Mixed examination practice 5

Short questions

- 1. Find the inverses of the following functions:
 - (a) $f(x) = \log_3(x+3), x > 0$
- (b) $g(x) = 3e^{x^3-1}$
- [5 marks]

2. The diagram shows three graphs.

- A is part of the graph of y = x.
- *B* is part of the graph of $y = 2^x$.
- C is the reflection of graph B in line A.
- Write down:
- (a) The equation of *C* in the form y = f(x)
- (b) The coordinates of the point where *C* cuts the *x*-axis.
- [5 marks]
- 3. (a) Write down the equations of all asymptotes of the graph of $y = \frac{4x-3}{5-x}$.
 - (b) Find the inverse function of $f(x) = \frac{4x-3}{5-x}$.

- [6 marks]
- 4. The function f is given by $f(x) = x^2 6x + 10$, for $x \ge 3$.
 - (a) Write f(x) in the form $(x-p)^2 + q$.
 - (b) Find the inverse function $f^{-1}(x)$.
 - (c) State the domain of $f^{-1}(x)$.

[6 marks]

- 5. If $h(x) = x^2 6x + 2$:
 - (a) Write h(x) in the form $(x-p)^2 + q$.
 - (b) Hence or otherwise find the range of h(x).
 - (c) By using the largest possible domain of the form x > k where, find the inverse function $h^{-1}(x)$. [7 marks]

xim an = a

- **6.** The function f(x) is defined by $f(x) = \frac{3-x}{x+1}, x \neq -1$.
 - (a) Find the range of *f*.
 - (b) Sketch the graph of y = f(x).
 - (c) Find the inverse function of f in the form $f^{-1}(x) = \frac{ax+b}{cx+d}$. State its domain and range.

[11 marks]

7. A function is defined by:

$$f(x) = \begin{cases} 5 - x, & x < 0 \\ pe^{-x}, & x \ge 0 \end{cases}$$

- (a) Given that p = 3,
 - (i) Find the range of f(x).
 - (ii) Find an expression for $f^{-1}(x)$ and state its domain.
- (b) Find the value of p for which f(x) is continuous.

[7 marks]

- **8.** The functions f(x) and g(x) are given by $f(x) = \sqrt{x-2}$ and $g(x) = x^2 + x$. The function $f \circ g(x)$ is defined for $x \in \mathbb{R}$ except for the interval] a, b[.
 - (a) Calculate the value of *a* and of *b*.
 - (b) Find the range of $f \circ g$.

[7 marks]

(© IB Organization 2002)

Long questions

- 1. If $f(x) = x^2 + 1$, x > 3 and g(x) = 5 x:
 - (a) evaluate f(3).
 - (b) Find and simplify an expression for gf(x).
 - (c) State the geometric relationship between the graphs of y = f(x) and $y = f^{-1}(x)$.
 - (d) (i) Find an expression for $f^{-1}(x)$.
 - (ii) Find the range of $f^{-1}(x)$.
 - (iii) Find the domain of $f^{-1}(x)$.
 - (e) Solve the equation f(x) = g(3x).

[10 marks]

- 2. If f(x) = 2x + 1 and $g(x) = \frac{x+3}{x-1}$, $x \ne 1$
 - (a) find and simplify
 - (i) f(7)
- (ii) the range of f(x)
- (iii) fg(x)
- (iv) ff(x)

- (b) Explain why gf(x) does not exist.
- (c) (i) Find the form of $g^{-1}(x)$.
 - (ii) State the domain of $g^{-1}(x)$.
 - (iii) State the range of $g^{-1}(x)$.

[9 marks]

- 3. The functions f and g are defined over the domain of all real numbers, $g(x) = e^x$.
 - (a) Write $f(x) = x^2 + 4x + 9$ $x \in \mathbb{R}$ in the form $f(x) = (x + p)^2 + q$.
 - (b) Hence sketch the graph of $y = x^2 + 4x + 9$, labelling carefully all axes intercepts and the coordinates of the turning point.
 - (c) State the range of f(x) and g(x).
 - (d) Hence or otherwise find the range of $h(x) = e^{2x} + 4e^x + 9$.

[10 marks]

- **4.** Given that (2x+3)(4-y) = 12 for $x, y \in \mathbb{R}$:
 - (a) Write y in terms of x, giving your answer in the form $y = \frac{ax + b}{cx + d}$
 - (b) Sketch the graph of y against x.
 - C Let g(x) = 2x + k and $h(x) = \frac{8x}{2x+3}$.
 - (i) Find h(g(x)).
 - (ii) Write down the equations of the asymptotes of the graph of y = h(g(x)).
 - (iii) Show that when $k = -\frac{19}{2}$, h(g(x)) is a self-inverse function. [17 marks]
- 5. (a) Show that if $g(x) = \frac{1}{x}$ then gg(x) = x.
 - (b) A function satisfies the identity $f(x) + 2f\left(\frac{1}{x}\right) = 2x + 1$. By replacing all instances of x with $\frac{1}{x}$, find another identity that f(x) satisfies.

Not for printing, sharing or distribution

© By solving these two identities simultaneously, express f(x) in terms of x.

Mixed examination practice 6

Short questions

1. The graph of y = f(x) is shown. Sketch on separate diagrams the graphs of

(a)
$$y = 3f(x-2)$$

(b)
$$\frac{1}{f(x)}$$

Indicate clearly the positions of any *x*-intercepts and asymptotes.

- 2. The graph of $y = x^3 1$ is transformed by applying a translation with vector
 - $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ followed by a vertical stretch with scale factor 2. Find the equation of the resulting graph in the form $y = ax^3 + bx^2 + cx + d$. [4 marks]
- 3. Solve the inequality |2x-1| < x.

[6 marks]

[6 marks]

4. The diagram shows the graph of y = f(x). On separate diagrams sketch the following graphs, labelling appropriately.

(a)
$$y = |f(x)|$$

(b)
$$y = f(|x|) - 1$$

[5 marks]

Not for printing, sharing or distribution.

- (b) Describe two transformations which transform the graph of $y = \frac{1}{x}$ to the graph of $y = -\frac{3}{x}$.
- (c) Let $f(x) = -\frac{3}{x}, x \neq 0$. Write down an equation for $f^{-1}(x)$.

[4 marks]

- The graph of y = f(x) is shown.
 - (a) On the same diagram sketch the graph of $y = \frac{1}{f(x)}$.
 - (b) State the coordinates of the maximum points.

[5 marks]

(xim a =

- Find two transformations whose composition transforms the graph of $y = (x-1)^2$ to the graph of $y = 3(x+2)^2$. [4 marks]
- (a) Describe two transformations whose composition transforms the graph of y = f(x) to the graph of $y = 3f\left(\frac{x}{2}\right)$.
 - (b) Sketch the graph of $y = 3 \ln \left(\frac{x}{2} \right)$.
 - (c) Sketch the graph of $y = 3\ln\left(\frac{x}{2} + 1\right)$ marking clearly the positions of any asymptotes and *x*-intercepts. [7 marks]
- The diagram shows a part of the graph of y = f(x)On separate diagrams sketch the graphs of
 - (a) $y = \frac{1}{f(x)}$
- (b) y = xf(x)

[6 marks]

For which values of the real number x is |x + k| = |x| + k, where k is [4 marks] a positive real number?

Not for printing, sharing or distribution.

(© IB Organization 1999)

Long questions

- 1 (a) Describe two transformations which transform the graph of $y = x^2$ to the graph of $y = 3x^2 12x + 12$.
 - (b) Describe two transformations which transform the graph of $y = x^2 + 6x 1$ to the graph of $y = x^2$.
 - (c) Hence describe a sequence of transformations which transform the graph of $y = x^2 + 6x 1$ to the graph of $y = 3x^2 12x + 12$.
 - (d) Sketch the graph of $y = \frac{1}{3x^2 12x + 12}$.

[12 marks]

- 2. Given that $f(x) = \frac{3x-5}{x-2}$
 - (a) Write down the equation of the horizontal asymptote of the graph of y = f(x).
 - (b) Find the value of constants p and q such that $f(x) = p + \frac{q}{x-2}$.
 - C Hence describe a single transformation which transforms the graph of $y = \frac{1}{x}$ to the graph of y = f(x).
 - (d) Find an expression for $f^{-1}(x)$ and state its domain.
 - (e) Describe the transformation which transforms the graph of y = f(x) to the graph of $y = f^{-1}(x)$. [11 marks]

- 3. (a) Describe a transformation which transforms the graph of y = f(x) to the graph of y = f(x + 2).
 - (b) Sketch on the same diagram the graphs of

(i)
$$y = \ln(x+2)$$

(ii)
$$y = \frac{1}{\ln(x+2)}.$$

Mark clearly any asymptotes and *x*-intercepts on your sketches.

(c) The graph of the function y = g(x) has been translated and then reflected in the *x*-axis to produce the graph of y = h(x).

Not for printing, sharing or distribution.

- (i) State the translation vector.
- (ii) If $g(x) = x^3 2x + 5$, find constants a, b, c and d such that $h(x) = ax^3 + bx^2 + cx + d$.
- (d) The diagram below shows the graph of y = k(x).

On the same diagram, sketch the graph of $y = (k(x))^2$.

[14 marks]

xim an

4.
$$f(x) = x^2 - 7x + 10$$
 $g(x) = x^2 - 7|x| + 10$

- (a) Sketch the graph of y = f(x).
- (b) Show that g(x) = f(|x|).
- (c) Sketch the graph of y = g(x).
- (d) Solve the equation $g(x) = x^2$.
- (e) Solve the equation g(x) = -2.

[12 marks]

[14 marks]

- 5. If $f(x) = 3x^2 + bx + 10$ and the graph y = f(x) has a line of symmetry when x = 3
 - (a) find b.
 - (b) If f(x) = f(d-x) for all x, find the value of d.
 - (c) g(x) = f(x+p) + q and g(x) is an even function which passes through the origin. Find p and q.
 - (d) Find the set values which satisfy g(x) = g(|x|).

- **8.** (a) $y \neq \frac{a}{2}$
 - (b) $f^{-1}(x) = \frac{8x+3}{2x-a}, x \neq \frac{a}{2}$
 - (c) 8

Mixed examination practice 5 **Short questions**

- 1. (a) $3^x 3$ (b) $\sqrt[3]{\ln\left(\frac{x}{3}\right)+1}$
- **2.** (a) $y = \log_2 x$ (b) (1,0)
- 3. (a) x = 5, y = -4
 - (b) $f^{-1}(x) = \frac{5x+3}{x+4}$
- **4.** (a) $(x-3)^2 + 1$ (b) $\sqrt{x-1} + 3$
 - (c) $x \ge 1$
- 5. (a) $(x-3)^2 7$ (b) $y \ge -7$ (c) $\sqrt{x+7} + 3$
- **6.** (a) $y \in \mathbb{R}, y \neq -1$

- (c) $f^{-1}(x) = \frac{3-x}{x+1}, x \neq -1, y \neq -1$
- 7. (a) (i) $]0,3] \cup]5,\infty[$

(ii)
$$f^{-1}(x) = \begin{cases} \ln\left(\frac{3}{x}\right), \ 0 < x \le 3 \\ 5 - x, \ x > 5 \end{cases}$$

Domain:]0, 3]∪] 5, ∞[

- (b) p = 5
- **8.** (a) a = -2, b = 1 (b) $y \ge 0$

Long questions

- **1.** (a) 10
 - (b) $4 x^2$
 - (c) Reflection in the line y = x
 - (d) (i) $\sqrt{x-1}$ (ii) y > 3(iii) x > 10
 - (e) x = -4.1
- **2.** (a) (i) 15 (ii) $y \in \mathbb{R}$ (iii) $\frac{3x+5}{x-1}$ (iv) 4x+3
 - (b) f(x) can be 1, which is not in the domain of g.
 - (c) (i) $\frac{x+3}{x-1}$ (ii) $x \neq 1$
- (ii) $y \neq 1$
- 3. (a) $(x+2)^2+5$

- (c) Range of f(x) is $y \ge 5$, Range of g(x) is y > 0
- (d) y > 9
- **4.** (a) $y = \frac{8x}{2x+3}$
 - (b)

- (c) (i) $\frac{16x+8k}{4x+2k+3}$ (ii) $x=-\frac{2k+3}{4}, y=4$
 - (iii) $f(x) = f^{-1}(x) = \frac{16x 76}{4x 16}$
- 5. (b) $f\left(\frac{1}{x}\right) + 2f(x) = \frac{2}{x} + 1$ (c) $\frac{1}{3}\left(\frac{4}{x} 2x + 1\right)$

Mixed examination practice 6

Short questions

1. (a)

$$2. \quad y = 2x^2 - 12x^2 + 24x - 18$$

3.
$$\frac{1}{3} < x < 1$$

4. (a)

(b)

5. (a)

(b) Vertical stretch with scale factor 3 and reflection in the *x*-axis (or *y*-axis)

(c)
$$f^{-1}(x) = -\frac{3}{x}$$

6. (a)

(b)
$$\left(-3, -\frac{1}{5}\right), \left(3, -\frac{1}{5}\right)$$

7. Translation by $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$ and vertical stretch with scale factor (sf)3.

8. (a) Horizontal stretch with sf 2; vertical stretch with sf 3

(b)

(c)

9. (a)

(b)

10.
$$x \ge 0$$

Long questions

- 1. (a) Translation by $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and vertical stretch with sf 3.
 - (b) Translation by $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ and translation by $\begin{pmatrix} 0 \\ 10 \end{pmatrix}$
 - (c) Translation by $\binom{5}{10}$ and vertical stretch with scale factor 3.

2. (a)
$$y = 3$$

(b)
$$p = 3, q = 1$$

(c) Translation with vector $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

(d)
$$f^{-1}(x) = \frac{2x-5}{x-3}, x \neq 3$$

(e) Reflection in the line y = x

3. (a) Translation by $\begin{pmatrix} -2\\0 \end{pmatrix}$

(ii)
$$a = -1, b = 6, c = -10,$$

$$d = -1$$

(d)

853

4. (a)

(c)

(d)
$$x = \pm \frac{10}{7}$$

(e)
$$x = \pm 3, \pm 4$$

5. (a)
$$-18$$

(c)
$$p = 3, q = 17$$
 (d) $x \in \mathbb{R}$

(d)
$$x \in \mathbb{R}$$

6. (a)

(b) (i)

(ii)

(c)
$$x = \ln(2 - \sqrt{3}), x \ge \ln 2$$

Chapter 7

Exercise 7A

- **1.** (a) (i) 3.1,8.1,13.1,18.1,23.1
 - (ii) 10,6.2,2.4,-1.4,-5.2
 - (b) (i) 0,1,4,13,40
 - (ii) 1,-1,-19,-181,-1639
 - (c) (i) 2,3,6,18,108
 - (ii) $2,1,\frac{1}{2},\frac{1}{2},1$
 - (d) (i) 3,4,8,9,13
 - (ii) -3,3,-5,7,-9
 - (e) (i) 0,4,8,12,16
 - (ii) 13,11,9,7,5
- **2.** (a) (i) 5,8,11,14,17
 - (ii) -4.5, -3, -1.5, 0, 1.5
 - (b) (i) 0,7,26,63,124
 - (ii) 5,20,45,80,125
 - (c) (i) 3,9,27,81,243
 - (ii) $4,2,1,\frac{1}{2},\frac{1}{4}$
 - (d) (i) 1,4,27,256,3125
 - (ii) 1,0,-1,0,1
- 3. (a) (i) $u_{n+1} = u_n + 3$, $u_1 = 7$
 - (ii) $u_{n+1} = u_n 0.8$, $u_1 = 1$
 - (b) (i) $u_{n+1} = 2u_n$, $u_1 = 3$
 - (ii) $u_{n+1} = 1.5u_n$, $u_1 = 12$