- Consider the function $f(x) = 2x^3 3x^2 12x + 5$. 1. (a) (i) Find f'(x). (ii) Find the gradient of the curve f(x) when x = 3. (4) Find the *x*-coordinates of the points on the curve where the gradient is equal to -12. (b) (3) Calculate the *x*-coordinates of the local maximum and minimum points. (c) (i) Hence find the coordinates of the local minimum. (ii) (6)
 - (d) For what values of x is the value of f(x) increasing?

(2) (Total 15 marks)

- 2. The cost of producing a mathematics textbook is 15 (US dollars) and it is then sold for x.
 - (a) Find an expression for the profit made on each book sold. (1)

A total of $(100\ 000 - 4000x)$ books is sold.

(b) Show that the profit made on all the books sold is

$$P = 160\ 000x - 4000x^2 - 1500\ 000.$$

(c) (i) Find
$$\frac{\mathrm{d}P}{\mathrm{d}x}$$
. (2)

(ii) Hence calculate the value of
$$x$$
 to make a maximum profit (2)

(d) Calculate the number of books sold to make this maximum profit.

(2) (Total 10 marks)

(3)

- 3. The height (cm) of a daffodil above the ground is given by the function $h(w) = 24w 2.4w^2$, where *w* is the time in weeks after the plant has broken through the surface ($w \ge 0$).
 - (a) Calculate the height of the daffodil after two weeks.

(2)

- (b) (i) Find the rate of growth, $\frac{dh}{dw}$.
 - (ii) The rate of growth when w = k is 7.2 cm per week. Find k.

(3)

(2)

- (iii) When will the daffodil reach its maximum height? What height will it reach? (4)
- (c) Once the daffodil has reached its maximum height, it begins to fall back towards the ground. Show that it will touch the ground after 70 days.

(3) (Total 14 marks)

4.	A closed box has a square base of side x and height h.		
	(a)	Write down an expression for the volume, <i>V</i> , of the box.	(1)
	(b)	Write down an expression for the total surface area, <i>A</i> , of the box.	(1)
	The	volume of the box is 1000 cm ³	
	(c)	Express h in terms of x .	(2)
	(d)	Hence show that $A = 4000x^{-1} + 2x^2$.	(2)
	(e)	Find $\frac{\mathrm{d}A}{\mathrm{d}x}$.	(2)
	(f)	Calculate the value of <i>x</i> that gives a minimum surface area.	(4)

(g) Find the surface area for this value of *x*.

(3) (Total 15 marks)