12 A conical tank with vertex pointed downward has a radius of 10 m at its top and is 24 m high. Water flows out of the tank at a rate of 20m³/min. How fast is the depth of the water in the tank decreasing when it reaches a depth of 16m?

Review exercise

EXAM-STYLE QUESTION

- **1** Find the limits, if they exist, of the following.
 - **a** $\lim_{x \to 1} \frac{x^2 3}{x + 1}$ **b** $\lim_{x \to \infty} \frac{\sqrt{x^2 1}}{x}$ **c** $\lim_{x \to 2} \frac{3^x 1}{x}$ **d** $\lim_{x \to 0} \frac{3x^2 + x^2}{x^2}$ **e** $\lim_{x \to \infty} \frac{5x^2}{2x^3 + 1}$ **f** $\lim_{x \to \infty} \frac{7}{x^3 + 1}$
- 2 Determine if $y = \begin{cases} x^2 + 2x, x \le 2 \\ x^3 6x, x > 2 \end{cases}$ is continuous at x = 2.
- **3** Determine if the sequence $a_n = \frac{2n^2 3}{n^3 2}$ converges as *n* tends to $+\infty$.
- **4** Determine if the series $\sum_{n=0}^{\infty} 3\left(\frac{(-1)^n}{5^n}\right)$ converges, and if it does, find its sum.

EXAM-STYLE QUESTIONS

- 5 Find the values of *a* for which the series $a^2 + \frac{a^2}{1+a^2} + \frac{a^2}{(1+a^2)^2} + \dots$ is convergent, and find its sum.
- 6 Given $y = \frac{x^3 2x^2 + 5}{x^2 x^3}$, find
 - **a** its horizontal asymptote
 - **b** the points where the curve intersects its horizontal asymptote, for small values of *x*.
- **7** Find the equation of the tangent and normal to the curve

$$y = \frac{2x+1}{x^2+1}$$
 at $x = 0$

EXAM-STYLE QUESTION

- 8 Let *f* be an even function with domain (-a, a), a > 0. *f* is differentiable throughout its domain. Show that the tangent to the graph of *f* at x=0 is parallel to the *x*-axis.
- **9** Find any points on the curve $y = x\sqrt{x+1}$ those tangents are parallel to the line x + y = -3

224

10 The normal to the curve $y = \frac{1}{2}(2x^4 - 5x^3 - 5x^2 + 3x)$ at the point where x = 1 meets the curve again at point *P*. Find the coordinates of *P*.

EXAM-STYLE QUESTION

- **11** If *f* is a function such that $f(x) = [g(x)]^3$, $g(0) = -\frac{1}{2}$, $g'(0) = \frac{8}{3}$, find the equation of the tangent to f(x) at x = 0.
- **12** Differentiate *y* with respect to *x*.
 - **a** $y = (1 3x)^7 (3x + 5)^3$ **b** $y = \sqrt{(4x^2 3x + 1)^5}$ **c** $y = \frac{x^2 - 3}{\sqrt{x + 1}}, x \neq -1$ **d** $y = \sqrt{x + \sqrt{x^2 + 1}}$ **e** $(x + 2 + (x - 3)^8)^3$
- **13** Consider the polynomial function $f(x) = ax^3 + 6x^2 bx$. Determine the values of *a* and *b* if *f* has a minimum at x = -1, and a point of inflexion at x = 1.
- **14** Consider the function $y = x \sqrt[3]{x}$
 - **a** Find the intercepts of the function.
 - **b** Find any stationary points and distinguish between them.
 - **c** Find any points of inflexion.
 - **d** Determine the intervals where
 - i the function increases ii the function decreases.

EXAM-STYLE QUESTION

15 Consider the function $y = \frac{2x}{x^2 - 1}$

- **a** Find the vertical and horizontal asymptotes.
- **b** Show that the function is an odd function.
- **c** Show that $\frac{dy}{dx} < 0$ for all x in the domain.
- **d** Sketch the function.

16 Consider the function
$$f(x) = \frac{(x-3)^2}{x^2-3}$$

- **a** Find any zeros, intercepts, and asymptotes of f.
- **b** Find any stationary points, and justify your answers.
- **c** Find any points of inflexion.
- **d** Find the intervals where f is
 - i increasing, ii decreasing.
- e Sketch the function showing all features found.

17 Given
$$x = y^5 - y$$
, find $\frac{dy}{dx}$, if it exists, at the points where $x = 0$

Review exercise

EXAM-STYLE QUESTIONS

- **1** Find the shortest distance between the point (1.5, 0) and the curve $y = \sqrt{x}$
- **2** A piece of wire 80 cm in length is cut into three parts: two equal circles and a square. Find the radius of the circles if the sum of the three areas is to be minimized.
- 3 The radius of a right circular cylinder is increasing at a rate of 3 cm min⁻¹ and the height is decreasing at a rate of 4 cm min⁻¹. Find the rate at which the volume is changing when the radius is 9 cm and the height is 12 cm, and determine if the volume is increasing or decreasing.
- 4 A poster has a total area of 180 cm² with a 1 cm margin at the bottom and sides, and a 2 cm margin at the top. Find the dimensions that will give the largest printing area.
- **5** A particle travels along the *x*-axis. Its velocity at any point x is

 $\frac{dx}{dt} = \frac{1}{1+2x}$. Find the particle's acceleration at x = 2 in terms of x.

CHAPTER 4 SUMMARY

Continuous function

- A function y = f(x) is continuous at x = c, if lim f(x) = f(c). The three necessary conditions for f to be continuous at x = c are:
 - **1** f is defined at c, i.e., c is an element of the domain of f.
 - **2** the limit of f at c exists.
 - **3** the limit of f at c is equal to the value of the function at c.

A function that is not continuous at a point x = c is said to be **discontinuous** at x = c.

Properties of limits

• Properties of limits as $x \to \pm \infty$

Let L_1 , L_2 , and k be real numbers and $\lim_{x \to \pm \infty} f(x) = L_1$ and $\lim_{x \to \pm \infty} g(x) = L_2$. Then,

1 $\lim_{x \to +\infty} (f(x) \pm g(x)) = \lim_{x \to +\infty} f(x) \pm \lim_{x \to +\infty} g(x) = L_1 \pm L_2$

Exercise 7M

- **1** Find the volume of the solid formed when the region between the graphs of the functions y = x and $y = \frac{x}{2}$ is rotated through 2π radians about the *x*-axis between x = 2 and x = 5.
- 2 Find the volume of the solid formed when the region between the graphs of the functions y = x 4 and $y = x^2 4x$ is revolved 2π radians about the *x*-axis.
- **3** Find the volume of the solid formed when the region between the graphs of y = x and $y^2 = 2x$ is revolved 2π radians about the *y*-axis.
- **4** Find the volume of the solid formed when the region between the graphs of the functions y = 2x 1, $y = x^{\frac{1}{2}}$, and x = 0 is revolved 2π radians about the *y*-axis.

X

Review exercise

EXAM-STYLE QUESTION

- **1** The gradient function of a curve is $\frac{dy}{dx} = ax + \frac{b}{x^2}$. The curve passes through the point (-1, 2), and has a point whose gradient is 0 at (-2, 0). Find the equation of the curve.
 - **2** Calculate the area enclosed by the graphs of $y = x^2$ and $y^2 = x$
 - **3** The region enclosed by $y = 1 + 3x x^2$ and $y = \frac{2}{x}$ for x > 0 is rotated 2π radians about the *x*-axis. Find the volume of the solid formed.
 - **4** Evaluate

a
$$\int_{1}^{2} \left(x + \frac{1}{x^{2}} - \frac{1}{x^{4}} \right) dx$$

b $\int_{1}^{4} \frac{5x^{2} - 4}{\sqrt{x}} dx$
c $\int_{1}^{2} \frac{1}{x - 3} dx$
d $\int_{1}^{e} \frac{1}{1 - 4x} dx$

Review exercise

1 A particle moves in a straight line so that its velocity after *t* seconds is $v(t) = t^3 - 4t \text{ m s}^{-1}$ Find the total distance traveled in the first 3 seconds.

Find the total distance traveled in the first 3 second

EXAM-STYLE QUESTION

- 2 The velocity of a particle moving in a straight line is $v(t) = t^3 3t^2 + 2 \text{ m s}^{-1}$ Find the total distance traveled between the maximum and minimum velocities.
 - **3** Find the total area of the region enclosed by the graph of $y = x^2 4 + \frac{3}{x^2}$ and the *x*-axis.
 - 4 Integrate these where possible with respect to *x*.

a
$$\frac{3x^4 + 6}{x^2}$$

b $\left(x + \frac{1}{x}\right)\left(x - \frac{1}{x}\right)$
c $\frac{1}{2 - 3x}$
d $\frac{2}{\sqrt{1 - 4x}}$

e
$$2e^{-3x} + \sqrt[3]{e^x}$$

- 5 Find the quotient when $2x^2 + 3x$ is divided by 2x 1. Hence, evaluate $\int_{1}^{2} \left(\frac{2x^2 + 3x}{2x - 1}\right) dx$
- 6 Find the area enclosed by the graph of $y = \frac{1}{(x+1)}$, the *y*-axis, and the line y = 5.
- 7 Find the area enclosed by the graph of $y = \sqrt{x+1}$, and the *x* and *y*-axes.

EXAM-STYLE QUESTION

- **8** The area enclosed by the curve y = 3x(a x) and the *x*-axis is 4 units². Find the value of *a*.
- **9** The region between the graphs of $y = 3^x$, $y = 3^{-x}$, and the lines x = -1 and x = 1 is rotated 2π radians about the *x*-axis. Find the volume of the solid formed.

CHAPTER 7 SUMMARY Integration

• $\int f(x)dx = F(x) + c, c \in \mathbb{R}$ • $\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq -1$ • $\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$ • $\int (ax + b)^n dx = \frac{1}{a(n+1)} (ax + b)^{n+1} + c, a \neq 0$

•
$$\int e^x dx = e^x + c$$

•
$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + c, \ a \neq 0$$

- $\int m^{ax+b} dx = \frac{1}{a\ln(m)} m^{ax+b} + c$, where *m* is a positive real number, $a \neq 0$.
- $\int \frac{1}{x} dx = \ln |x| + c$
- $\int \frac{1}{(ax+b)} dx = \frac{1}{a} \ln |ax+b| + c, a \neq 0$

Definite integration

•
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

•
$$\int_{b} f(x) \, \mathrm{d}x = 0$$

•
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x$$

•
$$\int_{a}^{b} (f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

•
$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{b}^{c} f(x) dx$$

The fundamental theorem of calculus

• If *f* is continuous in [*a*, *b*] and if *F* is any anti-derivative of *f* on [*a*, *b*] then $\int_{a}^{b} f(x) dx = F(b) - F(a)$



Areas between graphs of functions and the axes

• If the integral of *f* exists in the interval [*a*, *b*], and *f* is non-negative in this interval, then the area *A* under the curve y = f(x) from *a* to *b* is

$$A = \int_a^b f(x) \, \mathrm{d}x.$$

- When *f* is negative for all $x \in [a, b]$, then the area bounded by the curve and the lines x = a and x = b is $|\int_{a}^{b} f(x) dx|$
- If functions *f* and *g* are continuous in the interval [*a*, *b*], and $f(x) \ge g(x)$ for all $x \in [a, b]$, then the area between the graphs

of f and g is
$$A = \int_{a}^{b} (f(x) - g(x)) dx$$

Kinematics

• If v is a velocity function in terms of t, then the total distance traveled between times t_1 and t_2 is $\int_{t_1}^{t_2} |v| dt$

Volumes of revolution

- The volume of a solid formed when a function y = f(x), continuous in the interval [a, b], is rotated 2π radians about the *x*-axis is $V = \pi \int_{a}^{b} y^2 dx$.
- The volume of a solid of revolution formed when x = f(y) in the interval y = c to y = d is rotated 2π radians about the *y*-axis

is
$$V = \pi \int_c x^2 dy$$

If f(x) ≥ g(x) for all x in the interval [a,b], then the volume formed when rotating the region between the two curves 2π radians about the x-axis in the interval [a, b] is

$$V = \pi \int_{a}^{b} (f(x))^{2} dx - \pi \int_{a}^{b} (g(x))^{2} dx, \text{ or } V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx.$$

• If x_1 and x_2 are relations in y such that $x_1 \ge x_2$ for all y in the interval [c, d], then the volume formed when rotating the region between the two curves 2π radians about the y-axis in

the interval [c, d] is
$$V = \pi \int_{d}^{c} x_{1}^{2} dy - \pi \int_{d}^{c} x_{2}^{2} dy$$

or $V = \pi \int_{c}^{d} (x_{1}^{2} - x_{2}^{2}) dy$

- **1** Differentiate with respect to *x*:
 - **a** $f(x) = (2x + 3) \sin x$
 - **b** $g(x) = e^x \cos 3x$

c
$$h(x) = \frac{\tan x}{2x^2}$$

- **2** Find the equation of a tangent to the curve $\sin y + e^{2x} = 1$ at the origin.
- **3** Find the value of *m* that satisfies this equation

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}}\sec^2 x\,\mathrm{d}x = 2\left(\cos\frac{\pi}{6} - \sin\frac{\pi}{6}\right).$$

4 Use the method of integration by parts to solve:

a
$$\int (2x-5) e^{2x} dx;$$

b $\int (x^2 - 5x) \cos x dx;$
c $\int e^x \cos 3x dx.$

- 5 The diagonal of a square is increasing at a rate of 0.2 cm s⁻¹.
 Find the rate of change of the area of the square when the side has a length of 5 cm.
- **6** The curve $y = e^{2x-1}$ is given.
 - **a** Find the equation of the tangent to the curve that passes through the origin.
 - **b** Find the area, in terms of e, of the region bounded by the curve, the tangent and the *y*-axis.
 - **c** Find the volume of the revolution, in terms of π , obtained by rotating the region in part **b** about the *x*-axis.
- 7 Use the substitution $x = 3 \cos \theta$ to find $\int \sqrt{9 x^2} dx$.
- **8** The region bounded by the curve $y = \ln (2x)$, the vertical line
 - x = 1 and the *x*-axis is rotated through 2π radians about the *y*-axis.
 - **a** Sketch the region in the coordinate system.
 - **b** Find the exact value of the volume of revolution obtained by this rotation.
- **9** The velocity, v, of an object, at a time t, is given by $v = 5e^{-\frac{2t}{3}}$, where t is in seconds and v is in m s⁻¹.
 - **a** Find the distance travelled in the first k seconds, k > 0.
 - **b** What is the total distance travelled by the object?
- **10** Find the equation of the normal to the curve $x^2y^3 = \cos(\pi x)$ at the point (1, -1).

Review exercise

Ħ

- **1** Find the points of inflection of the curve $y = x^2 \sin 2x$, $-1 \le x \le 1$.
- **2** Given the curve $y^3 = \cos x$, find the equation of the tangent at the point where x = 1.

3 Find the value of *a*, 0 < a < 1, such that $\int_{a^2}^{0} \frac{1}{\sqrt{1-x^2}} dx = 0.2709$

- 4 An airplane is flying at a constant speed at a constant altitude of 10 km in a straight line directly over an observer. At a given moment the observer notes that the angle of elevation θ to the plane is 54° and is increasing at 1° per second. Find the speed, in kilometres per hour, at which the airplane is moving towards the observer.
- **5** The region in the first quadrant bounded by the curves $y = \cos x$ and $y = e^x 1$ is rotated by the *x*-axis by 2π radians. Find the volume of revolution of the solid generated.

CHAPTER 9 SUMMARY

Derivatives of trigonometric functions

 $\lim_{h \to 0} \frac{\sin h}{h} = 1$ $\frac{d}{dx} (\sin x) = \cos x$ $\frac{d}{dx} (\cos x) = -\sin x$

Derivatives of inverse trigonometric functions

If $y = \arcsin x$ then $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$ If $y = \arcsin \frac{x}{a}$ then $\frac{dy}{dx} = \frac{1}{\sqrt{a^2 - x^2}}$

Basic integrals of trigonometric functions

 $\int \cos x \, dx = \sin x + c, \, c \in \mathbb{R} \quad \text{since } \frac{d(\sin x)}{dx} = \cos x$ $\int \sin x \, dx = -\cos x + c \qquad \text{since } \frac{d(-\cos x)}{dx} = \sin x$ $\int \sec^2 x \, dx = \tan x + c \qquad \text{since } \frac{d(\tan x)}{dx} = \sec^2 x$ $\int f(ax + b) \, dx = \frac{1}{a} F(ax + b) + c$

490

Definite integrals

$$\int f(x) \, \mathrm{d}x = F(x) + c \Longrightarrow \int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

Integration by parts

 $\int u \, \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \, \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$

Trigonometric substitutions

If an integral contains a quadratic radical expression use one of the following substitutions.

If the form is $\sqrt{a^2 - x^2}$ use the substitution $x = a \sin \theta$. If the form is $\sqrt{x^2 - a^2}$ use the substitution $x = a \sec \theta$. If the form is $\sqrt{x^2 + a^2}$ use the substitution $x = a \tan \theta$.