1. The line L_1 shown on the set of axes below has equation 3x + 4y = 24. L_1 cuts the x-axis at A and cuts the y-axis at B.

Diagram not drawn to scale

Write down the coordinates of A and B. (a)

M is the midpoint of the line segment [AB].

(b) Write down the coordinates of M.

The line L_2 passes through the point M and the point C (0, -2).

(c)	Write down the equation of L_2 .	
		(2)

(d) Find the length of

(i)

- (i) MC; (2)
- AC. (ii) (2)

The length of AM is 5. Find (e)

- the size of angle CMA; (3)
 - (ii) the area of the triangle with vertices C, M and A. (2)

(Total 15 marks)

(2)

(2)

2. The vertices of quadrilateral ABCD as shown in the diagram are A (-8, 8), B (8, 3), C (7,-1) and D (-4, 1).

(4) (Total 13 marks) 3. On the coordinate axes below, D is a point on the *y*-axis and E is a point on the *x*-axis.

O is the origin. The equation of the line DE is $y + \frac{1}{2}x = 4$.

diagram not to scale

(a) Write down the coordinates of point E.

C is a point on the line DE. B is a point on the x-axis such that BC is parallel to the y-axis. The x-coordinate of C is t.

(b) Show that the y-coordinate of C is $4 - \frac{1}{2}t$. (2)

OBCD is a trapezium. The y-coordinate of point D is 4.

(c) Show that the area of OBCD is
$$4t - \frac{1}{4}t^2$$
.

- (d) The area of OBCD is 9.75 square units. Write down a quadratic equation that expresses this information.
- (e) (i) Using your graphic display calculator, or otherwise, find the two solutions to the quadratic equation written in part (d).
 - (ii) Hence find the correct value for *t*. Give a reason for your answer.

(4) (Total 12 marks)

(2)

(3)

(1)

4. The vertices of quadrilateral ABCD as shown in the diagram are A (3, 1), B (0, 2), C (-2, 1) and D (-1, -1).

(f) Find the area of triangle ADE.

(2) (Total 13 marks)

- 5. In each of the Venn diagrams, shade the region indicated.
 - (a) $A \cap B$

(b) The complement of $(A \cap B)$

(c) The complement of $(A \cup B)$

 $(d) \quad A \cup (B \cap C)$

(Total 4 marks)

6. The sports offered at a retirement village are Golf (*G*), Tennis (*T*) and Swimming (*S*). The Venn diagram shows the numbers of people involved in each activity.

- (a) How many people
 - (i) only play golf?
 - (ii) play both tennis and golf?
 - (iii) do not play golf?
- (b) Shade the part of the Venn diagram that represents the set $G \cap S$.

(Total 4 marks)

- 7. The sets *U*, *P*, *R* and *S* are defined as follows:
 - $U = \{ all quadrilaterals \}$ $P = \{ all parallelograms \}$ $R = \{ all rectangles \}$ $S = \{ all squares \}$
 - (a) Draw a Venn Diagram illustrating the relationships of the above sets.

(4)

- (b) Draw a separate Venn Diagram for each of the examples below. Indicate by shading each of the following:
 - (i) $(P \cup S)'$
 - (ii) $(R \cup S) \cap P$

(4) (Total 8 marks) 8. A survey was carried out in a year 12 class. The pupils were asked which pop groups they like out of the *Rockers* (*R*), the *Salseros* (*S*), and the *Bluers* (*B*). The results are shown in the following diagram.

(a) Write down $n(R \cap S \cap B)$.

(1)

(2)

(2)

(2)

- (b) Find n(R').
- (c) Describe which groups the pupils in the set $S \cap B$ like.
- (d) Use set notation to describe the group of pupils who like the *Rockers* and the *Bluers* but do not like the *Salseros*.

There are 33 pupils in the class.

(e) (i) Find *x*.
(ii) Find the number of pupils who like the *Rockers*. (3)

(Total 10 marks)

9. In the Venn diagram below, A, B and C are subsets of a universal set $U = \{1, 2, 3, 4, 6, 7, 8, 9\}$.

List the elements in each of the following sets.

- (a) $A \cup B$
- (b) $A \cap B \cap C$
- (c) $(A' \cap C) \cup B$

(Total 8 marks)

- 10. Given \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the set of real numbers.
 - (a) Write down an element that belongs to $\mathbb{R} \cap \mathbb{Z}$.
 - (b) Write down an element that belongs to $\mathbb{Q} \cap \mathbb{Z}'$.
 - (c) Write down an element that belongs to \mathbb{Q}' .
 - (d) Use a Venn diagram to represent the sets \mathbb{Z}, \mathbb{Q} and \mathbb{R} .

(Total 6 marks)

- **10.** Shade the given region on the corresponding Venn Diagram.
 - (a) $A \cap B$

(b) $C \cup B$

(c) $(A \cup B \cup C)'$

(d) $A \cap C'$

(Total 8 marks)

- 12. Given a universal set $U = \{ cars \}, S = \{ sports cars \}, G = \{ green sports cars \}.$
 - (a) Draw a Venn diagram to illustrate this information. (3)
 - (b) Shade the set $S \cap G'$ on your diagram.
 - (c) Write in words the meaning of $S \cap G'$.

(2) (Total 6 marks)

(1)

13. (a) Shade $(A \cup B) \cap C'$ on the diagram below.

(b) In the Venn diagram below, the number of elements in each region is given. Find $n ((P \cap Q) \cup R)$.

(2)

(2)

- (c) U is the set of positive integers, \mathbb{Z}^+ . *E* is the set of even numbers. *M* is the set of multiples of 3.
 - (i) List the first six elements of the set *M*.
 - (ii) List the first six elements of the set $E' \cap M$.