1.	A clo	be box has a square base of side x and height h .	
	(a)	Write down an expression for the volume, <i>V</i> , of the box.	(1)
	(b)	Write down an expression for the total surface area, <i>A</i> , of the box.	(1)
	The	volume of the box is 1000 cm ³	
	(c)	Express <i>h</i> in terms of <i>x</i> .	(2)
	(d)	Hence show that $A = 4000x^{-1} + 2x^2$.	(2)
	(e)	Find $\frac{\mathrm{d}A}{\mathrm{d}x}$.	(2)
	(f)	Calculate the value of <i>x</i> that gives a minimum surface area.	(4)
	(g)	Find the surface area for this value of <i>x</i> .	(3)

(Total 15 marks)

2. A dog food manufacturer has to cut production costs. She wishes to use as little aluminium as possible in the construction of cylindrical cans. In the following diagram, h represents the height of the can in cm, and x represents the radius of the base of the can in cm.

diagram not to scale

The volume of the dog food cans is 600 cm^3 .

(a) Show that
$$h = \frac{600}{\pi x^2}$$
. (2)

(Total 14 marks)

3. A closed rectangular box has a height y cm and width x cm. Its length is twice its width. It has a fixed outer surface area of 300 cm^2 .

(a)

Show that $4x^2 + 6xy = 300$.

(b) Find an expression for y in terms of x. (c) Hence show that the volume V of the box is given by $V = 100x - \frac{4}{3}x^3$. (2)

(d) Find
$$\frac{\mathrm{d}V}{\mathrm{d}x}$$
. (2)

- (e) (i) Hence find the value of *x* and of *y* required to make the volume of the box a maximum.
 - (ii) Calculate the maximum volume.

(5) (Total 13 marks) 4. A farmer has a rectangular enclosure with a straight hedge running down one side. The area of the enclosure is 162 m^2 . He encloses this area using x metres of the hedge on one side as shown on the diagram below.

diagram not to scale

(a) If he uses y metres of fencing to complete the enclosure, show that $y = x + \frac{324}{x}$.

(3)

(3)

(2)

(2)

(5)

The farmer wishes to use the least amount of fencing.

(b) Find
$$\frac{dy}{dx}$$
. (3)

- (c) Find the value of x which makes y a minimum.
- (d) Calculate this minimum value of *y*.
- (e) Using $y = x + \frac{324}{x}$ find the values of *a* and *b* in the following table.

	л						
x	6	9	12	18	24	27	36
У	60	45	39	а	37.5	b	45

(f) Draw an accurate graph of this function using a horizontal scale starting at 0 and taking 2 cm to represent 10 metres, and a vertical scale starting at 30 with 4 cm to represent 10 metres.

(g) Write down the values of *x* for which *y* increases.

(2) (Total 20 marks)