1.

(a)
$$0 + 2y = 12$$
 or $x + 2(0) = 12$ (M1)
 $P(0, 6)$ (accept $x = 0, y = 6$) (A1)
 $Q(12,0)$ (accept $x = 12, y = 0$) (A1) (C3)
Notes: Award (M1) for setting either value to zero.

Notes: Award (M1) for setting either value to zero.

Missing coordinate brackets receive (A0) the first time this occurs. Award (A0)(A1)(ft) for P(0,12) and Q(6, 0).

(b)
$$x + 2(x-3) = 12$$
 (M1)
(6, 3) (accept $x = 6, y = 3$) (A1)(A1) (C3)

Note: (A1) for each correct coordinate.

Missing coordinate brackets receive (A0)(A1) if this is the first time it occurs.

[6]

2.

(a) Gradient of
$$l_2 = \frac{0 - (-2)}{5 - 0}$$
 (M1)

$$=\frac{2}{5} \tag{A1}$$

Gradient of
$$l_1 = \frac{-5}{2}$$
 (A1) (C3)

(b)
$$y = \frac{-5}{2}x + 7$$
 (A1)(A1)

$$2y = -5x + 14$$

 $5x + 2y - 14 = 0$ (A1)(A1) (C5)

[8]

3.

(a)
$$L_1$$
 has gradient 2 and L_2 has gradient $-\frac{1}{4}$. (A1)(A1) (C2)

Note: Award (A0)(A1)ft if the order of the gradients is reversed or both signs are wrong or both are reciprocals of the correct answer.

(c) The product of the gradients is
$$2 \times -\frac{1}{4} = -\frac{1}{2} \neq -1$$
. (M1)(A1) (C2)

Note: Award (M1) for looking at product of gradients, (A1) for comparing something to -1.

(d) The drawing should show a straight line passing through x and y intercepts at (4, 0) and (0, 1) respectively. (A1)(A1) (C2)

Note: Award (A1) for each intercept. If these are wrong but gradient is $-\frac{1}{4}$ then (A1). If correct line is very poorly drawn then (A1).

Equation	Diagram number		
<i>y</i> = c	2	(A2)	
y = -x + c	3	(A2)	
y = 3x + c	4	(A2)	
$y = \frac{1}{3}x + c$	1	(A2)	(C8)

[8]

(a) (i)

N	10	30	50	70	90	
C	130	330	530	730	930	A

Notes: Award [½ mark] for each correct bold entry and round down to a maximum of [2 marks].

Notes: Award (MI) for both axes correctly labelled and with suitable scales.

Award [$\frac{1}{2}$ mark] for each correct point and round up to a maximum of [2 marks].

(iii)
$$C = 10N + 30$$
 (A1) 6

(b) (i) "The local hotel will charge £500 plus half of five (or two and a half) times the number of guests"

(or equivalent statement). (A2)

Note: Award (Al)(A0) if partly correct.

(ii)

Note: Award [$\frac{1}{2}$ mark] for each correct bold entry, and round up to a maximum of [2 marks].

(iii) On same graph as for part (a) (ii).

(M2)

6

Note: Award [1/2 mark] for each point correctly plotted, and round up to a maximum of [2 marks].

(c) Explanations abound: Award marks only for any correct explanation arising from candidate's own graph in parts (a) (ii) and (b) (iii). (R2)

Notes: Award (R1) for each correct point given. Maximum [2 marks].

(d) (i) £900 (M1)(A1)

(ii) 60 guests (M1)(A1)

(iii) £145.00 (M1)(A1) 6

Notes: For parts (d) (i) to (d) (iii), follow through with candidate's own graphs.

Answers given here are obtained by calculation and should serve only as a guide.