Intervals

We will use the following notation:

[a, b] denotes all x such that $a \leqslant x \leqslant b$

We will use the following notation:

$$[a, b]$$
 denotes all x such that $a \leqslant x \leqslant b$

$$]a, b]$$
 denotes all x such that $a < x \le b$

We will use the following notation:

$$[a,b]$$
 denotes all x such that $a \leqslant x \leqslant b$

$$]a, b]$$
 denotes all x such that $a < x \leqslant b$

[
$$a, b$$
[denotes all x such that $a \le x < b$

We will use the following notation:

$$[a,b]$$
 denotes all x such that $a \leqslant x \leqslant b$

$$]a, b]$$
 denotes all x such that $a < x \le b$

[
$$a, b$$
[denotes all x such that $a \le x < b$

$$]a, b[$$
 denotes all x such that $a < x < b$

We will use the following notation:

$$[a, b]$$
 denotes all x such that $a \leqslant x \leqslant b$

$$[a, b]$$
 denotes all x such that $a < x \le b$

[
$$a$$
, b [denotes all x such that $a \le x < b$

$$]a, b[$$
 denotes all x such that $a < x < b$

Some authors use different notation, for instance (a, b] or (a, b) in the second case. We will use the above notation, as it is also used by the IB.

 $[a, \infty[$ denotes all x such that $a \le x$

3 / 22

 $[a, \infty[$ denotes all x such that $a \le x$

] a, ∞ [denotes all x such that a < x

$$[a, \infty[$$
 denotes all x such that $a \le x$

$$]a, \infty[$$
 denotes all x such that $a < x$

$$]-\infty,b]$$
 denotes all x such that $x\leqslant b$

$$[a, \infty[$$
 denotes all x such that $a \le x$

$$]a, \infty[$$
 denotes all x such that $a < x$

$$]-\infty,b]$$
 denotes all x such that $x\leqslant b$

$$]-\infty, b[$$
 denotes all x such that $x < b$

$$[a, \infty[$$
 denotes all x such that $a \leqslant x$

$$]a, \infty[$$
 denotes all x such that $a < x$

$$]-\infty,b]$$
 denotes all x such that $x\leqslant b$

$$]-\infty,b[$$
 denotes all x such that $x < b$

Note that we never include ∞ (or $-\infty$) as it is not a number.

Remember that intervals are just sets of numbers (often infinite), so all the operations on sets can be used. We will practice those operations on the next slides.

Let:

$$A =]1, 4]$$
 $B =]-\infty, 3[$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

Let:

$$A =]1,4]$$
 $B =]-\infty,3[$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

It is often helpful to mark both sets on a number line:

$$A =]1, 4]$$
 $B =]-\infty, 3[$

A is marked with red, B with blue.

• $A \cup B$ is the union of the sets, so it is the part coloured by at least one of the colours.

- $A \cup B$ is the union of the sets, so it is the part coloured by at least one of the colours.
- $A \cap B$ is the intersection, so it is the part coloured by both colours.

- $A \cup B$ is the union of the sets, so it is the part coloured by at least one of the colours.
- $A \cap B$ is the intersection, so it is the part coloured by both colours.
- A B is the difference between A and B, so it is the part coloured **only** in red.

- $A \cup B$ is the union of the sets, so it is the part coloured by at least one of the colours.
- $A \cap B$ is the intersection, so it is the part coloured by both colours.
- A B is the difference between A and B, so it is the part coloured **only** in red.
- B A is the difference between B and A, so it is the part coloured **only** in blue.

$$A \cup B =]-\infty,4]$$

$$A \cup B =]-\infty,4]$$

$$A \cap B =]1,3[$$

$$A \cap B =]1,3[$$

$$A-B=[3,4]$$

$$A - B = [3, 4]$$

$$A - B = [3, 4]$$

Why is 3 in this set?

$$A - B = [3, 4]$$

Why is 3 in this set? 3 belongs to A-B, since it belongs to A and doesn't belong to B. $B =]-\infty, 3[$, so 3 is outside of B.

$$B - A =]-\infty, 1]$$

$$B-A=]-\infty,1]$$

Let:

$$A =]0,5]$$
 $B = [1,3[$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

Let:

$$A =]0,5]$$
 $B = [1,3[$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

Again it is useful to mark the sets on the number line.

$$A \cup B =]0,5]$$

$$A \cup B =]0, 5]$$

$$A \cap B = [1,3[$$

$$A\cap B=[1,3[$$

$$A - B =]0, 1[\cup[3, 5]$$

$$A - B =]0, 1[\cup[3, 5]]$$

$$B - A = \emptyset$$

Let:

$$A =]-\infty, 4]$$
 $B =]1, \infty[$

Find the sets A', B'.

We will use red for A and blue for B:

We will use red for A and blue for B:

• A' is the complement of A, so it is the part **not** coloured in red.

We will use red for A and blue for B:

- A' is the complement of A, so it is the part **not** coloured in red.
- B' is the complement of B, so it is the part **not** coloured in blue.

$$A'=]4,\infty[$$

$$A'=]4,\infty[$$

$$B'=]-\infty,1]$$

$$B'=]-\infty,1]$$

The short test at the beginning of the class will be similar to the examples above.