4.4 Exponential models

Exponential functions and their graphs

→ In an exponential function, the independent variable is the exponent (or power).

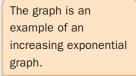
Here are some examples of **exponential functions**:

$$f(x) = 2^x$$
, $f(x) = 5(3)^x + 2$, $g(x) = 5^{-x} - 3$, $h(x) = \left(\frac{1}{3}\right)^x + 1$

Investigation - exponential graphs

 The number of water lilies in a pond doubles every week. In week one there were 4 water lilies in the pond. Draw a table and write down the number of water lilies in the pond each week up to week 12. Plot the points from the table on a graph of number of lilies against time. Draw a smooth curve through all the points.

Time is the dependent variable, so it goes on the horizontal axis.



2 A radioactive substance has a half-life of two hours. This means that every two hours its radioactivity halves.

A Geiger counter reading of the radioactive substance is taken at time t = 0. The reading is 6000 counts per second.

Two hours later (t = 2) the reading is 3000 counts per second.

What will the readings be at t = 4, t = 6, t = 8 and t = 10? Plot the points on a graph of counts per second against time and join them with a smooth curve. Could the number of water lilies in a pond keep doubling forever? Will the radioactivity of the substance ever reach zero?

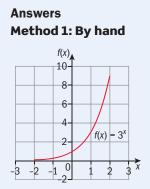
This graph is an example of a decreasing exponential graph.

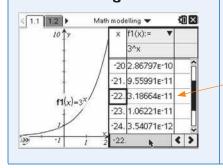
Does the shape of a ski slope form an exponential function? Investigate ski slopes on the internet to find out what the function is.

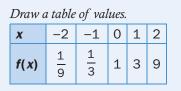
Graphs of exponential functions $f(x) = a^x$ where $a \in \mathbb{Q}^+$, $a \neq 1$

Example 19

Draw a graph of the function $f(x) = 3^x$ for $-2 \le x \le 2$







Plot the points. Draw a smooth curve through all the points. This is an increasing exponential function.

For help with graphing exponential functions on your GDC see Chapter 12, Section 4.3.

3.1866E-11 = 0.00000000031866 \mathbb{Q}^+ is the set of positive rational numbers.

Why can $a \neq 1$? What kind of function would you get if a = 1?

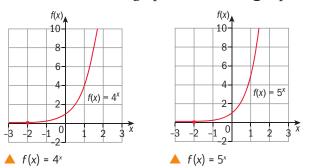
GDC help on CD: Alternative demonstrations for the TI-84 Plus and Casio FX-9860GII GDCs are on the CD.

You can check what happens when the values of *x* get very small or very large using the table of values on your GDC.

Look at the graph in Example 19. As the values of x get smaller, the curve gets closer and closer to the *x*-axis. The *x*-axis (y = 0) is a horizontal **asymptote** to the graph. At x = 0, f(x) = 1. As the values of x get very large, f(x) gets larger even more quickly. We say that f(x) tends to infinity. The function is an **increasing** exponential function.

An asymptote is a line that the curve approaches but never touches.

Here are some more graphs of **increasing** exponential functions.

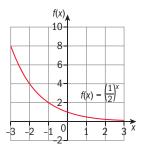


All these graphs pass through the point (0, 1) and have y = 0 (the *x*-axis) as a horizontal asymptote.

Graphs of exponential functions $f(x) = a^x$ where 0 < a < 1

What happens if a is a positive proper fraction?

Here is the graph of $y = \left(\frac{1}{2}\right)^x$.



This graph also passes through the point (0, 1) and has y = 0 (the *x*-axis) as a horizontal asymptote. However, this is an example of a **decreasing** exponential function.

Exercise 4R

田

numerator is smaller than the denominator.

A proper fraction

is a fraction where the

- For an increasing exponential function, the *y*-values increase as the *x*-values increase from left to right.
- For a decreasing exponential function, the *y*-values decrease as the *x*-values increase from left to right.

Draw the graphs of these functions using your GDC. For each, write down the coordinates of the point where the curve intersects the *y*-axis and the equation of the horizontal asymptote.

1 $f(x) = 2^{x}$ **2** $f(x) = 6^{x}$ **3** $f(x) = 8^{x}$ **4** $f(x) = \left(\frac{1}{3}\right)^{x}$ **5** $f(x) = \left(\frac{1}{5}\right)^{x}$

Investigation – graphs of $f(x) = ka^x$ where $a \in \mathbb{Q}^+$ and $k \neq 0$ and $a \neq 1$

Use your GDC to draw the graphs of

1
$$f(x) = 2(3)^x$$
 2 $f(x) = 3\left(\frac{1}{2}\right)^x$ **3** $f(x) = -3(2)^x$

For each graph, write down

- **a** the value of k in the equation $f(x) = ka^x$
- **b** the point where the graph crosses the *y*-axis
- ${\boldsymbol{c}}$ $% = \left({{\boldsymbol{c}}_{i}} \right)$ the equation of the horizontal asymptote.

What do you notice?

Investigation – graphs of $f(x) = ka^x + c$ where $a \in \mathbb{Q}^+$ and $k \neq 0$ and $a \neq 1$

Use your GDC to draw the graphs of

1
$$f(x) = 2^{x} + 3$$
 2 $f(x) = 3\left(\frac{1}{2}\right)^{2} - 4$ **3** $f(x) = -2(3)^{x} + 5$
for $-3 \le x \le 3$.

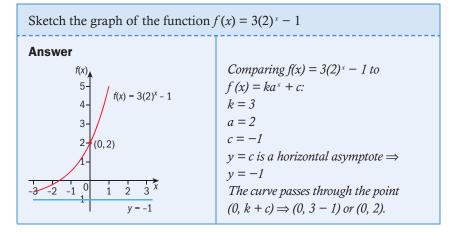
For each graph, write down

- **a** the values of k and c in the equation $f(x) = ka^x + c$
- **b** the point where the graph crosses the *y*-axis
- c the equation of the horizontal asymptote.
 Work out k + c for each graph. What do you notice?
- → In general, for the graph of $f(x) = ka^x + c$ where $a \in \mathbb{Q}^+$ and $k \neq 0$ and $a \neq 1$
 - the line y = c is a **horizontal asymptote**
 - the curve passes through the point (0, k + c).

Sketching an exponential graph

- Draw and label the axes.
- Label the point where the graph crosses the y-axis.
- Draw in the asymptotes.

Example 20



Exercise 4S

For each function, write down

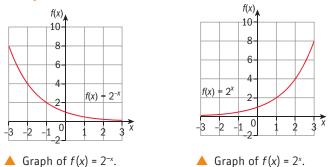
- **a** the coordinates of the point where the curve cuts the *y*-axis
- **b** the equation of the horizontal asymptote.

Hence, sketch the graph of the function.

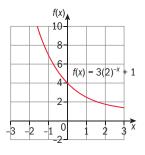
1
$$f(x) = 2^{x}$$

2 $f(x) = 6^{x}$
3 $f(x) = \left(\frac{1}{3}\right)^{x}$
4 $f(x) = \left(\frac{1}{5}\right)^{x}$

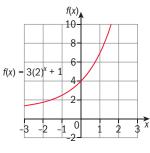
5 $f(x) = 3(2)^x + 4$	6 $f(x) = -2(4)^x - 1$
7 $f(x) = -1(2)^x + 3$	8 $f(x) = 4(3)^x - 2$
9 $f(x) = 0.5(2)^x + 3$	10 $f(x) = 2(0.5)^x + 1$
11 $f(x) = 0.4^x + 1$	12 $f(x) = 2(0.1)^x - 1$



The graph of $f(x) = 2^{-x}$ is a reflection in the *y*-axis of the graph of $f(x) = 2^x$.



Graph of $f(x) = 3(2)^{-x} + 1$.



Graph of $f(x) = 3(2)^{x} + 1$.

The curves pass through the point (0, 4) and the horizontal asymptote is y = 1.

- → In general, for the graph of $f(x) = ka^{-x} + c$ where $a \in \mathbb{Q}^+$ and $k \neq 0$ and $a \neq 1$
 - the line y = c is a horizontal asymptote
 - the curve passes through the point (0, k + c)
 - the graph is a reflection in the *y*-axis of $g(x) = ka^x + c$.

Exercise 4T

For each function, write down

- **a** the coordinates of the point where the curve cuts the *y*-axis
- **b** the equation of the horizontal asymptote.
- Hence, sketch the graph of the function.

1
$$f(x) = 4(2)^{-x} + 2$$
 2 $f(x) = -4^{-x} + 1$

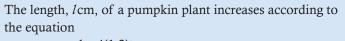
k = 3 and c = 1. Notice that 3 + 1 = 4.

3 $f(x) = -2(2)^{-x} + 3$	4 $f(x) = 3(2)^{-x} - 2$
5 $f(x) = 0.5(3)^{-x} + 2$	6 $f(x) = 0.5^{-x} + 1$
7 $f(x) = 2(0.1)^{-x} - 1$	8 $f(x) = 0.4^{-x} + 2$
9 $f(x) = 3(0.2)^{-x} + 4$	10 $f(x) = 5(3)^{-x} - 2$

Applications of exponential functions

Many real-life situations involving growth and decay can be modeled by exponential functions.

Example 21



 $l = 4(1.2)^{t}$

where *t* is the time in days.

a Copy and complete the table. Give your answers correct to 3 sf.

t	0	2	4	6	8	10	12	14	16
1									

- **b** Draw a graph of *l* against *t* for $0 \le t \le 20$ and $0 \le l \le 100$.
- **c** How long is the pumpkin plant when t = 0?
- **d** How long will the pumpkin plant be after 3 weeks?

Answers

а	t	0	2	4	6	8	10	12	14	16
	1	4	5.8	8.3	11.9	17.2	24.8	35.7	51.4	74

b l100 80 $l = 4(1.2)^t$ 60 40 20 0 2 4 6 8 10 12 14 16 t

- **c** When t = 0, l = 4 cm.
- **d** 3 weeks = 21 days So, $l = 4(1.2)^{21} = 184$ cm (to 3 sf).

Substitute each value of t into the equation to find the corresponding value of 1.

Draw and label the axes. Put t on the horizontal axis. Put l on the vertical axis. Plot the points from the table and join with a smooth curve.

Read the value of 1 that corresponds to t = 0 from the table. For the equation, time is given in days, so convert from weeks. Substitute t = 21 into the equation.

Example 22

Hubert invests 3000 euros in a bank at a rate of 5% per annum compounded yearly.

Let *y* be the amount he has in the bank after *x* years.

- a Draw a graph to represent how much Hubert has in the bank after *x* years. Use a scale of 0–10 years on the *x*-axis and 2500–5000 euros on the *y*-axis.
- **b** How much does he have after 4 years?
- **c** How many years is it before Hubert has 4000 euros in the bank?

Answers

a The compound interest formula is:

 $y = 3000 \left(1 + \frac{5}{100}\right)^3$

 $y = 3000(1.05)^{x}$

where x = number of years.

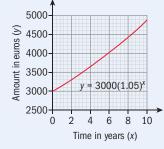
Time	Amount
(x years)	(<i>y</i> euros)
0	3000
2	3307.50
4	3646.52
6	4020.29
8	4432.37
10	4886.68

This problem can be represented by a compound interest function.

Draw a table of values.

The **compound interest** formula is an exponential (growth) function.

You will learn more about compound interest in Chapter 7.



- **b** After 4 years Hubert has $3000(1.05)^4 = 3646.52$ euros.
- **c** Hubert has 4000 euros in the bank after 6 years.

Draw and label the axes. Plot the points and join them with a smooth curve.

Substitute x = 4 into the formula.

You need to find the value of x for y = 4000 euros. From the table of values in part **a** you can see that after 6 years the amount is 4020.29. Check the amount after 5 years: $y = 3000(1.05)^5 = 3828.84$ This is less than 4000 euros.

172

Exercise 4U

EXAM-STYLE QUESTIONS

- **1** Sketch the graphs of $f(x) = 2^x + 0.5$ and $g(x) = 2^{-x} + 0.5$ for $-3 \le x \le 3$.
 - **a** Write down the coordinates of the point of intersection of the two curves.
 - **b** Write down the equation of the horizontal asymptote to both graphs.
- **2** The value of a car decreases every year according to the function

 $V(t) = 26\,000x^t$

where V is the value of the car in euros, t is the number of years after it was first bought and x is a constant.

- **a** Write down the value of the car when it was first bought.
- **b** After one year the value of the car is 22100 euros. Find the value of *x*.
- **c** Calculate the number of years that it will take for the car's value to fall to less than 6000 euros.
- **3** The equation $M(t) = 150(0.9)^t$ gives the amount, in grams, of a radioactive material kept in a laboratory for *t* years.
 - **a** Sketch the graph of the function M(t) for $0 \le t \le 100$.
 - **b** Write down the equation of the horizontal asymptote to the graph of M(t).
 - **c** Find the mass of the radioactive material after 20 years.
 - **d** Calculate the number of years that it will take for the radioactive material to have a mass of 75 grams.
- 4 The area, $A m^2$, covered by a certain weed is measured at 06:00 each day.

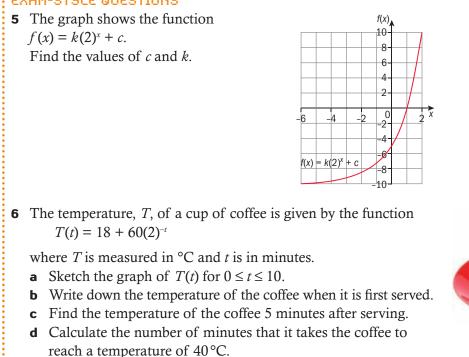
On the 1st June the area was 50 m^2 .

Each day the area of the weeds grew by the formula $A(t) = 50(1.06)^{t}$

where *t* is the number of days after 1st June.

- **a** Sketch the graph of A(t) for $-4 \le t \le 20$.
- **b** Explain what the negative values of *t* represent.
- **c** Calculate the area covered by the weeds at 06:00 on 15th June.
- **d** Find the value of t when the area is 80 m^2 .

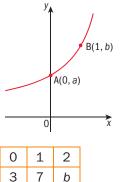
EXAM-STYLE QUESTIONS



- e Write down the temperature of the room where the coffee is served. Give a reason for your answer.
- The value, in USD, of a piece of farm machinery depreciates 7 according to the formula

 $D(t) = 18\ 000(0.9)^t$ where t is the time in years.

- **a** Write down the initial cost of the machine.
- **b** Find the value of the machine after 5 years.
- c Calculate the number of years that it takes for the value of the machine to fall below 9000 USD.
- 8 The graph of the function $f(x) = \frac{2^x}{a}$ passes through the points (0, b) and (2, 0.8). Calculate the values of *a* and *b*.
- The diagram shows the graph of $y = 2^{x} + 3$. The curve passes through the points A(0, a) and B(1, b).
 - **a** Find the value of *a* and the value of *b*.
 - **b** Write down the equation of the asymptote to the curve.
- **10** A function is represented by the equation $f(x) = 2(3)^{x} + 1$. Here is a table of values of f(x) for $-2 \le x \le 2$. X
 - **a** Calculate the value *a* and the value of *b*.
 - **b** Draw the graph of f(x) for $-2 \le x \le 2$.
 - **c** The domain of f(x) is the real numbers. What is the range?



b

-2

f(x) 1.222

-1

а