
The evolution 

of calculus

CHAPTER OBJECTIVES:

6.4  Inde nite integration as anti-differentiation

6.5  Anti-differentiation with a boundary condition to determine the constant of 

integration; de nite integrals; area of the region enclosed by a curve and the 

x-axis or y-axis in a given interval; areas of regions enclosed by curves; volumes 

of revolution about the x-axis or y-axis

6.6  Kinematic problems involving displacement, velocity and acceleration; total 

distance travelled

You should know how to: 

1 Find the derivatives of  linear, polynomial, 

rational, exponential and logarithmic 

functions. e. g. Differentiate 

y = e 2x+3 ln(1 − x)2

d

d

y

x
= 2e 2x+3 ln(1 − x)2 

− e 2x+3
2 1

1 2

( )

( )

x

x

Using the product and chain rules

d

d

y

x

x x

x

x

=

+

− − +2 1 1 1

1

2 3 2e (( ) ln(( ) ) )

2 Find points of  intersection between the 

graphs of  two functions. e. g. fi nd the 

point where the graphs of  the functions 

y = e
x

2  and y = e x +1 intersect.

 At this point e
x

2 = e x +1 therefore 
x

2
 = x + 1

x = 
2

3
, y = e

1

3

 so point of  intersection is (
2

3
, e

1

3)

3 Find the velocity and acceleration given 

the displacement. e. g. For a displacement 

function s(t), velocity is the fi rst derivative 

and acceleration is the second derivative.

Skills check

1 Find the derivatives of  these functions.

a y = xln(x)

b y = 
e2 3

2

x

x

c y = 
x

4

4

1

2 Find the point(s) of  intersection of  the 

graphs of  these functions.

a y = 3x – 2 and y = x2 – 2x + 4

b y = 1 – x and y = 2 1x +

c y = 
6

x
 + 3x and y = x3 – 5x

3 A particle moves along a line so that 

its displacement at any time t is 

s(t) = 3t4 – t3 + t. Find expressions for the 

velocity and acceleration of  the particle 

at any time t

Use the differentiation 

rules from Chapter 4.

7

Before you start
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   Integral calculus

How to calculate surface areas and volumes of  regular shapes 

such as rectangles and cylinders has been common 

knowledge for thousands of  years; but how do architects 

and engineers calculate areas and volumes of  curved 

spaces, such as the aquarium in Valencia, Spain? 

About 2000 years ago, Archimedes was one of  the fi rst 

mathematicians to attempt to fi nd the area between a 

parabola and a chord. His method was to fi ll the area 

with shapes whose areas were known, for example 

triangles. He did this until the space not covered 

was so small as to be negligible, or in the 

words of  Newton and Leibniz, infi nitesimally small. 

Modern-day mathematicians call this the method 

of  ‘exhaustion’.

This chapter looks at integral calculas. In section 7.3 you 

will see how integration is related to areas under curves.

Although we study the derivative 

 rst, some of the concepts of 

integration were known long before 

differentiation. These ideas were 

important in the beginnings of fair 

trade, which depended in part on 

knowing how to work out areas of 

regular and irregular shapes. 

[ Valencia Aquarium
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. Integration as anti-di erentiation

The process of  fi nding a function f  (x) whose derivative 

is f  ′(x) is called anti-differentiation, which relates to integration. 

For example, you know that the derivative of  x2 with respect 

to x is 2x, hence when you anti-differentiate 2x with respect to 

x you obtain x2. This, however, is not the only answer, since, 

for example, y = x2 + 3 also has a derivative of  2x. 

You can easily see that 2x is the derivative for any function of  

the form y = x2 + c, where c is any real number. This set, or family, 

of  all anti-derivatives of  a function is called the indefi nite integral

of  the function, and c is called the constant of  integration. 

This can be written using symbols as 2x dx = x2 + c, c ∈ 

Mathematical models 

provide solutions to real-

world problems. Analyze 

mathematical models 

used to approximate 

areas and volumes of 

irregular shapes. Discuss 

how welll these models 

approximate the actual 

areas and volumes of the 

shapes found through 

calculus methods.

The integration symbol is 

an elongated S, and was 

 rst used by Leibniz.

Method of exhaustion 

Take a circle and start  lling it with isosceles triangles from its center.

The sides of the triangles are radii. The altitude, CD = h, is shorter than the 

radius, CB. If we create n such triangles, then the sum of the areas of the 

triangles approximates the area of the circle, A b h
i

i i

n
≈

1

21=

∑

As we increase the number of triangles, the altitudes of the triangles 

get closer to the length of the radius, and the sum of the bases of the 

triangles approaches the actual circumference of the circle, so we can write 

A r b r r ri

n

≈ ≈ ≈
1

2

1

2
2 2

i = 1
( ) ( )∑ p p . We can see that as we increase the number 

of triangles, the sum of their areas gets closer to the actual area of the 

circle, until lim ( )
1

2

2

1
n

i
i

n

r b r
→∞

=
∑ = p

This is an example of the method of exhaustion.

Archimedes  gured out the area between a parabola and a chord. 

How did he do it? 

Choose a convenient shape whose area you know how to  nd, and  ll 

the space between the chord and the parabola with these shapes, to 

‘exhaustion’! 

Perhaps this prompted Leibniz to say, “He who understands Archimedes 

and Apollonius will admire less the achievements of the foremost men of 

later times.”

rr

r

C

D

A
B

Archimedes did not 

use coordinate 

axes – this system 

was invented by Rene 

Descartes in the 

17th century.
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Notice the lines in the background of  the 

graphs. They form a slope fi eld for the 

family of  curves y = x2 + c, i.e., they show 

the direction of  the tangent lines at the 

different values of  x. 

The tangent lines are parallel for 

corresponding values of  x. 

Slope fi elds is a topic in the calculus option.

[ Graph of family of 

curves of y = x 2 + c for 

different values of c

0
3

4

4–3–4
x

y

In general terms

➔ f  (x)dx = F (x) + c, c ∈ 

f  (x) is called the integrand, and x is the variable of  integration.

Differentiating x n:

x n → multiply the coeffi cient of  x by n → decrease the power of  n by 1 → nx n−1

Reversing the process:

nx n−1 → increase the 

exponent by 1
 → divide by the 

new exponent
 → 

add a constant 

of  integration, c
 → x n + c

In general

➔ x n dx = 
x

n
n

n

+

+

≠ −

1

1
1,

Recall from chapter 4 the constant multiple rule for differentiation, 

for c a real number, f  ′(cx) = cf  ′(x) provided f  ′(x) exists. 

The reverse is also true, i.e., cf  (x) dx = c f (x) dx

Example 

a Find the indefi nite integral of  – 4x3 b Find 
5

7
d

x
x

Answers

a 4x3 dx = 4 x3 dx

 = −4
4

4

x
 + c

= −x4 + c

Differentiate your answer mentally to 

check your result, differentiating –x 4

gives – 4x 3. Don’t forget the constant 

of  integration.

{ Continued on next page
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b
5

7
d

x
x = 5 x 7 dx 

 = 5  
x 6

6
 + c

 = 
5

6 6x
 + c

Again, differentiate your answer to 

check your result.

Example 

Integrate f x( ) = x 23

Answer

x x23 d = x x c x
x

2

3

5

3 5

3

5

3

3

5
d = + = + c Change the radical to a rational 

exponent and use the power rule.

Exercise 7A

Find these indefi nite integrals, with respect to x

1 –2x 2 3x8

3 –5x4 4
1

5x

5 x 3 6
1

3x

7 
2x

x
8 −

x

x

54

37

There is another rule that is useful in integrating functions. It is the 

reverse of  the sum and difference differentiation rule.

➔  [  f  (x) ± g(x)]dx = f  (x) dx ±  g (x) dx

Example 

Integrate 1 4 x  with respect to x

Answer

1 4 x  = 1−  x

1 d
1

4x x
⎛

⎝

⎜
⎜⎜

⎞

⎠
⎟⎟⎟  = x

x
5

4

5

4

 + c

  = x x c
4

5

5

4 +

Change radicals to exponents.

Integrate term by term.

Note that

1 dx =  1 × x0 dx = 
x1

1
 = x + c

From the family of  curves, you can fi nd a specifi c curve that passes 

through a given point.
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Example 

If  
d

d
=

1
1

2

2
y

x x

⎛
⎝
⎜

⎞
⎠
⎟

fi nd y given that the graph of  the function passes through the 

point (1, 0).

Answer

1 1

=1 2 +

1
=

2
+

1
2

2

2 4

2 4

− −

− −

x x x

x x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⎟

d

d

y

x
= 1  2x 2 + x 4 + c

⇒ y = x + 
2 1

3 3x x
 + c

At (1, 0), 0 = 1 + 2 – 
1

3
 + c

hence c = 2
2

3

∴ − −y x
x x

= +
3

2
2 1 2

33

Expand.

Use properties of  indices, and 

integrate term by term. Don’t forget 

the constant of  integration.

Substitute (1, 0) into the equation 

for y, and fi nd c.

Rewrite y with the value of  c.

Exercise 7B

1 Integrate these with respect to x

a 5x2 −
1

5 2x
b (x + 3)(2x – 1) c

x

x

2

4

1

d x
x

+⎛
⎝
⎜

⎞
⎠
⎟

1
2

e
( )( )x x

x

+ −3 4
5

f x
x

5
3

2 If  
d

y

x
 = (3x2 − 4), fi nd y given that the function passes through the 

 point (2, –1).

3 If  f  ′(t) = t + 3 – 
1
2t
, fi nd f given that the curve goes through the 

point (1, –
1

2
).

4 If  
d

d

y

x
 = (2x + 3)3, fi nd y if  y = 2 when x = –1.

5 Find A in terms of  x if  
d

d

A

x
 = (2x + 1)(x2 − 1), and A = 0 when x = 1.

6 Find s in terms of  t if  
d

d

s

t
 = 3t −

8
2t
, and s = 1.5 when t = 1.

7 Find y in terms of  x given that 
2

2

d

d

y

x
 = 6x − 1, and when x = 2, 

d

y

x
 = 4 and y = 0.

EXAM-STYLE QUESTION

8 A particle moves in a straight line such that at time t seconds, its 

acceleration a(t) = 6t + 1. When t = 0, the velocity is 2 m s–1, and 

its displacement from the origin is 1 m. Find expressions for the 

velocity and the displacement.
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In question 4 of  exercise 7B, you found the integral of  (2x + 3)3 by fi rst 

expanding and then integrating each term. It would be more effi cient to 

fi nd a method of  integration without needing to expand the expression, 

especially if  the power is large.

Investigation – integrating (ax + b)n

Integrate different expressions of the form (ax + b)n, where a, b and n are 

real numbers, and a ≠ 0, n ≠ –1. Predict the integral of all 

expressions of this form. Prove your conjecture by differentiating 

your result.

Use the form from the investigation to integrate question 4 of  

exercise 7B, and then apply your prediction from the investigation.

In order to integrate (2x + 3)3, let u = 2x + 3, and hence 
d

d

u

x
= 2, so 

d = d
2

x u . You can therefore write

(2x + 3)3 dx = u3
d

2

u
 = 

1

2
u3 du

Integrating u3 with respect to u,

1

2
u3 du = 

1

2 4 8

2 3

8

4 4 4( )u u x
c c c+ + += =

+

Substitute the original expression for u

The result obtained from the investigation is called the compound formula.

➔ (ax + b)n dx = 
1

1a n( )+
 (ax + b)n+1 + c, a ≠ 0

Example 

Integrate 1 2x  with respect to x

Answer

Solution 1:

Let u = 1 – 2x, then 
d

d

u

x
= –2, and dx = 

d

2

u
. Hence

1 2 dx x   = 
1

2
u

1

2  du = − −1

2 3

2

1

3

3

2 3

2 =
u

+ c u + c

1 2 dx x  = − −1

3
(1 2 ) +

3

2x c

By substitution

Solution 2:

(1 2 ) = (1 2 ) +

= (1 2 ) +

1

2 d
1

2
3

2

1

3

3

2

3

2− −

x x x c

x c

⎛
⎝
⎜

⎞
⎠
⎟

Use the compound 

formula.

Although, strictly 

speaking 
d

d

u

x
 is 

not a fraction, it 

conveniently behaves 

as one, See chapter 4, 

the chain rule.

The variable in the 

integrand must be the 

same as the variable 

of integration, i.e. here 

you have u3 and du

The compound 

formula can be used 

for linear functions 

only.

There is a more 

advanced integration 

by substitution method 

in chapter 9.
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Using the compound formula is quicker and easier than using the 

method of  substitution.

Example 

Find 
3

4 53 x
dx.

Answer

3

4 53 x
dx = 3 (4 5 ) d

1

3x x

=

− ⋅

+
3

5
2

(4 5 )
2

3x c

= − − +
9

10
4 5

2

3( )x c

Apply compound formula.

Exercise 7C

Integrate these with respect to x

1 (3x – 1)7 2 −2 2 1x 3
5

1

(4 1)x

4 
4

2

3 x
5 

3

1

3

2

(2 5 )

1

x

x 6   

2

34 2 3 6(3 2)x x

Integration of exponential functions

In chapter 5 you learned how to differentiate exponential functions. 

In particular, 
d

dx

x( )e  = ex

y = ex is the only function whose gradient function is equal to the 

function itself  for all x in the domain.

Therefore

➔ e x dx = e x + c

Furthermore, it is easy to confi rm that 

➔ e a x + b dx = 
1

a e a x + b + c

Use substitution:

let u = ax + b, then 
d

d

u

x
= a, or dx = 

du

a

Hence e ax+b dx = eu 
du

a
 = 

1

a
e u du = 

1

a
eu + c = 

1

a
e ax+b + c
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Example 

Find 4e 2x dx

Answer

4e 2x dx = 4 e 2x dx = 
4

2
e 2x + c = −2e 2x + c

Example 

Integrate e5 3x  with respect to x

Answer

e e e5 3 5 3

1

2

5

2

3

2
= =

x x
x

( )

e e
5

2

3

2

5

2

3

2
2

3

− −

= − +

x x

x cd

Write e5 3 x  using exponents.

Recall also that 
d

dx

x( )2  = 2x ln(2) 

Hence, 2x ln(2) dx = ln(2) 2x dx = 2x + c

If  you now want to integrate 2x, you need to divide by ln(2), since 

ln(2) is not part of  the integral. That is, 2x dx = 
1

2
ln(2)

x c

If  you now differentiate the result, you obtain 2x

Using the compound formula, you can also integrate 23 x –1 with 

respect to x. In particular

➔  max+b dx = 
1

ln( )

ax+b

a m
m c, where m is a positive real

number, a ≠ 0.

Example 

Find 2 3 x − 1 dx

Answer

23 x 1 dx = 
1

3 2
23 1

ln( )

x c−

+
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Exercise 7D

In questions 1 to 6, integrate with respect to x

1 –5e – 2 x 2
1

3 2e x +
3 e

e e

x

x

3

2

2

4 3x 5
1

32x
6 41− x

7 Use the method of  substitution to derive the compound rule for 

exponential functions, to show that for a real positive number m, 

for a ≠ 0 max+b dx = 
1

a m

b c
ln( )

max +

+

Integration and logarithmic functions

In chapter 5 you differentiated logarithmic functions.

For x > 0, 
d

dx
x(ln ) = 

1

x
 so for x > 0, 1

x
 dx = ln x + c

For x < 0, 
dx

 ln(−x) = 
1

x
  (−1) = 

1

x
 so for x < 0, 

1

x
 dx = ln(−x) + c

The two above statements can be combined into 

➔ 
1

x
 dx = ln x c

Similarly, using the compound formula,

➔ 
1 1

ax b a
x ax b c

+( )
= + +d ln , a ≠ 0

You can confi rm this result by differentiation

Example 

Find 
3

1 2
d

x
x

Answer

3

1 2
d

x
x = 3

1

1 2

3

2
1 2= − − +

x
x x cd ln

Exercise 7E

Integrate with respect to x, x ≠ 0.

1 
1

3x
2

6

x
3

1

2 3x

4 


5

3 5x
5 –2(4 + 3x)–1
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. Defi nite integration

As you have seen in the previous section, the result of  indefi nite 

integration is a family of  functions. The process of  defi nite

integration, however, results in a numerical answer. 

In chapter 4 you worked on kinematic problems. Since velocity 

is the rate of  change of  the displacement with respect to time, to 

obtain the velocity you differentiate the displacement function. 

Hence, to obtain the displacement from the velocity function, 

you reverse the process, and anti-differentiate, or integrate the 

velocity function. 

Consider an example. The velocity of  a particle at any time t, in 

seconds, is given by 3t2 + t m s–1. Find the total distance traveled 

from t = 1 s to t = 2 s. 

In order to fi nd the total distance traveled, see if  the particle 

changed direction anywhere in the interval [1, 2]. The graph 

of  the function f  (t) = 3t 2 + t shows that the velocity is positive 

throughout this interval, so the particle did not change direction.

You can evaluate the displacement at t = 1 and t = 2, and the 

distance traveled will be the difference of  these two values.

Integrate the velocity function to get the displacement function:

d

d

s

t
 = 3t 2 + t ⇒ s = t 3 + 

2

2

t
 + c

Evaluate the displacement at t = 1 and t = 2:

When t = 1, s = 1.5 + c, and when t = 2, s = 10 + c

Subtracting these two values for s gives 8.5 m as the total distance 

traveled between t = 1 and t = 2. 

The constant of  integration cancels out when subtracting.

There is a special notation for evaluating a defi nite integral in this 

manner.

2

1

(3t2 + t) dt = 

     
         

2
2 2

3

1

2 1

2 2 2
8 1 8.5

t
t

If  a function f  is continuous on an interval [a, b], then its defi nite 

integral exists over this interval. Here are some properties of  defi nite 

integrals.

All applications of the 

de nite integral used 

later in this chapter 

require the numerical 

evaluation of an 

integral.

See Chapter 4, 

Example 36.

642
0

–2

4

6

8

10

12

14

8–2–4–6–8
t

v

v = 3t2 + t

10 + c (1.5 + c) 

= 8.5

You will study more 

applications of de nite 

integration later in the 

chapter. 

upper limit

lower limit evaluate 

at upper 

limit

evaluate 

at lower 

limit

Write the integral in 

square brackets, with 

upper and lower limits 

as shown. Since c

always cancels out, 

you don’t need to 

write it.

The proofs of some of 

these properties are 

beyond the scope of 

this course.
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Properties of defi nite integrals

If  the integral of  f with respect to x in the interval [a, b] exists, then

➔ 

b

a

f  (x) dx = −

a

b

f  (x) dx



a

a

f  (x) dx = 0



b

a

kf  (x) dx = k

b

a

f  (x) dx



b

a

(f  (x) ± g (x)) dx = 

b

a

f  (x) dx ± 

b

a

g (x) dx



b

a

f  (x) dx + 

c

b

f  (x) dx = 

c

a

f  (x) dx

You can test these properties using the particle example. 

For example, testing the fi rst property, 
1

2

(3t2 + t) dt =        
  

     
1

2
3 3

2

1

2 2
1 2 2 8.5

t
t

Example 

Evaluate 

1

0

(x2 + 4x + 2) dx

Answer

1

0

(x2 + 4x + 2) dx = 
x

x x
3

2

0

1

3
2 2+ +

⎡

⎣
⎢

⎤

⎦
⎥

= + + −⎛
⎝
⎜

⎞
⎠
⎟

1

3
2 2 0

= 4
1

3

Use property 4.

Example 

Evaluate 

0

1

3

1 2x
xd

Answer

0

1

3

1 2

3

2
1 2

1

0

⎡⎣ ⎤⎦= −
x

x xd ln

 = − −[ ]3

2
1 3ln ln

 = 
3

2
3ln( )

Take out 
3

2
 as a factor.

Use property 3.

ln(1) = 0

Use the particle 

example to test 

properties 2 to 5 of 

de nite integrals. 

You can con rm the 

results of Examples 

11 and 12 on a GDC:
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Exercise 7F

Evaluate these defi nite integrals. Check your results using a GDC.

1 

3

1

( ) ,3
1

0
2

x
x

x x+ ≠d  2

2

0

3 4 1x x+ d 3

2

1

−2e1 3x dx

4 

3

1

3(2x +1)dx 5

0

2

2(1 − 3x)5 dx 6

4

1

1 x

x
xd , x ≠ 0

The properties of  the defi nite integral are based on the assumption 

that the integral exists the specifi c bounds of  integration. 

Before integrating you need to check if  f  within is continuous in the 

given interval.

Example 

Evaluate 

0

1

1

1 2x
xd

Answer

f is continuous in the interval [–1, 0].
0

1

1

1 2

1

2

1

2

3

2

1 2

1 3

1

0

⎡⎣ ⎤⎦= − −

= − − =

x
x xd ln

[ln( ) ln( )]
ln

Confi rming on the GDC:

If  f is not continuous in the interval of  integration, it is possible to 

obtain a numerical answer, but this answer is invalid.

Example 

Evaluate 

e

e

1

1 2x
xd

Answer

f  (x) has a vertical asymptote at x = 
1

2

f is not continuous in the interval [−e, e], since 

1

2
∈ −[ , ]e e . 

This integral has no solution.

Graph of  
1

1 2x

0

2

4

6

–2

–4

–6

2 4 6–2–4–6–8
x

y

f(x) =
1

1 – 2x

{ Continued on next page
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e

e

1

1 2

1

2

1

2

1

2

1 2

1 2

1 2

1 2 1 2

+

= −

= − − +

=

x
x xd [ ln ]

( ln ln )

ln

e

e

e e

e

e

This result, however, is meaningless since the 

basic condition necessary is not met, namely, 

continuity throughout the integrating interval.

The GDC integrates it numerically, so the GDC 

has made a mistake! It does state though that 

the accuracy is questionable. Some GDCs may 

give a ‘divide by zero’ error here.

Although the integral has no solution, you could still 

proceed and integrate and get a number.

Exercise 7G

Evaluate these integrals, if  possible.

1 

0

1

(2r − 1)4 dr 2

4

0

1
d

s

s
s

3 

2

0


2

1

1
d

x

x
x 4

1

0

d

(2 1)3

x

x +

5 

1

2 

1

1
d

x
x 6

1

0

 
 

  

3 2

3 4 1
d

x x
x

7 

1

1

e

e

x

x
x

+ 4
d 8

2

0

10x dx

.  Geometric signifi cance of the defi nite 
integral

Areas between graphs of functions and the axes

Consider a rectangle in the fi rst quadrant formed by the 

lines y = h, x = b, and the points (b, h) and the x- and y-axes.

The area of  the rectangle is bh. The defi nite integral of  y = h 

between x = 0 and x = b is
b

0

h dx = 0[ ]bh x hb

Integration gives the area under the line y = h between 

x = 0 and x =b

0 x

y

h

b

y = h

x = b
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Now, consider a right-angled triangle in the fi rst quadrant formed 

by the lines y = 
b

h
x , x = b, and the points (b, h) and the x-axis.

The geometric formula for the area is
2

1
bh. 

The defi nite integral of  y between x = 0 and x = b is
b

0

h

b
x xd  = 

h

b

b

0

x dx = 
h

b

x h

b

b
b

bh
2 2

2 2

1

2
0

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ =

0

Integration gives the area of  the triangle.

Consider △OBC formed by the line y = 2x, 

the x-axis, and the line x = 5. 

Find the area enclosed by the lines x = 5 and x = 2.

Geometrically it is clear that the area 

of  the shaded part is the difference between the 

areas of  △OBC and △OAD.

Area of  △OBC is 
2

1
(5 × 10) = 25 

Area of  △OAD is 
2

1
 (2 ×  4) = 4

The difference of  the areas is 25 − 4 = 21 square units. 

Use integration:
5

2

     
5

2 2 2

2
2 d 5 2 21x x x

Consider the area under the curve of  the graph of  y = 24 x

You may recognize this as the equation of  a semicircle whose center 

is the origin, and whose radius is 2. 

Using the formula for the area of  a semicircle, 

A
r

=

 2

2
, then A = =

4

2
2




Now, compare this to the result of  

2

2

4 2
- x xd , using the GDC.

x

y

h

h

b

y =    x
h

b

3210

1

3

4–1–2–3–4 x

y

(2, 0)(–2, 0)

f(x) = √4 – x2

The examples show 

the relationship 

between the de nite 

integral and areas of 

familiar shapes.

In Chapter 9 you will 

learn how to integrate 

integrals of this kind 

analytically.
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You are now ready to formalize one of  the most astonishing and 

important results of  Newton’s and Leibniz’s work: the connection 

between differentiation and integration. The theorem justifi es the 

procedures for evaluating defi nite integrals, and is still regarded as one 

of  the most signifi cant developments of  modern-day mathematics.

➔ The fundamental theorem of  calculus

If  f is continuous in [a, b] and if  F is any anti-derivative of  f on 

[a, b] then 

b

a

f  (x) dx = F (b) − F (a)

Both Newton and Leibniz approached the calculus intuitively. 

The fundamental theorem of  calculus, however, was actually 

formalized and proved by Augustin-Louis Cauchy (1789–1857). 

His proof  elegantly joined the two branches of  differential and 

integral calculus. Cauchy’s last words before he died were indeed 

self-prophetic, “Men pass away, but their deeds abide”.

Areas of irregular shapes

Look at the area under the curve y = x2 from x = 0 to x = 1 in the 

diagrams. On the left is the actual area and on the right is an 

approximation of  this area, using rectangles of  base 0.125 and 

height x2. Notice that the error in the approximation is the total area 

of  the white space between the curve and the rectangles. You can 

use the method of  exhaustion to fi ll the space 

with more rectangles of  smaller width.

0

1

0.5

1.5

1 1.50.5
x

y

0

1

0.5

1.5

1 1.50.5
x

y

Using graphing software, it is easy to change n, the number 

of  rectangles under the curve. 

Using 15 similar rectangles, the approximation of  the area under 

the curve is 0.3 square units.

Newton approached the problem 

of  nding areas by viewing the 

area function as the inverse of 

the tangent, i.e., the area function 

depended on the ratio of the 

difference of the y-values to the 

x-values, 
d

d

y

x
, and employed the use 

of innite series. Leibniz, on the 

other hand, approached the problem 

by summing the of areas of in nitely 

thin rectangles, hence the use of an 

elongated S, the integral symbol.

 [ Augustin-Lewis 

Cauchy (1789–1857) 
formalized the 
fundamental theorem 
of calculus.

Chapter 7 357



0

2

1

3

1 1.50.5–0.5–1
x

y

a = 0.3

f

using n = 15

0

2

1

3

1 1.50.5–0.5–1
x

y

a = 0.33

f

using n = 75

0

2

1

3

1 1.50.5–0.5–1
x

y

f

using n = 10000

a = 0.33328

We get a better 

approximation when n = 75.

When n = 10 000, the area is 

about 0.333 sq. units.

You have considered rectangles below the curve, the so-called lower 

bound sum. You can also approximate the area by drawing rectangles 

above the curve, the upper bound sum. This time, the error in the 

approximation is the sum of  the areas of  the purple spaces above the curve.

   Again, consider the upper bound sum with 15, 75 and then 10 000 rectangles:

0

2

1

3

1 1.50.5–0.5–1
x

y

b = 0.36741

f

n = 15

0

2

1

3

1 1.50.5–0.5–1
x

y

f

n = 75

b = 0.34003

0

2

1

3

1 1.50.5–0.5–1
x

y

f

n = 10000

b = 0.33338

When n = 15, the area is 

approximately 0.367 sq. units.

When n = 75, the area is 

approximately 0.340 sq. units.

When n = 10 000, the area is 

approximately 0.333 sq. units.

As the number of  rectangles increases, the approximate 

area approaches the actual area.

This method of approximating the area 

under a curve is called Riemann sums, 

after the German mathematician 

Georg Friedrich Bernhard Riemann

(1826–1866).

Mathematicians 

developed different 

methods to 

approximate the area 

under the curve of a 

graph. Explore some 

of these methods, 

and analyze the error 

of the approximations 

of the areas that 

these methods 

produce.
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If  f  is continuous in the interval [a, b], to 

fi nd the area under the curve of  f  (x) from 

x  =  a to x  =  b, you can divide [a, b] into n

sub-intervals of  equal length,  b a

n
, 

and call this △x. In each sub-interval, 

select the height of  the rectangle such 

that a corner of  the rectangle is on the 

curve, and call this f  (c).

Then, the area under the curve of  i such sub-intervals is 

approximated by 
i

n

=
∑

1

f  (c
i
) △x

i

x

y

0

As △ x approaches 0, the number of  rectangles n approaches 

infi nity and the approximate area approaches the actual area.

You can now ready to defi ne the area under a curve as a 

defi nite integral.

➔  If  the integral of  f  exists in the interval [a, b], and f  is 

non-negative in this interval, then the area A under the 

curve y = f  (x) from a to b is A = 
b

a

f (x) dx

Example 

Find the area bounded by the graph of y = x3, x = 0, x = 2, and the x-axis.

Answer

Since y = x3 is non-negative in the interval [0, 2]

A = 

2

0

x x
x3

4

0

2
4

4

2

4

16

4
d = = =

⎡

⎣
⎢

⎤

⎦
⎥  = 4 sq. units

Area = 4 sq. units

Confi rm on the GDC.

The area is entirely 

below the x-axis.

0 x

y

c

(c, f(c))

Δx

△ is the Greek upper 

case ‘delta’ . △x is 

“delta x”.
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Example 

Find the area of  a triangle formed by f (x) = 
x x

x x

+ − ≤ ≤−
− − ≤ ≤

⎧
⎨
⎩

4 4 1

2 1 2

,

,

a using the formula for the area of  a triangle 

b by integration.

Answers

a

0
21

1

2

3

4

5

54–2–3–4
x

y

y = 2 – xy = x + 4

D(–1, 0)A(–4, 0)

C(–1, 3)

B(2, 0)

A = 
1

2
× 6 × 3 = 9 sq. units

b Since both functions are non-negative in the interval [–4, 2]

 Area of  ΔACD 

= 

1

4

( ) ( ) ( )
( ) ( )

x x x
x+ = + = + − + −

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
4 4 4 1 4 4

2

4

1
2 2

2

1

2

4

2
d ⎜⎜

⎞

⎠
⎟

= − + =3 5 8 4 5. .  sq. units

Sketch the graph.

Area = 
1

2
 bh

Divide the triangle into two smaller 

triangles.

Area of  ΔBCD 

=

2

− 1

( ) ( ) ( )
( ) ( )

2 2 2 2 2 1
2

1

2
2

2

1

2

2

2

2

1

2
− = − − − −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝− −

x x x
x

d ⎜⎜
⎞

⎠
⎟

= + =

2

1

2 2 5 4 5. . sq. units

Hence, area of  ΔABC = 4.5 + 4.5 = 9 sq. units

Alternative solution

ΔACD ≡ ΔBCD (RHS), so area of  ΔABC = 2 × Area of  ΔACD 

Area of  ΔACD = 4.5 sq. units

Area of  ΔABC = 2 × 4.5 = 9 sq. units

Integrate to fi nd the area of  each 

triangle.

Add the areas.

Notice that the triangle is 

symmetrical about the line CD.

Now look at areas below the x-axis, 

for example, the area above the graph of  

y = x3, between x = –1 and x = 0.

Calculating the integral 

A = 

0

1

x3 dx = 
 

  
 

0
4

1

1

4 4

x

Since area is positive, take the absolute 

value: A = 
1

4
 sq. unit 

0

1

0.5

–0.5

–1

–1.5

1.5

x

y

f(x) = x3

x = –1
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➔  When f  is negative for all x ∈[a, b], then the area bounded by

the curve and the lines x = a and x = b is 

b

a

f (x)dx 

For the area below the x-axis for y = x 3

A = 
0

−1

x3dx = = − =
⎡

⎣
⎢

⎤

⎦
⎥

x 4

1

0

4
0 25 0 25. .

Confi rming this result on the GDC:

This confi rms numerically using the absolute value of  the function.

Now look at the area bounded by the graph of  y = x3, 

x = – 1, x = 1, and the x-axis.

Since the area is partly above and partly below the x-axis, 

you have to integrate the functions in the two intervals separately.

A = 
0

− 1

x 3dx + 
1

0

x 3dx = |−0.25| + 0.25 = 0.5

You can also evaluate this area graphically on the GDC by graphing 

y = |x 3|. To evaluate the integral numerically on the GDC, enter the 

integral of  the absolute value of  the function. This eliminates the 

need for separating the integrals.

0

1

0.5

–0.5

–1

–1.5

1.5

x

y

f(x) = x3
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Example 

Find the area of  the region bounded by the graph of  the function 

y = 
1

2
 (x – 1)(x + 2)(x – 3) and the x-axis and confi rm your answer graphically on the GDC.

Answer

0

1

–1

–2

–3

–4

–5

2

3

5

4 5–1–3–4
x

y

–5

Graph the function on your 

GDC. Since part of  the graph 

lies below the x-axis, integrate 

the function separately in the 

intervals where it is above and 

below the x-axis.

A = 

1

−2

1

2
( 1)( +2)( 3) dx x x x− −⎛

⎝
⎜

⎞
⎠
⎟ +

3

1

1

2
1 2 3( )( )( )x x x x− + −⎛

⎝
⎜

⎞
⎠
⎟ d

A = 

1

−2

1

2

5

2

3 2 3x x x x− − +⎛
⎝
⎜

⎞
⎠
⎟ d + 

3

1

1

2

5

2

3 2 3x x x x− − +⎛
⎝
⎜

⎞
⎠
⎟ d

= − − +
⎡

⎣
⎢

⎤

⎦
⎥

x x x
x

4 3 2

2

1

8 3

5

4
3 + +− −

⎡

⎣
⎢

⎤

⎦
⎥

x x x
x

4 3 2

1

3

8 3

5

4
3

= + − =63

8

8

3

253

24
= 10.5 sq. units to 3 sf.

A = 10.5 sq. units

On the GDC, enter the absolute 

value of  the function and the 

interval itself  as the lower and 

upper bound.

➔  The total area of  f  (x) in an interval [a, b], where its graph is 

partly above and partly below the x-axis is A = 
h

a

  f  (x) dx.
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Investigation – odd and even functions

In Example 15 f  (x) = x 3 is an odd function. 

Choose different odd functions continuous in an interval [a, b]

For your examples,  nd 

a

a

f  (x)dx

Make a conjecture and justify it. 

Does your conjecture hold when applying this de nite integral to areas? Explain.

Do the same for even functions continuous in an interval [a, b ]

Exercise 7H

Find the area of  the region bounded by the graph of  the function, 

the x-axis, and the given lines.

 y = x 4 – x, x = –1 and x = 1

 y = x 2 – 2x – 3, x = –1 and x = –3

3 y = x 2 – 2x – 3, x = –3 and x = 1

In questions 4–11, fi nd the area of  the region bounded by the graph 

of  the function, the x-axis, and the given lines.

4 y = e x – 3, x = 0, x = 3

5 y = x 4 + 3x 3 – 3x 2 – 7x + 6, x = –3; x = 1

6 y = 4 x , x = 0, x = 4

7 y = 
2

1

x
 + 1, x = 

1

2
, x = 5

8 y = 2x, x = 1, x = 2

9 y = 2e–x+1 – 1, x = 0, x = 3

10 y = 


1

2x
, x = –1, x = 2

11 y = 
2

3 4x
, x = 1, x = 3

12 Find the area of  the region bounded by the graph of  

y = −x3 + 6x2 + x – 30, its x-intercepts, and the x-axis.

13 Find the area of  the region enclosed by y = 
x x

x x

2 0 1

2 1 2

,

,

≤ <

− ≤ ≤

⎧
⎨
⎩

 and 

the x-axis.

14 Find the area of  the region enclosed by y = 
x x

x x

,

,

0 1

1 22

≤ <

≤ ≤

⎧
⎨
⎪

⎩⎪and the x-axis.

Graph the functions 

on your GDC. Find the 

areas by integration. 

Then check your 

answer on your GDC.
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The graph shows the region bounded 

by the graph of  the function y = ex; 

the y-axis, and the line y = e.

You can fi nd this area by fi rst fi nding the area of  the region 

below the curve bounded by the graph of  the function, 

the x-axis, and the lines x = 0 and x = 1. 

Then subtract this area from that of  the rectangle OABC, which 

is e sq. units. 

Hence, the area of  the desired region is 

e−

1

0

e e e e ex xxd sq. unit= − = − − =⎡⎣ ⎤⎦0

1

1 1( )

You can also obtain the result by rearranging to make x 

the subject and then integrating with respect to y, from 

y = 1 to y = e. 

If  y = ex then x = ln( y), and, A = 

e

1

ln( y)dy = 1 sq. unit

Since you don’t yet know how to integrate ln( y) analytically (this 

will be covered in chapter 9), use the GDC to confi rm the result.

Example 

Find the area of  the region bounded by the graph of  the function 

y
x

=
1

2
and the lines y = 1 and y = 4.

Answer

3210 4 5–1–2–3–4
x

y

–5

y = 4
Area

y = 1
y =

1

x2

Graph the function.

1

y
x 

A = 2

4

1

1

y
dy

A y= = −

=

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟2 4 12 4

1

2

1

4
1

2

4 sq. units

Make x the subject.

Integrate with respect to y.

1

y
dy gives the area to the right of  

the y-axis.

By symmetry, A is double the area on 

the right of  the y-axis.

Confi rm on the GDC.

2

1

3

1 1.50.50–0.5–1
x

y

y = eA B

CO

x = 1

f(x) = ex

Why does the 

alternative method 

used here not work for 

Example 18?

The evolution of calculus364



Example 

Find the area of  the region bounded by the graph of  the function 

y = x3 + 1, the y-axis, and the lines y = 1 and y = 9.

Answer

0
321

6

4

2

–2

–4

8

10

4 5–1–2
x

y

Area

y = x3 
+ 1

x y= −13

A = 

9

1

( )y 1
1

3 dy

=

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −

3 1

4

3 8

4

4

3

1

9

4

3

0 12

( )

( )

y

sq. units

Alternative solution

Area of  rectangle 

OABC = 9 × 2 = 18

Area above curve 

= 18 

2

0

(x3 + 1) dx

= − = −+
⎡

⎣
⎢

⎤

⎦
⎥18 18 6

4

0

2

4

x
x

=12 sq. units

Graph the function on your GDC 

and identify the area.

Make x the subject.

Integrate with respect to y.

Confi rm on the GDC.

0
321

6

4

2

–2

–4

8

10

–1–2
x

y
y = x3 

+ 1

A B

CO

Exercise 7I

Find the areas of  the regions bounded by the function, the y-axis, 

and the given lines.

1 y = x2 + 1, y = 1, y = 10 2 y = x , y = 0, y = 4

3 y = 4 x , y = 0, y = 2 4 y = 4 − x2, y = 3, y = 4

5 y = 
1

4x 

, y = 
1

2
, y = 2
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Areas of regions between curves

The graph shows two curves f  (x) and g (x).

The regions bounded by the two curves are shaded.

0 x

y

f(x)

g(x)

Translate both graphs vertically so that both areas are 

above the x-axis.

0 x

y

f(x)

g(x)

C

A

B

The area between points A and B is the difference of  the areas 

under the curves f  (x) and g (x) from A to B. 

➔  If  functions f and g are continuous in the interval [a, b], and 

f  (x) ≥ g (x) for all x ∈[a, b], then the area between the graphs of  

f and g is 

A =

b

a

f (x) dx −

b

a

g (x) dx = 

b

a

(f (x) − g (x)) dx

   Similarly the area between points B and C is the difference of  the 

areas under the curves g (x) and f  (x) between points B and C, 

A = 

c

b

g (x) dx −

c

b

f (x) dx = 

c

b

(g (x) − f (x)) dx

To fi nd the total area between A and C, add the areas of  the 

two regions.

A translation of both 

graphs by the same 

amount in the same 

direction preserves 

the original area.
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Example 

Find the area enclosed by the graphs of  the curves 

f  (x) = 
1

2
x3 + 2x2 +2x

1

2
 and g(x) = 

1

2
 + 3x + 2x2

− 
1

2
x3

Answer

1

2
x3 + 2x2 + 2x − 

1

2
 = 

1

2
 + 3x + 2x2 1

2
x3

x3 x = 0 ⇒ x(x + 1)(x  1) = 0

x = 0, ±1

A = 

0

−1

[f  (x) g(x)] dx + 

1

0

[g(x) f  (x) dx]

A = 

0

−1

(x3 x) dx + 

1

0

(x x3) dx

A = 
x x x x4 2

1

0
2 4

0

1

4 2 2 4

⎡

⎣
⎢

⎤

⎦
⎥ + −

⎡

⎣
⎢

⎤

⎦
⎥

A = 
1

4

1

4

1

4
sq.+ =  unit

Let f(x) = g(x) to 

find the points of  

intersection of  the two 

curves.

Since the leading 

coeffi cient of  f(x) is 

positive and the leading 

coeffi cient of  g(x) is 

negative, we know that 

in the interval [–1, 0], 

f(x) > g(x) and in the 

interval [0, 1], g(x) > 

f(x).

If  we are not sure which 

function is greater in 

the given interval, it is 

suffi cient to place the 

integrals in an absolute 

value sign.

Check your answers on 

the GDC.

The total area of  the regions enclosed by the graphs of  two 

functions f and g that intersect at x = a, x = b and 

x = c, a < b < c is 

A = 

c

a

  f (x) − g (x) dx

In area problems, a region may be not be entirely enclosed between 

two functions. The next example highlights this case.
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Example 

Find the area of  the region in the fi rst quadrant that is enclosed by 

y = x , the x-axis, and the line y = x – 2.

Answer

A = R
1

+ R
2

R
1
 = 

2

0

x  dx = 
2

3

3

2

0

2

x
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = 
4 2

3

R
2
 = 

4

2

( x  (x  2)) dx 

= 
2

3 2

3

2 2

2

4

2
x x

x

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

=
2 4

3

4

2

3

2 2( )
+ 2(4) 

2 2

3

2

2

3

2 2

2 2
( )

( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+

= 
16

3

4 2

3
2+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 

10 4 2

3

∴ A =
4 2

3
 + 

10 4 2

3

  = 
10

3

 = 3.33 sq. units to 3 sf

Sketch the graph.

32 40 1 5 f

g

R
1

R
2

2

1

3
g(x) = x – 2

f(x) = √x
(4, 2)

(2, 0)

Check on a GDC.

Exercise 7J

 In questions 1–11, fi nd the area of  the region enclosed by the graphs 

of  the curves.

Do not use a GDC for questions 1–6.

1 y = 2 – x2 and y + x = 0 

2 y = x3 and y = x2

3 y = 4 – x2 and y = 2 – x

4 y = x  and y = 
2

3x

5 y = 16 – x2 and y = x2 – 4x

✗
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6 y = x4 – 2x2 and y = 2x2

7 y = 2x3 + 5x2 + x – 2 and y = 8 – 4x – 20x2 – 8x3

8 y = x4 – 4 and y = 


1

1 x
, for x > 0

9 y = e1–x – 1; y = x ; x = 4

EXAM-STYLE QUESTION

10  In this graph, the regions bounded by the curve y = x2 and the 

lines y = 4 and y = a is equal to the region bounded by the curve 

y = x2 and y = a. Find the value of  a

3210

1

2

3

5

4–1–2–3–4
x

y

y = x2

y = a

y = 4

In questions 11–13, fi nd the area of  the region whose boundary is 

defi ned by the functions or lines.

11 y = 2 – x and y = x2

12 y = ex, y = e x, x = ±1

13 y = 
1

x
, y = 

2

3x , x-axis and x = 3

Areas and kinematics

At the beginning of  section 7.2, you found the total distance 

traveled by a particle in a given time interval by integrating the 

velocity function, evaluating the displacement at the end points of  

the interval, and then subtracting these results. The velocity in this 

case was positive throughout this interval.

Consider a similar problem where the velocity changes direction 

within the given interval. The velocity function will be partly above 

and partly below the t-axis.
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Example 

A particle moves in a straight line such that its velocity at any time t can be 

modeled by v (t) = t – t 3 ms –1. 

Find the total distance traveled by the particle in the time interval [1, 2]

Answer

Sketch the function to see if  it is 

entirely above or below the t-axis, 

or if  part of  the graph is below 

and part above the t-axis.

(1, 0)

(2, 6)

0

1

–1

–2

–3

–4

–5

–6

2

t

v

v(t) = t – t3

d(t) = 

1

0

(t t3) dt + 

2

1

(t t 3) dt  

Integrate the parts separately 

above and below the x-axis

=
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥− −t t t t2 4

0

1
2 4

1

2

2 4 2 4

= + −⎛
⎝
⎜

⎞
⎠
⎟ =− −1

4

1

2

1

4
2 52 . m

Graphically:

Numerically:

The total distance is the integral of  the 

absolute value of  the function on the 

interval [0, 2].

From example 22, you can see that:

➔  If  v is a velocity function in terms of  t, then the total distance 

traveled between times t
1
 and t

2
 = 

t
2

t
1

|v| dt
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Exercise 7K

1 A particle starts from rest and moves in a straight line. 

Its velocity at any time t seconds is given by v (t) = t (t – 4) m s–1

Find the distance traveled between the two times when the 

particle is at rest.

2 A particle moves in a straight line so that after t seconds its 

velocity is v (t) = 5 + 4t – t2 m. 

Find the total distance traveled by the particle 

a in the fi rst second

b between the fi rst second and the sixth second.

3 A particle starts from rest and its acceleration, in m s–2, can be 

modeled by a(t) = 1 – e –2t, 0 ≤ t ≤ 3. 

Find the distance traveled in the fi rst 3 seconds.

EXAM-STYLE QUESTION

4 The velocity of  a particle moving in a straight line is given by 

v(t) = 10 + 5e–0.5t m s–1

a Show that the acceleration of  the particle at any time t is 

always negative.

b Find the total distance covered in the fi rst 2 seconds.

Volumes of solids of revolution

A lathe is a machine that rotates material on its axis to make objects 

with circular cross-sections and curved sides, such as vases. 

A variety of  materials, such as metal or plastic, may be used.

In mathematics, objects like those made with a lathe are called 

solids of revolution. A solid fi gure with curved sides is obtained by 

rotating the curve through 360° about a line; for example, the x-axis.

Here is the graph of  y = 2x between x = 0 and x = 2. Rotating the 

line y = 2x about the x-axis gives a cone.

0
1.510.5

3

2

1

–2

–3

–4

4

5

2
x

y

y = 2x

–2

–3

–4

–1

3

2

1

4

5

0

y

x 0

–4

–2

6

4

2

y

y = 2x

31 2
x
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To fi nd the volume of  the cone in an interval [a, b], take cross-

sectional slices, as with the area and inscribed rectangles. These 

slices are 3-D cylinders each with radius y, and height tending to dx 

so each has volume πy2 dx. Then, to fi nd the volume of  the cone, add 

the volume of  all the cylinders, i.e., ∑π y2dx. When dx is 

infi nitesimally small,

then v = 

b

a

πy2 dx = π 

b

a

y2 dx

➔  The volume of  a solid formed when a function y = f  (x), 

continuous in the interval [a, b], is rotated 2π radians about the 

x-axis is V = π

b

a

y2 dx

The volume of  the cone obtained by rotating the line y = 2x in the 

interval [0, 2] through 2π radians about the x-axis is 

V = π

2

0

(2x)2 dx = 4π 

2

0

x2 dx = 4π 
 
 
 

2
3

0
3

x
= 4π 

 
 
 

8

3
=

32

3


cubic units

Compare this to the result obtained using the formula 

for the volume of a cone, V =  21

3
r h

V = 
 2

3
(4 )(2) = 

32

3
 cu. units

Similarly, you can fi nd the volume of  the cone formed when the line 

y = 2x is rotated 2π radians about the y-axis in the same interval.

The cylinders have radius x and height dy. 

➔  The volume of  a solid of  revolution formed when y = f  (x) in 

the interval y = c to y = d is rotated 2π radians about the y-axis 

is V = π 

d

c

x2 dy f (a) = c f  (b) = d

To fi nd the volume of  the cone formed by rotating the line 

y = 2x about the y-axis, rearrange to give x = 
2

y
. The interval [0, 2] 

on the x-axis corresponds to [0, 4] on the y axis. Then

V = π

4

0

 
 
 

2

2

y dy = 
   

   
   

4
3 3

0

4

4 3 4 3

y 
 = 

16

3


 cu. units.

y

dx

2π radians = 360°

0

–4

–2

6

4

2

y

y = 2x

31 2
x

10

2

4

2–1–2
x

y

dyx
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Example 

Find the volume of  the solid formed when the graph of  the curve y = x  in the interval [1, 4] is 

rotated 2π radians about a the x-axis b the y-axis.

Answers

a V = π 

4

1

   
   

  
  

  
4

22

1

16 1 15

2 2 2 2
d

x
x x  cu. units

b y = x ⇒ x = y2; when x = 1, y = 1; when x = 4, y = 2

V = π 

2

1

y4 dy = π 

2
5

1

32 1 31

5 3 5 5

y 
       

  
  cu.units

Use V = π 

b

a

y 2dx

Rearrange to make x the subject and 

fi nd the values of  y when x = 1 and 

x = 4

Use V = π

d

c

y2dy

Example 

Find the volume of  the solid formed when the graph of  the curve 

y = e1–x is rotated 2π radians about the x-axis between x = 0 and x = 1.

Answer

Sketch the graph.

3210

1

2

3

4 5–1
x

y

f(x) = e1 – x

(1, 1)

(0, e)

V = π 

1

0

(e1−x)2 dx = π 

1

0

e2(1−x) dx

= 2(1 ) 1

0[ ]
2

e x

= 
p

2
(1  e2)

= 
p

2
(e2

− 1) cu. units

= 10.0 (3 sf  ) cu. units

Exercise 7L

In questions 1 and 2, fi nd the volume of  the solid formed by rotating 

the region enclosed by the graph of  the function and the x-axis, 

through 2π radians about the x-axis, in the given interval.

1 y = (x – 1)2 – 1, [0, 1]

2 y = 1 + x , [0, 2]

Sangaku are Japanese 

geometrical puzzles 

in Euclidean geometry 

on wooden tablets. 

They were placed as 

offerings at Shinto 

shrines or Buddhist 

temples during the 

Edo period (1603–

1867) as offerings 

to the gods .The 

tablets were created 

using only Japanese 

mathematics. 

For example, the 

connection between 

an integral and 

its derivative (the 

fundamental theorem 

of calculus) was 

unknown, so Sangaku 

problems on areas and 

volumes were solved 

by expansions in 

in nite series and term-

by-term calculation.

You may wish to select 

a Sangaku puzzle, 

and through research 

investigate their 

method of calculating 

areas and volumes.

Chapter 7 373



3 When the graph of  the function y = 
2

2

x
 is revolved 2π radians 

about the y-axis, it models the shape of  a bowl. 

Find the volume of  the bowl between y = 0 and y = 2.

4 A paperweight is modeled by the graph of  the function 

y = 22x x  when it is revolved 2π radians about the x-axis 

between x = 1 and x = 2. 

Find the volume of  the paperweight.

   5 Find the volume of  the solid of  revolution formed when the 

graph of  the function y = 
3

2x  is revolved about the y-axis 

between y = 1 and y = 3.

6 A wine bottle stopper is modeled by the function y = 
2

12
36

x
x

Find the volume of  the stopper when it is rotated 2π radians 

about the x-axis between x = 0 and x = 6.

Now look at the volume of  a solid formed by the region 

between two curves. The graph shows the region formed 

between the curves y = 
2

x
 and y = 

2

4

x

Geometrically, the volume of  the region between the two curves 

rotated 2π radians about the x-axis is the difference in the 

volumes of  the solids formed by the curve and the x-axis. 

➔  Hence, if  f  (x) ≥ g (x) for all x in the interval [a, b], then the 

volume of  revolution formed when rotating the region between 

the two curves 2π radians about the x-axis in the interval [a, b] is 

V = π 

b

a

(  f  (x))2 dx − π 

b

a

( g (x))2 dx, or 

V = π 

b

a

 ([  f  (x)]2
− [g (x)]2  )dx

For the two curves y y
x x

= =
2 4

2

and , 

V = π

2

0

x

2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ dx − π

2

0

x
2

2

4

⎛

⎝
⎜

⎞

⎠
⎟  dx

 = π

2

0

x

2
 dx − π

2

0

x 4

16
 dx = 

  
 
 

2
2

0
2 2

x
−

  
 
 

2
5

0
16 5

x

 = 
p p p p

2
2

16

32

5 5 5

2 3( ) ⎛
⎝
⎜

⎞
⎠
⎟ = =− −p cu. units.

There are several 

methods to  nd the 

volume of a solid of 

revolution. Investigate 

the different methods, 

such as disc, shell 

and washer methods, 

and explore the 

conditions under which 

the various methods 

are employed.

3210

1

2

3

4

5

4 5–1–2
x

y

(2, 1)

y = √ x

2

y =
x
2

4

It is easy enough 

to  nd the points 

of intersection 

analytically by setting 

the two equations 

equal to each other, 

and solving for x
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Now rotate the region about the y-axis in the same interval. 

Rearrange both equations to make x the subject: 

x = 2y2 and x = 2 y

For both functions, when x = 0, y = 0 and when x = 2, y = 1, so the 

curves intersect at (0, 0) and (2, 1).

Hence, V = π

1

0

(2 y )2dy − π 

1

0

(2y2)2dy

V = 4π

1

0

ydy − 4π

1

0

y4 dy  = 4π 
y2

0

1

2

⎡

⎣
⎢

⎤

⎦
⎥ − 4π 

y5

0

1

5

⎡

⎣
⎢

⎤

⎦
⎥

= π

4

2
 − π 

4

5
= 

6

5


cu. units

➔  If  x
1
 and x

2
 are relations in y such that x

1
 ≥ x

2
for all 

y in the interval [c, d  ], then the volume formed 

when rotating the region between the two curves 2π

radians about the y-axis in the interval [c, d  ] is 

V = π

c

d 

x
1

2dy − π

c

d

x
2

2dy

or V = π

d

c

( x
1

2 − x
2

2)dy

Example  

The graphs of  x = 
y4

4
– 

y2

2
 and x = 

y2

2
 completely enclose a region. Find the volume of  the solid 

formed when this region is rotated 2π radians about the y-axis in the interval [c, d  ], c, d ≥ 0.

Answer

y y y y y
y y y y

4 2 2 4
2 2

2

4 2 2 4 4
0 1 0 0 2− = ⇒ − ⎛

⎝
⎜

⎞
⎠
⎟= ⇒ = ⇒ = = ±,

Without a graph it is safer to use the absolute value in the 

interval.

V = 

2

0

   
   
   

2 2
4 2 2

4 2 2
dy y y y  = 

2

0

y8 6

16 4

⎛
⎝
⎜

⎞
⎠
⎟

y
yd

V = π 

2
9 79 7

0

2 2 64

144 28 63144 28

y y 


 
  

 


The volume formed from y = −2 to y = 0 is twice the 

volume from y = 0 to y = 2, hence the total volume is 

64 128

63 63
2 = 6.38 cu. units

 


Confi rm on a GDC:

The astronomer Johann Kepler

(1571–1630) expanded upon 

Archimedes’ work on  nding 

volumes of irregular shapes. 

Legend has it that at his wedding, 

Kepler was distracted by the 

problem of how much wine was 

in the barrels his guests were 

being served from. The problem so 

fascinated him that he dedicated 

an entire book to its solution. 

The book, published in 1615, 

was entitled Nova stereometria 

doliorum vinariorum’ or New volume 

measurements of wine barrels. 
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Exercise 7M

1 Find the volume of  the solid formed when the region between 

the graphs of  the functions y = x and y = 
2

x
 is rotated through 

2π radians about the x-axis between x = 2 and x = 5.

2 Find the volume of  the solid formed when the region between 

the graphs of  the functions y = x – 4 and y = x2 – 4x is revolved 

2π radians about the x-axis.

3 Find the volume of  the solid formed when the region between 

the graphs of  y = x and y2 = 2x is revolved 2π radians about the 

y-axis.

4 Find the volume of  the solid formed when the region between 

the graphs of  the functions y = 2x – 1, y = x
1

2 , and x = 0 is 

revolved 2π radians about the y-axis.

Review exercise

EXAM-STYLE QUESTION

1 The gradient function of  a curve is  
2

d

d

y b

x x
ax . The curve 

passes through the point (–1,2), and has a point whose gradient 

is 0 at (–2, 0). Find the equation of  the curve.

2 Calculate the area enclosed by the graphs of  y = x2 and y2 = x

3  The region enclosed by y = 1 + 3x – x2 and y = 2

x
 for x > 0 is rotated 

2π radians about the x-axis. Find the volume of the solid formed.

4 Evaluate

a 

2

1

x
x x

+ −⎛
⎝
⎜

⎞
⎠
⎟

1 1
2 4

 dx

b

4

1

25 4x

x
 dx

c 

2

1

1

3
d

x
x

d

e

1

1

1 4
d

x
x

✗
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Review exercise

1 A particle moves in a straight line so that its velocity after 

t seconds is v (t) = t3 – 4t m s–1

Find the total distance traveled in the fi rst 3 seconds.

EXAM-STYLE QUESTION

2 The velocity of  a particle moving in a straight line is 

v(t) = t3 – 3t2 + 2 m s–1

Find the total distance traveled between the maximum and 

minimum velocities.

3 Find the total area of  the region enclosed by the graph of  

y = x2 – 4 + 
3

2
x

 and the x-axis.

4 Integrate these where possible with respect to x. 

a 

4

2

3 6x

x


b

1 1

x x
x x

  
  
  

 

c 
1

2 3x
d

2

1 4x

e 2 3 3e e+x x

5 Find the quotient when 2x 2 + 3x is divided by 2x – 1. 

Hence, evaluate 

2

1

22 3

2 1

x x

x

 
 
 

dx

6 Find the area enclosed by the graph of  y = 
1

1x +( )
, the y-axis, and 

the line y = 5.

7 Find the area enclosed by the graph of  y x= +1, and the x- and 

y-axes.

EXAM-STYLE QUESTION

8  The area enclosed by the curve y = 3x(a – x) and the x-axis is 

4 units2. Find the value of  a

9  The region between the graphs of  y = 3
x
, y = 3 x, and the lines 

x = –1 and x = 1 is rotated 2π radians about the x-axis. Find the 

volume of  the solid formed.
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CHAPTER 7 SUMMARY

Integration

● f (x)dx = F (x) + c, c ∈ 

● x n dx = 
1

1

nx

n





, n ≠ –1

● [f  (x) ± g(x)]dx = f (x)dx ± g(x)dx

● (ax + b)n dx = 
1

( 1)a n 

 (ax + b)n+1 + c, a ≠ 0

● ex dx = e x + c

● eax+b dx = 
1

a
e ax+b + c, a ≠ 0

● max+b dx = 
1

a m
c

l ( )n
max b+

+ , where m is a positive real number, a ≠ 0.

● 
1

x
x x cd = +ln| |

● 
1 1

)
ln| |

ax b a
x ax b c

+

= + +d , a ≠ 0

Defi nite integration

● 

b

a

f  (x) dx = – 

a

b

f  (x) dx

● 

a

b

f  (x) dx = 0

● 

b

a

kf  (x) dx = k 

b

a

f  (x) dx

● 

b

a

(  f  (x) ± g (x) dx = 

b

a

f  (x) dx ± 

b

a

g(x) dx

● 

b

a

f (x)dx + 

c

b

f (x)dx = 

c

b

f (x)dx

The fundamental theorem of calculus

● If  f is continuous in [a, b] and if  F is any anti-derivative of  f on [a, b] 

then 

b

a

f  (x) dx = F (b) – F (a)

Continued on next page
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Areas between graphs of functions and the axes

● If  the integral of  f  exists in the interval [a, b], and f is non-negative 

in this interval, then the area A under the curve y = f  (x) from a to b is

  A = 

b

a

f (x)  dx

● When f is negative for all x ∈ [a, b], then the area bounded by 

the curve and the lines x = a and x = b is |

b

a

f  (x) dx|

● If  functions f and g are continuous in the interval [a, b], and 

f  (x) ≥ g(x) for all x ∈ [a, b], then the area between the graphs 

of  f and g is A = 

b

a

( f (x)  – g(x))dx

Kinematics 

● If  v is a velocity function in terms of  t, then the total distance 

traveled between times t
1
 and t

2
 is 

t
2

t

|v|dt

Volumes of revolution

● The volume of  a solid formed when a function y = f  (x), 

continuous in the interval [a, b], is rotated 2π radians about 

the x-axis is V = π

b

a

y2 dx

● The volume of  a solid of  revolution formed when x = f  (y) in 

the interval y = c to y = d is rotated 2π radians about the y-axis 

is V = π

d

c
x2dy

● If  f (x) ≥ g(x) for all x in the interval [a,b], then the volume formed 

when rotating the region between the two curves 2π radians about 

the x-axis in the interval [a, b] is 

V = π
b

a

( f  (x))2dx – π

b

a

(g(x))2dx, or V = π

b

a

    ([f  (x)]2 – [g(x)]2 ) dx

●  If  x
1
 and x

2
 are relations in y such that x

1
 ≥ x

2
for all y in the 

interval [c, d  ], then the volume formed when rotating the 

region between the two curves 2π radians about the y-axis in 

the interval [c, d  ] is V = π

c

d 

x
1

2dy − π

c

d

x
2

2dy

or V = π

d

c

( x
1

2 − x
2

2)dy
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