 1−∫ d . [5 marks]

 12. Find the exact value of x
x

x
−
+∫

1
22∫∫

5
d . [6 marks]

 13. Use integration by parts to fi nd arctan x xd∫ . [7 marks]

 14. Given that 
2

1
1

2−
=

−∫− x
x

a

a
d , fi nd the exact value of a. [7 marks]
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Long questions

1.  (a)  Show that 4 3
2

1
122+

+ −
+

x A
x

Bx
x( )2+ 2x + 2 ( )12 1x

can be written in the form  

fi nding the constants A and B.

 (b) Hence fi nd 
4 3

( )2+ ( )12∫
x

)2+ ( xd .

 (c) Find the exact value of 
4 3
1 20

3 2

−∫0

x
x

xd . [15 marks]

2. Let I
x

x
x=

+∫
sin

sin cx + os
d  and J

x
x

x=
+∫

cos

sin cx + os
d .

 (a) Find I J .
 (b) By using the substitution u x+in cx +x os , fi nd J I .
 (c) Hence fi nd sin

sin c
x

x xcos
x

+∫ d . [9 marks]

3. Let t
x= ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

ta .xn⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠2

d

 (a) Find 
d
d

t
x

 in terms of t.

 (b) (i) Show that sin
tan

sec
2

2
2

θ θ
θ

= .

  (ii) Hence show that sin x
t
t

=
+
2

1 2
.

 (c) Use the substitution t
x= ⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞tan

2
 to evaluate 

1
10

2

+∫0 sin x
xd

π
. [14 marks]

4. Consider the complex number z = cosθ θ+ s+ in .

 (a) Using De Moivre’s Th eorem show that z
z

nn
n

+ =1
2cos θ .

 (b) By expanding z
z

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1 4

, show that cos4 1
8

θ 1 ( )cos4 2 3θcos 4 θθcos 4 .

 (c) Let g a
a

( )a = ∫ cos4
0∫∫ θ θd .

  (i) Find g a( )a .
  (ii) Solve g a( )a = 1. [11 marks]
  (© IB Organization 2004)
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 20 Further applications of calculus 659

20

Did you know that if you are in a sealed box you cannot 
measure your velocity but you can measure your acceleration? 
Or that Newton’s second law says that force is the rate of change 
of momentum? Th ese are two examples where a rate of change 
is easier to fi nd than the underlying variable. To get from this 
rate of change to the underlying variable requires the use of 
integration. Th is chapter will look at various applications of 
the calculus you have met in the previous four chapters, with 
a particular emphasis on real-world applications of rates of 
change.

20A   Related rates of change
When blowing up a balloon we can control the amount of gas in 
the balloon (V), but we may want to know how fast the radius 
(r) is increasing. Th ese are two diff erent rates of change, but 
they are linked – the faster the gas fi lls the balloon the faster 

the radius will increase. We need to link two derivatives: d
d
V
t

 

and d
d

r
t

. Th is is done by using the chain rule and the geometric 

context.

Further 
applications 
of calculus

Introductory problem

A forest fi re spreads in a circle at the speed of 12 km/h. 
How fast is the area aff ected by the fi re increasing when its 
radius is 68 km?

In this chapter you 
will learn:

 to write real world • 
problems as equations 
involving variables and 
their derivatives

 how to relate different • 
rates of change

 to apply calculus to • 
problems involving 
motion (kinematics)

 to fi nd volumes of • 
shapes rotated around 
an axis

 to maximise or • 
minimise functions with 
constraints.
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Worked example 20.1

A spherical balloon is being infl ated with air at a rate of 200 cm3 per minute. At what rate is the 
radius increasing when the radius is 8 cm?

Defi ne variables V = volume of air in balloon in cm3

r = radius of balloon in cm
t = time in minutes

Write the given rate of change 
and the required rate of 

change

d
d
V
t

= 200

d
d

r
t

= ?

Relate these rates of change 
using the chain rule

d
d

d
d

d
d

V
t

V
r

r
t

= ×

So we need to fi nd d
d
V
r

Use geometric context Since the balloon is spherical,
 
V r

4
3

3π , 

⇒  
d
d
V
r

r= 4 2π

Put into the chain rule ∴ =d
d

d
d

V
t

r
r
t

4 2π

d
d
V
t

= 200 8=,

∴200 2= 56π d
d

r
t

⇒ =d
d

SF
r
t

0 3. (249 )

So radius is increasing at about 0.249 cm/minute

Th e rate required may be linked to several other variables.

Don’t use units in 

the working, as 

long as the units in 

the information are 

consistent. Always 

give units with your 

fi nal answer.

exam hint
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 20 Further applications of calculus 661

Exercise 20A

1. In each case, fi nd an expression for d
d

z
x

 in terms of x.

 (a)  (i) z y y x4y yy y2 2x3yy,  (ii) z y y xy y +2 3y xy 1,

 (b)  (i) z y y xy,yy 3 2  (ii) z y y xy +t ,yy 2 1

2. (a)   (i) Given that z y= +y2 1  and 
d
d

yd
x

= 5 , fi nd d
d

z
x

 when y = 5.

(ii) Given that z y2 3  and 
d
d

yd
x

= −2 , fi nd 
d
d

z
x

 when y = 1.

Worked example 20.2

As a conical icicle melts the rate of decrease of height h is 1 cm–1 and the rate of decrease of the 
radius of the base, r, is 0.1 cm h-1. At what rate is the volume (V) of the icicle decreasing when 
the height is 30 cm and the base radius is 4 cm?

Write the given rates of change 
and the required rates of 

change
Remember that decrease means 

negative derivative

d
d

h
t

= −1

d
d

r
t

= −0 1

 

d
d
V
t

= ?

Use geometry to link the 
variables

V r h= 1
3

2π

Differentiate both sides with 
respect to t, requiring 
the product rule and 

the chain rule

d
d

d
d

d
d

V
t td

r
h
t

= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠⎠⎠
⎛
⎝⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

3
1
3

2r2 h⎞⎞⎞ + ⎛⎛⎛ 1 ππr
⎠⎠⎠ ⎝⎝⎝

2 h⎞⎞⎞ + ⎛⎛⎛

 
= 2

3
1
3

2π πr
t

h r+ 1 π+ h
t

d
d

d
d

r = 30, h = 4, d
d

r
t

= −0 1. ,1  d
d

h
t

= −1

Put in given values ∴ = × ( )d
d
V
t

2
3

4 0× ( 1
3

1−2π × (4 0× −( . () + × (1 3) × 0
1
3

4 ×2π) +1 3) × 0 )

 = –41.9 cm3h–1

The volume is decreasing at 41.9 cm3 per hour

© Cambridge University Press 2012

Not for printing, sharing or distribution.



662 Topic 6: Calculus

 (b)   (i) If w xin  and d
d
w
t

= −3, fi nd d
d

x
t

 when x = π
3

.

(ii) If P h  and d
d

P
x

= 2, fi nd 
d
d

h
x

 when h = π
4

.

 (c)   (i)  Given that V r3, 
d
d

r
t

= 1 and 
d
d
V
t

= 4, fi nd the 
possible values of r.

  (ii)  Given that H S−2, fi nd the value of S for which 
d
d
H
x

= 3 and 
d
d

S
x

= 4 .

3. (a)   (i)  Given that V r h3 2 , fi nd d
d
V
t

 when r h
r
t

=2h =h 2, ,2h
d
d

 

and 
d
d

h
t

= −1.

  (ii)  Given that N kx4, fi nd 
d
d
N
t

 when 

x k
k
t

x
t

=5k =k 1 1
x =, ,5k .

d
d

d
d

and

 (b)  (i)  Given that m
S
n

=  and that 

S S
t t

= = ==100 20 50 4, ,20d
d

d
d

n nand , fi nd 
d
d
m
t .

  (ii)  Given that ρ = m
V

 and that 

m
m
t

V
V
t

== ==24 2 120 6, ,2
d
d

d
d

and , fi nd 
d
d
ρ
t

.   

4. A circular stain is spreading so that the radius is increasing at 
the constant rate of 1.5 cm s–1. Find the rate of increase of the 
area when the radius is 12 cm. [5 marks]

5. Th e area of a square is increasing at the constant rate of 
50 cm2  s–1. Find the rate of increase of the side of the square 
when the length of the side is 12.5 cm. [5 marks]
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6. Th e surface area of a closed cylinder is given by 
A r rhr 2+2π πr 2+r , where h is the height and r is the radius of 
the base. At the time when the surface area is increasing at the 
rate of 20π cm2  s–1 the radius is 4 cm, the height is 1 cm and 
is decreasing at the rate of 2 cm s–1. Find the rate of change of 
radius at this time.  [6 marks]

7. A spherical balloon is being infl ated at a constant rate of 
500 cm3 s–1. Th e radius at time t seconds is r cm.

 Find the radius of the balloon at the time when it is increasing at 
the rate of 0.5 cm s–1.  [6 marks]

8. A ship is 5 km east and 7 km North of a lighthouse. It is moving 
North at a rate of 12 kmh−1 and East at a rate of 16 kmh–1. At 
what rate is its distance from the lighthouse changing?

[7 marks]

20B   Kinematics
Kinematics is the study of movement – especially position, 
speed and acceleration. We fi rst need to defi ne some terms 
carefully:

Time is normally given the symbol t. We can normally defi ne 
t = 0 at any convenient time.

In a 400 m race athletes run a single lap so, despite running 
400 m they have returned to where they started. Th is 
distance is how much ground someone has covered, whilst 
the displacement is how far away they are from a particular 
position. Th e symbol s is normally used to represent 
displacement.

Th e rate of change of displacement with respect to time is called 
velocity, and it is normally given the symbol v.

KEY POINT 20.1KEY POINT 20.1

Velocity is given by: v
s
t

= d
d

.

Speed is the magnitude of the velocity: | | .

 In the IB you will only 
have to deal with 
motion in one 

dimension. However, motion 
is often in two or three 
dimensions. To deal with this 
requires a combination of 
vectors and calculus called 
(unsurprisingly) vector 
calculus.
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Th e rate of change of velocity with respect to time is called 
acceleration, and it is given the symbol a.

KEY POINT 20.2KEY POINT 20.2

Acceleration is given by: a
v
t

= d
d

.

To reverse the process – going from acceleration to velocity to 
displacement – is done by integration.

differentiatedifferentiate

displacement velocity acceleration

integrate integrate

Th ere is an important diff erence between fi nding distance and 
displacement between times a and b.

KEY POINT 20.3KEY POINT 20.3

Displacement is the integral: v t
a

b
d∫a

Distance travelled is the area: | | t|
a

b
d∫a

See Section 17H 
for more on the 
diff erences between 
areas and integrals.

Worked example 20.3

Th e velocity (ms–1) of a car at time t seconds aft er passing a fl ag is modelled by v = −17 4 t, 
for 0 5≤ .

(a) What is the initial speed of the car?

(b) Find the acceleration of the car.

(c) What is the maximum displacement of the car from the fl ag?
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In all the examples so far, velocity and acceleration were given as 
functions of time. But there are many practical situations where 
it is easier to see how velocity depends on the displacement. For 
example, a speed camera records a car’s speed as it passes over 
certain marks along the road. From this data we may produce 
an equation for the speed of the car, such as sv 60 20000  
(v is km and s in km/h). Is it possible to deduce the acceleration 
of the car from this equation? We know that a dv

dt
= , but as v 

depends on s we cannot diff erentiate it with respect to t. Using 
related rates of change allows us to get around this problem:

continued . . .
(d) Find the distance the car travels.

Maximum displacement occurs 

when d
d
s
t

= 0, which is the 

same as v = 0

(a) When t= 0, v = 17 ms−1

(b) a = = −d
d

v
t

4 ms−2

(c) When v = 0, t = 4 25

Distance is actual area between 
graph and x-axis of v-t graph

s t t∫ ∫v ttvvvvvv
0∫∫
4 25

0∫∫
4 25

17 4∫
4

d

 = 36. (125 )from GDC

(d) 

 

v = 17 − 4t
v

t
4.25

5

v td
o

=∫o
37 25

5
.  (from GDC)

So total distance is 37.25 m
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KEY POINT 20.4KEY POINT 20.4

a
v
t

s
t

v
s

v
v
s

= = =d
d

d
d

d
d

d
d

Worked example 20.4

A car is braking from the initial speed of 60 km/h. Th e speed of the car depends on the 
distance travelled since the brakes were applied, and is given by the equation sv 60 20000 . 
Find the acceleration of the car aft er it has been braking for 50 m.

We have v in terms of s and want 

to fi nd a, so use a v v
s

d
d

a = v
dv
ds

= ( )− × − ( ) ×
−1

2
20 000

1
2) × (

=
− ( )−10 000

20 000s

Remember that s should be in 
kilometres!

When s = 0 05:
a = −8970 2/km h
The car is decelerating at 8970 2/km h .

This is about 0.7 m/s2

Exercise 20B
1. Find the expressions for the velocity and acceleration in 

terms of time if the displacement is given by the equation:

 (a) (i) s t= −4 2e  (ii) s t= 5 2− 3e

 (b) (i) s
t= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞5

2
sin  (ii) s t( )2 3 2

2. A particle moves with the given velocity. Th e particle is at 
the origin at t = 0. Find the displacement in terms of t:

 (a) (i) v 3 1t −t 2  (ii) v ( )t
1
2

 (b) (i) v t= −2e  (ii) v t= +1 2e

 (c) (i) v
t

=
+
3

2
 (ii) v = −

+
3

1
1t
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3. For the given velocity function, fi nd the distance travelled 
between the given times:

 (a)  (i) v t= −2e  between t = 0  and t = 2
 (ii) v t( )4 3l  between t = 2  and t = 3

 (b) (i) v t1 5  between t = 0 2  and t = 0 9
 (ii) v t2 3cos( )  between t = 1  and t = 1 5

 (c) (i) v t −t 2 2  between t = 0  and t = 2 3
 (ii) v t5 2sin( )  between t = 0 5  and t = 2 5

4. An object moves in a straight line so that the velocity is a 
function of the displacement. Find the acceleration of the 
object for the given value of the displacement or the velocity.

 (a) (i) v s= −e 2 , s = ln3  (ii) v s3 2i , s = π
24

 (b) (i) v
s
s

= −
+

1
2

, v = 2
5

 (ii) v 3l ( )s2 , v = 10  

5. Use integration to derive these constant acceleration 
formulae for an object moving with constant acceleration a, 
and initial velocity u, where s is the displacement from the 
initial position.

 (a) at= +u
 (b) s ut at= ut

1
2

2

 (c) v u as2 2 2+u2u  

6. An object moves in a straight line so that its velocity at time 

t is given by v
t

t
=

+2 1
.

 (a)  Find an expression for the acceleration of the object at 
time t.

 (b)  Given that the object is initially at the origin, fi nd its 
displacement from the origin when t = 5. [6 marks]

7. A ball is projected vertically upwards so that its velocity 
v ms–1 at time t s is given by v t12 9 8 . Find the distance 
travelled by the ball in the fi rst 2 seconds of motion.  [5 marks]

8. Th e velocity of an object, in ms−1, is given by v
t= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞5

3
cos .

 (a)  Find the displacement of the object from the starting 
point when t = 6.

 (b)  Find the total distance travelled by the object in the fi rst 
6 seconds. [6 marks]
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 9. Th e displacement of an object varies with time as 

s t t t+ t
1
3

3
2

43 2t+ t
3 , for 0 5≤ ≤ . Find the maximum 

velocity of the object. [5 marks]
 10. An object moves in a straight line so that its velocity, v, is a 

function of the displacement, s, given by l ( )s +s . 
Find the acceleration of the object when v = 4.  [5 marks]

 11. Th e velocity of an object, in ms–1, is given by v
s

s
=

−( )
+

10 2
42

, 

where s is the displacement in metres.
  (a) Find the maximum velocity of the object.
  (b) Find the acceleration of the object when s = 3. [6 marks]

y

x
a b

f(a)

f(b)

y

x
a b

y

x
a b

20C   Volumes of revolution
In chapter 17 you saw that the area between a curve and the 

x-axis from x = a to x = b is given by y x
a

b
d∫a

 as long as y > 0, 

and also that the area between a curve and the y-axis from 
y = c to y = d is given by x y

c

d
dyy∫c

. In this section we will use 

a similar formula to fi nd the volume of a shape formed by 
rotating the curve around either the x-axis or the y-axis.

If a curve is rotated fully around the x-axis or the y-axis the 
resulting shape is called a volume of revolution.

You might fi nd Key 
point 17.8 and Key 
point 17.9 useful 
here.
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KEY POINT 20.5KEY POINT 20.5
Th e volume of revolution around the x-axis is given by:

πy xπ
x a

x b
2 d∫x

Th e volume of revolution around the y-axis is given by:

πx y
y c

y d
2 dyy∫y

Th e formulae are derived on the Fill-in proof sheet 23 ‘Volumes 
of revolution’ on the CD-ROM.

Worked example 20.5

Th e graph of y xsin2 , 0
2

≤ ≤x
π

, is rotated 360° around the x-axis. Find the volume of the 
solid generated, in terms of π.

Use the formula for the volume of 
revolution  

V = ( )∫ π
π

sin
/

2 2

0∫∫
2

x x) d

= ∫π
π

sin
/

2
0∫∫

2
2x xd

Integrate sin2 2x  using the 
double-angle formula  

= ∫π
π 1

2
4

0∫∫
2

( c1 − os )
/

x x) d

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

π
π

1
2

1
8

4
0

2
x4x − i

= −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬π π π

4
1
8

0
⎠⎠⎠ ⎝⎝⎝

2 0⎞⎞⎞ ⎛⎛⎛π 1
8

0si s−n 0⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ − ⎛

⎝
⎛⎛
⎝⎝

2π in

= −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞π π

4
0 0−

= π2

4

Th e formulae in Key point 20.5 apply when the curve is rotated 
through a full turn (2π radians) around an axis. You can also 
form a solid by rotating the curve through a part of the full turn, 
most commonly π radians (half a turn).

Notice that the 

limits use the 

variable you are 

integrating with 

respect to.

exam hint
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Worked example 20.6

Find the volume of revolution generated when the shaded 
region is rotated π radians around the y-axis.

First establish limits in terms 
of y

When x = 1 , y = 0
When x = e2, y = 2

The volume when rotated by π is 
half the volume when 

rotated by 2π

V y∫
1
2

2
0∫∫
2

d

Rearrange equation of line to get 
x2 in terms of y

x = e y

 x2 2 2= ( ) e) = y2 2) e) =

V y

= ×

=

∫
π

π
2

2
53

84

2
0∫∫
2

. (6 )

. (2 )

d

from GDC

3SF

e2
x

y

y = ln x

You might also be asked to fi nd a volume of revolution of an 
area between two curves. We can apply a similar argument to 
the one we used for areas in Section 17J.

From the diagram we can see that the volume formed when the 
region R is rotated around the x-axis is given by the volume of 
revolution of g(x) minus the volume of revolution of f(x).

KEY POINT 20.6KEY POINT 20.6
Th e volume of revolution of the region between curves 
g x( )x  and f x( ) is

π g f x
a

b ( )x − ( )x( )∫a

2 2f ( ) d

where g(x) is above f(x) and the curves intersect at 
x = a and x = b.

y

x
a b

f(x)
g(x)

R

Do not fall into 

the trap of saying 

that the volume is: 

π g x f x x
a

b ( ) − ( )⎡⎣⎡⎡
⎤⎦⎤⎤∫a

2
d

exam hint
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Notice that the calculation for ∫ ( )⎡⎣⎡⎡ ⎤⎦⎤⎤ − ( )⎡⎣⎡⎡ ⎤⎦⎤⎤f x( g x( x
2 2( )⎡ ⎤ d  is 

easier than doing ∫ ∫ ( )⎣ ⎦⎤⎤g∫ ⎣⎡⎡ x
2 2

∫ ( )⎡ ⎤ d∫ ( )⎡ d⎡⎡ ⎤⎤⎤g∫ ⎡⎡ x )⎤⎤2

∫ ( )⎡ ⎤

exam hint

There are also formulae for fi nding the surface area of a solid formed by rotating a 
region around an axis. Some particularly interesting examples arise if we allow one end 
of the region to tend to infi nity. For example, rotating the region formed by the lines 

y
x

= 1
, x =1 and the x-axis results in a solid called the Gabriel’s Horn, or Torricelli’s trumpet. 

Areas and volumes can still be calculated using something called improper integrals, and it 
turns out that it is possible to have a solid of fi nite volume but infi nite surface area!

Worked example 20.7

Th e region bounded by the curves y x= +x2 6  and y x x−x8 2  is rotated 360° about 
the x-axis.

(a) Show that the volume of revolution is given by 4 13 92 34
1

3
π x x44 x−x4∫1

d .

(b) Evaluate this volume, correct to 3 signifi cant fi gures.

The limits of integration are the 
intersection points

(a) Intersections:
 x x x2 2x x6 −
 2 8 6 02x x8 +8x8
 2 1 2 0x x1( ) −( )
 x = 1 3o

Use V f x x
a

b
( )⎡⎣⎡⎡ ⎤⎦⎤⎤ [ ]g x( )∫a

2 2

d  

Draw a sketch to see which curve 
is above

 V = ( ) ( )∫π ) − ( +2 2

1∫∫
3

− x)+ d

 = ( )+ ( )+ +∫π ) (
1∫∫
3

− ) − () x)+ d

 = −∫π 52 6 362 316
1∫∫
3

x x− 162 16 xd

 = −∫4 1∫ 3 4 92 34
1∫∫
3

π x4− 4 xd

We can evaluate the integral 
using GDC

(b) Using GDC,
 V 18 ( )SF

y

x
1 3

y = x2 + 6

y = 8x − x2
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Exercise 20C
1. Find the volume of revolution formed when the curve 

y f ( )x , with a x b≤ ≤x , is rotated through 2π radians about 
the x-axis.

 (a)  (i) f x x b( )x = +x =2 6 1a = − 3, ,1a
  (ii) f x x a b( )x = =2 1x +x 0 1b =b3 , ,a 0
 (b)  (i) f a bx( )x = +x =be2 1 a 1, ,0a

  (ii) f b( )x = ae 2x +− 2b =b, ,aa

 (c)  (i) f a b( )x =a= =sin ,xn xx ,0 π

  (ii) f x a b( )x =a= − =bsec ,xc xx ,
π π

b
4 4

2. Th e part of the curve y g( )x  with a x b≤ ≤x , is rotated 360o 
around the y-axis. Find the volume of revolution generated, 
correct to 3 signifi cant fi gures:

 (a)  (i) g x x a b( )x = =4 1x +x 0 2b =b2 , ,a 0

(ii) g x
x

a b( )x = −2 1
3

4b =b, ,a

 (b)  (i) g x x b( )x = + = =bln , ,a1 1==aa 3

(ii) g x a b( )x = ( )x =ln , ,axx 1 5b =b,

 (c)  (i) g x a b( )x = =a =cos ,xx ,0
2
π

(ii) g a b( )x = =a =tan ,xx ,0
4
π  

3. Th e part of the graph of y xln  between x = 1 and x = 2e is 
rotated 360o around the x-axis. Find the volume generated. 
 [4 marks]

4. Th e part of the curve 2 in  between x = 0 and x = π
2

 is 

rotated 2π radians around the x-axis. Find the exact volume 
of the solid generated.  [4 marks]

5. Th e part of the curve y ( )xln  between x = 1 and x = e2 is 
rotated 360o around the y-axis. Find the exact value of the 
resulting volume or revolution.  [6 marks]
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 6. (a)  (i)  Find an equation of the straight line passing 
through points (0, h) and (r, 0).

   (ii)  By fi nding the volume of revolution formed when 
the line is rotated around the y-axis, show that the 

volume of a cone is 1
3

πr h2 .

  (b)  A circle of radius r and the centre at the origin has 
equation x y r2 2 2=y2y , where − ≤ ≤r x≤ y r≤, . By rotating 
the circle around the x-axis prove that the volume of a 
sphere is 4

3
3πr . [9 marks]

 

 7.  Region R is bounded by the curve y x2  and the 
coordinate axes, as shown in the diagram.

  Find the volume generated when R is rotated 2π radians 
about the y-axis.

  [5 marks]
 8. Find the exact volume generated when the region between 

the graph of y x , the y-axis and the line y = 3 is rotated 
π radians about the the y-axis.  [7 marks]

 9. Th e part of the curve y
x

= 3
 between x = 1 and x = a 

rotated 2π radians around the x-axis. Th e volume of the 

resulting solid is π ln
64
27

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

. Find the exact value of a.  [7 marks]

 10. Th e region bounded by the curve y x= −xe2 1, the y-axis 
and the line y = 3 is rotated π radians around the y-axis. 
Find the volume of the solid generated.  [5 marks]

 11. (a)  Find the coordinates of the points of intersection of 
the curves y x4  and y x= +x 3.

  (b)  Th e region between the curves y x4  and y x= +x 3 
is rotated 2π radians around the y-axis. Find the 
volume of the solid generated.  [7 marks]

 12. (a)  Find the coordinates of the points of intersection of 
curves = +x2 3 and y x4 3x +x .

  (b)  Find the volume of revolution generated when the 
region between the curves y x= +x2 3 and y x4 3x +x  is 
rotated 360o around the x-axis. [7 marks]

y = 2 cos x

y

x

R

0
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 13. Th e diagram shows the curve y xln  and the line 

y x +1
2

e
. Th e two graphs intersect at (e, 1). Th e shaded 

region is rotated 360o around the y-axis. 
  Find the exact value of the volume of revolution. [8 marks]

y

x
e

2

y = ln x

y = 2 − x
e

20D   Optimisation with constraints
In this section we shall look at how to maximise or minimise a 
function that appears to depend upon two diff erent variables. 
However, these two variables will always be related by a 
constraint which will allow one of them to be eliminated. We 
can then follow the normal procedure for fi nding maxima or 
minima.

In many real world 
situations we have 
information about 
the rate of change 
of a quantity. These are 
called differential equations, 
and they are introduced in 
Fill-in proof 20 ‘Fundamental 
theorem of calculus’.

See Section 16J for the procedure for fi nding maxima 
and minima.

Worked example 20.8

Find the maximum value of F = y−  given that x y+ 3 7y =y .

Defi ne variables We wish to maximise F y y−y

Write F in terms of only one 
variable

x = 7 3− y

∴ ( )F = ( y y−−

 = 6 3 2y y3−

Find stationary points ⇒ =d
d
F
y

y6 6−

But d
d
F
y

= 0  at a maximum point

∴ =6 6− 0y , y = 1

⇒ = 7 3− y = 4

∴ = −F 4 1× 1 3=

© Cambridge University Press 2012

Not for printing, sharing or distribution.



 20 Further applications of calculus 675

Sometimes the constraint is not explicitly given, and needs 
to be deduced from the context. Th e two common types of 
constraints are:

•  A shape has a fi xed perimeter, area or volume – this gives an 
equation relating diff erent variables (height, length, radius...)

•  A point lies on a given curve – this gives a relationship 
between x and y.

Classify stationary points d
d

2

2
6 0

F
x

= −

so F = 3 is a local maximum

Check endpoints and asymptotes There are no asymptotes and when | |y  is large F 
becomes negative so 3 is the global maximum

continued . . .

Worked example 20.9

 A rectangle has perimeter 100 cm. What is the largest its area can be?

The area of the rectangle is 
length × width. Introduce 

those as variables so 
we can write equations

Let x = length  and y width .
Then Area y= x

It is impossible to see from this 
equation alone what the 

maximum possible value of the 
area is. But x and y are 

related: We can write an 
equation to express the fact 
that we know the perimeter

 Perimeter y =2 2+ 100
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This means that we can express 
the area in terms of only one of 

the variables

2 100 2y −100 x

⇒ = −y 50 x

∴ = ( )Area x−x(50

= 50 2x x−

We can now use differentiation 
to fi nd the maximum point

A = 50 2x x−

⇒ = −d
d
A
x

x50 2

For stationary points:
d
d
A
x

= 0

⇒ −50 2 0=
⇒ = 25

We need to check whether this 
is a minimum or a maximum by 

using the second derivative

d
d

2

2
2 0

A
x

= − , so this is a maximum point.

The maximum area is
A = × − =50 25 25 6252 2= 625cm .

continued . . .

It is intuitively clear that a long and thin or a short and wide rectangle will have a very 
small area, so the largest area should be somewhere in between.

A related problem is fi nding the minimum possible surface area for an object of a fi xed volume. 
Examples of this can be seen in nature: Snakes have evolved to be long and thin in order to 
maximise their surface area for heat absorption, while polar bears avoid losing too much heat by 
adopting a rounder shape which minimises the surface area for their volume.

You may have noticed in the above example that the rectangle with the largest area is 
actually a square (x = y = 25). It turns out that out of all plane shapes with a fi xed perimeter, 
the circle has the largest possible area. This is called ‘the isoperimetric problem’, and has 
several intriguing proofs and many applications.
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Worked example 20.10

Find the point on the curve y x3 closest to the point (2, 0).

Defi ne variables L is the length from the point(2, 0) to the point P (x, y)

So L y( )2 2 2

Write L in terms of only one 
variable

If P lies on the curve then y = x3

 ∴ = ( ) +L x x− ) +2 2 6

Find stationary points. This looks 
complicated and there is no 

requirement for exact answers so 
use GDC

L

x
0.829

1.30

From GDC, the minimum is when x = 0 3. (829 )SF  and 

y = 0 3. (569 )SF .

Exercise 20D
1. (a)   (i)  Find the maximum value of xy  given that x y+ 2 4=y .
  (ii)  Find the maximum possible value of xy given that 

3 7x y .
 (b)  (i)  Find the minimum possible value of a b  given 

that ab = 3 and a b, > 0.
  (ii)  Find the minimum possible value of 2x y+  given 

that ab = 4 and a b, > 0.
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 (c)  (i)  Find the maximum possible value of 4r h2  if 
2 32 h  and r h, > 0.

  (ii)  Find the maximum possible value of rh2  if 
4 122r h32 3 =2h33  and r h, > 0.

2. A farmer wishes to fence off  a rectangular area adjacent to a 
wall. Th ere is an existing piece of fence, 10 m in length, and 
perpendicular to the wall, as shown in the diagram.

 Let x and y be the dimensions of the enclosure. Given that 
the length of the new fencing is to be 200 m:

 (a)  Write down an expression for the area of the enclosure 
in terms of x only.

 (b)  Hence fi nd the values of x and y to create the maximum 
possible area.

F
E

N
C

E

WALL

x

y

10

 

 3. A square sheet of card of side 12 cm has four squares of 
side x cm cut from the corners. Th e sides are then folded 
to make a small open box.

 (a)  Find an expression for the volume of the box in terms of x.
 (b)  Find the value of x for which the volume is maximum 

possible, and prove that it is a maximum. [6 marks]

 4. An open box in the shape of a square-based prism has 
volume 32 cm2. Find the minimum possible surface area of 
the box.  [6 marks]

 5. A rectangle is drawn inside the region bounded by the 
curve y x4 2  and the x-axis, so that two of the vertices 
lie on the axis and the other two on the curve.
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y = 4 − x2

y

x
A0

 Find the coordinates of vertex A so that the area of the 
rectangle is a maximum. [6 marks]

6. A rectangle is drawn inside the region bounded by 
the curve y xin  and the x-axis, as shown in the 
diagram. Th e vertex A has coordinates (x, 0).

x

y

A B

 (a)  (i) Write down the coordinates of point B.
  (ii)  Find an expression for the area of the rectangle 

in terms of x.
 (b)  Show that the rectangle has maximum area when 

ta x2x π .

 (c) Find the maximum possible area of the rectangle.  
 [8 marks]

7. What is the largest possible capacity of a closed 
cylindrical cuboid with surface area 450 cm?  [6 marks]

8. What is the largest possible capacity of a closed square 
based cuboid with surface area 450 cm?  [6 marks]

9.  Th e sum of two numbers, x and y, is 6, and x y ≥ 0. 
Find the two numbers if the sum of their squares is:

 (a) the minimum possible
 (b) the maximum possible. [7 marks]
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 10. A cone of radius r and height h has volume 81π.
  (a)  Show that the curved surface area of the cone is 

given by S
r

r= +rπ 6 2+ 243 .

  (b)  It is required to make the cone so that the curved 
surface area is the minimum possible. Find the 
radius and the height of the cone. [7 marks]

 11. A 20 cm piece of wire is bent to form an isosceles 
triangle with base b.

  (a)  Show that the area of the triangle is given by: 

A
b

b= −
2

100 10 .

  (b)  Show that the area of the triangle is the largest 
possible when the triangle is equilateral.  [6 marks]

 12. Th e sum of the square of the two positive numbers is 
a. Prove that their product is the maximum possible 
when the two numbers are equal.  [6 marks]

 13. Find the coordinates of the point on the curve y x2, 
x ≥ 0, closest to the point (0, 4). [7 marks]

Summary

• If there are more than two variables involved in a question, you may need to relate  their rates 

of change using the chain rule, e.g. 
d
d

d
d

d
d

z
x

z
yd

yd
x

= ×

• Do not confuse distance (how much ground has been covered) and displacement (how far 
away from a particular position), or velocity (rate of change of displacement with respect to 
time: v

s
t

= d
d

) and speed (magnitude of velocity: | v |).

• Acceleration is the rate of change of velocity with respect to time: a
v
t

= d
d

.

• In kinematics, diff erentiate to go from displacement to velocity to acceleration. Integrate to go 
from acceleration to velocity to displacement.

• Th e displacement between times a and b is v t
a

b
d∫a

.

• Th e distance between times a and b is | | t|
a

b
d∫a

.

• If the velocity depends on displacement we need to use a v
v
s

d
d

.
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• If a curve is rotated fully around the x- or y-axis, the resulting shape is called a volume of 
revolution.

• Th e volume of revolution is given by

V y x
x a

x b

∫x
yy2d  for rotation around the x-axis

V x y
y c

y d

∫y
π 2dyy  for rotation around the y-axis

• Th e volume formed by rotating the region between two curves g(x) and f(x), where g(x) is 
above f(x) and the curves intersect at x = a and x = b, is:

 
π g x f x x

a

b
( )x − )x⎡⎣⎡⎡ ⎤⎦⎤⎤∫a

2 2f ( ) d

• When solving optimisation problems that involve a function which depends on two variables, 
the variables will be related by a constraint that will allow one variable to be eliminated before 
diff erentiating to fi nd stationary points. Two common types of constraint are:

 –  a shape has a fi xed perimeter, area or volume (this gives an equation relating diff erent 
variables)

 – a point lies on a given curve (this gives a relationship between x and y).

Introductory problem revisited

A forest fi re spreads in a circle at the speed of 12 km/h. How fast is the area aff ected by 
the fi re increasing when its radius is 68 km?

Let r be the radius of the region aff ected by the fi re and let A be its area. We are told that 
d
d

r
t

= 12, where t is the time since the start of the fi re, measured in hours. We need to fi nd 

d
d
Add
t

 when r = 68. To do this, we need to relate the rate of change of A to the rate of change of r.

Using the chain rule:

 

d
d

d
d

d
d

Add
t

Add
r

r
t

= ×

Since the region is a circle, we know that A rπ 2 , so d
d
Add
r

r= 2π . Hence,

 
d
d
Add
t

r= 2 1× 2 24π πr 1r ×r 2 24 .

When r = 68, d
d
Add
t

= 5127, so the area aff ected by the fi re is increasing at the rate of about 

5130 2 /km h.
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Short questions

 1. Th e region bounded by the curve y ax xax 2 is rotated 360o around the 
x-axis. Find, in terms of a, the resulting volume of revolution.  [7 marks]

 2. An object moves in a straight line so that its velocity, in ms–1 is given by 
t−t 3 26 8t 2t , where t is measured in seconds.

  (a) Find the displacement from the initial position when t = 5.

 ( (b) Find the total distance travelled in the fi rst 5 seconds.  [6 marks]
 3. Th e sum of the squares of two positive numbers is 32. Find the two 

numbers so that their sum is the maximum possible.  [6 marks]
 4. A circular stain is spreading so that the rate of increase of radius is 

inversely proportional to the square root of the radius. Initially, the radius 
of the stain is 4 cm and it is increasing at the rate of 2 cms–1. Find the 
radius of the stain at the time when its area is increasing at the rate of 
115 cm2s–1. [6 marks]

 5. An object moves in a straight line so that its displacement, s, is given by 
the equation s tt3 i , where t is time.

  (a) Calculate the velocity of the object when t = 3.

  (b) Sketch the graph of v( )t  for 0 3≤ ≤ . [6 marks]

Mixed examination practice 20
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6. Th e diagram shows an isosceles right-angled triangle of side 100 cm. 

Point D is moving along the side AB towards point B so that the area of the 
trapezium DBCE is decreasing at the constant rate of 18 cm3s–1. Let BD = h.

 (a)  Write down an expression for the area of the trapezium DBCE in terms of h.

 (b) Show that d
d

h
t h

=
−
18

100
.

  Initially point D is at vertex A.
 (c) Given that h k t , fi nd the value k. [8 marks]

100

100

h

A

B

D
E

C

7. An aeroplane is fl ying at a constant speed at a constant altitude of 3 km 
in a straight line that will take it directly over an observer at ground level. 

At a given instant the observer notes that the angle θ is 1
3

π radians and is 

increasing at 1
60

 radians per second. Find the speed, in kilometres per hour, 

at which the aeroplane is moving towards the observer.  [6 marks]
 (© IB Organization 2003)

3 km

x km

θ

Observer

Aeroplane
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8. Th e diagram shows a part of the curve with equation x y2 and a fi xed 
point S (1, 0). Point P lies on the curve and has y-coordinate k ( k ≥ 0 ).

  Let d denote the distance of P from the y-axis, and let r denote the ratio 
d

SP

  (a) Show that r
k

k k
=

+k

2

2kk 1
. [7 marks]

  (b) Find the maximum possible value of r.

 

x = y2
y

x

P

S

d

0
 

9. Th e acceleration of an object depends on its velocity as a
v

v
= +2 4

2
. Th e 

initial velocity is 3. Show that v t2 13 4−t= 13e . [6 marks]

Long questions

1. Th e diagram shows a square with side x cm 
and a circle with radius y cm.

 (a)  Write down an expression for the 
perimeter:

  (i)  of the square (ii) of the circle
 Th e two shapes are made out of a piece of wire of total length 8 cm.
 (b) Find an expression for x in terms of y.
 (c) Show that the total area of the two shapes is given by:

A y y +y
π πy yyy
4

2y − 42( )

 (d)  If the total area of the two shapes is the minimum possible, what 
percentage of the wire is used for the circle? [10 marks]

x

x
y
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2. Consider two curves with equations y x −x2 8 1x + 2  and y x x+ −12 2  

for 0 5≤ ≤ .
 (a) Write down the coordinates of the points of intersection of the two curves.
 (b) Find the greatest vertical distance between the two curves.
 (c) Th e region between the curves is rotated 360o around the x-axis.

 (i) Write down an expression for the volume of the solid generated.
 (ii) Evaluate the volume, giving your answer to the nearest integer.
 [10 marks]

3.   A painting of height 2 m is hanging on the wall of an art gallery so that the 
bottom of the painting is 2 m above the fl oor. A visitor is sitting on a stool 
so that his eyes are at the height of 1.5 m. Th e stool is at the distance x m 
from the wall.

1.5 m
2 m

2 m

θ

x

 (a) Show that the angle at which the visitor sees the painting is:

θ −= arctan arctan
2 5. 0 5.
x x

 (b)   Find how far from the wall the stool should be placed so that the 

painting appears as large as possible. Give your answer in the form 
p

q
, where p and q are integers. [9 marks]

4.  (a)  Show that ∫ = − +ln lnx x x xln x c+d .
 (b)  An object is initially at the origin, and moves with velocity v ( )3 1t +t(l

  (i) Find the acceleration of the object aft er 5 seconds.
  (ii) Find an expression for the displacement in terms of t. 
  (iii) Find the distance travelled by the object in the fi rst 5 seconds.
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686 Topic 6: Calculus

 (c)   A second object has velocity given by v t8 . It is also initially at the 
origin.

  (i) Th e second object has greater velocity for 0 ≤ ≤t a≤ . Find the value of a.
  (ii) Find the greatest speed of the second object during the fi rst 20 seconds.
  (iii) Aft er how long have the two objects travelled the same distance? 

 [16 marks]
5. Triangle ABC is made out of a piece of elastic string. Vertices A and B are 

being pulled apart so that the length of the base AB is increasing at the rate 
of 3 cms–1 and the height, h, is decreasing at the rate of 2 cms–1. Initially, 
AB = 20 cm and h = 30 cm.

 (a) Show that t= +20 3 .
 (b)  Find an expression for h in terms of t.
 (c)   Find an expression for the rate of change of the area of the triangle in 

terms of t. [12 marks]
 (d)   Find the rate at which the area of the triangle is changing when 

AB = 26 and h = 26.

6.  (a)  Use integration by parts to show that ∫( ) = ( )( ) − +((ln x x) x ((2 (( )d .

 (b)   Consider the graph of y ex between x = 0 and x = 1. Regions R1 and R2 

are defi ned as shown on the diagram. Region R1 is rotated around the 
x-axis and region R2 is rotated around the y-axis to form volumes V1 and 

V2 respectively. Find the exact value of the ratio 
V
V

1VV

2VV
. [14 marks]

R1

R2

x

y

10

7. Particle A moves in a straight line, starting from OA, such that its velocity in 
metres per second for ≤ ≤  is given by:

v t tA +t+1
2

3
3
2

2
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 20 Further applications of calculus 687

 Particle B moves in a straight line, starting from OB, such that its velocity 
in metres per second for 0 9≤ ≤  is given by:

vB
t= e0 2

 (a) Find the maximum value of vA, justifying that it is a maximum.
 (b) Find the acceleration of B when t = 4.

  Th e displacements of A and B from OA and OB respectively, at time t are 
sA metres and sB metres. When t = 0, sA = 0 and sB = 5.

 (c) Find an expression for sA and for sB, giving your answers in terms of t.
 (d) (i) Sketch the curves of sA and sB, on the same diagram.

  (ii) Find the values of t at which sA = sB.
 [23 marks]
 (© IB Organization 2006)
8. John needs to get from his house, which is on the main road, to his 

friend’s house, which is in the fi eld 10 km along the road and 4 km away 
from the road, as shown in the diagram. John can either cycle along the 
road, at the speed of 10 kmh–1 or walk through the fi eld, at the speed 
of 5 kmh–1.

 

4

10
x

 John decides to cycle for the fi rst x km and then walk the rest of the way 
in a straight line.

  (a) Show that the time it takes John to get to his friend’s house is given by:

T
x= + + ( )x−

10
1
5

16 2

  (b) John wishes to get to his friend’s house in the shortest possible time.
  (i) Show that the distance, x, he should cycle satisfi es 3 162( )10 .
  (ii) Hence fi nd how far John should cycle. [10 marks]
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9. A ladder is carried around a corner from a corridor of width 9 m into a 
corridor of width 3 m as shown in the diagram.

 

θ

9

√
3

A

B

X

 (a)  AXB is a straight line making angle θ with the fi rst corridor, as shown.
  (i) Write AX and XB in terms of θ.
  (ii) Find the minimum length of AB.
 (b)  Find the maximum length of a ladder that can be around the corner.

 [8 marks]
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