
1. Shown below are the graphs of y = f(x) and y = g(x).

If $(f \circ g)(x) = 3$, find all possible values of *x*.

(Total 4 marks)

2. Consider the functions given below.

$$f(x) = 2x + 3$$
$$g(x) = \frac{1}{x}, x \neq 0$$

- (a) (i) Find $(g \circ f)(x)$ and write down the domain of the function.
 - (ii) Find $(f \circ g)(x)$ and write down the domain of the function.

(2)

(b) Find the coordinates of the point where the graph of y = f(x) and the graph of $y = (g^{-1} \circ f \circ g)(x)$ intersect.

(4) (Total 6 marks) 3. Let $f(x) = \frac{4}{x+2}, x \neq -2$ and g(x) = x - 1. If $h = g \circ f$, find (a) h(x);

(b) $h^{-1}(x)$, where h^{-1} is the inverse of *h*.

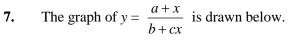
(4) (Total 6 marks)

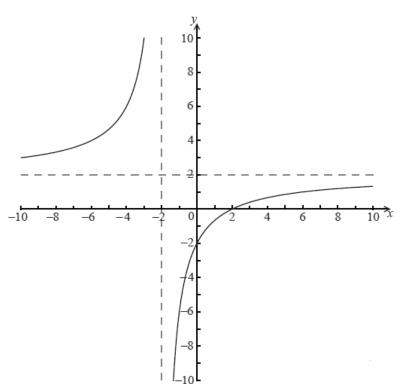
(2)

- 4. A function f is defined by $f(x) = \frac{2x-3}{x-1}, x \neq 1$.
 - (a) Find an expression for $f^{-1}(x)$. (3)
 - (b) Solve the equation $|f^{-1}(x)| = 1 + f^{-1}(x)$.

(3) (Total 6 marks)

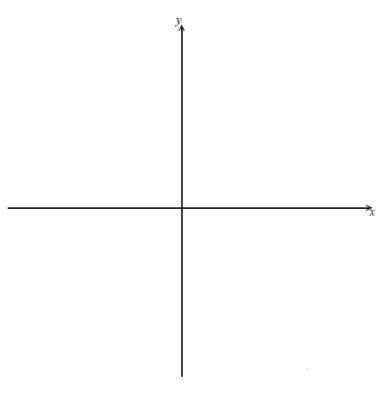
(2)


5. The real root of the equation $x^3 - x + 4 = 0$ is -1.796 to three decimal places. Determine the real root for each of the following.


(a)
$$(x-1)^3 - (x-1) + 4 = 0$$

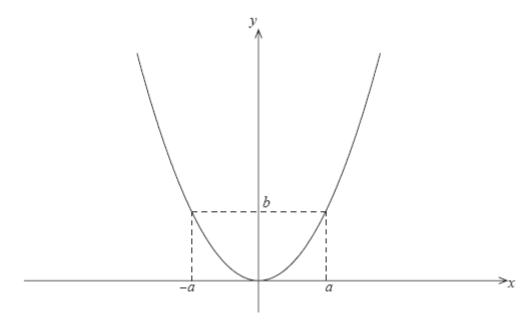
- (b) $8x^3 2x + 4 = 0$ (3) (Total 5 marks)
- 6. (a) Express the quadratic $3x^2 6x + 5$ in the form $a(x+b)^2 + c$, where $a, b, c \in \mathbb{Z}$. (3)

(b) Describe a sequence of transformations that transforms the graph of $y = x^2$ to the graph of $y = 3x^2 - 6x + 5$.


(3) (Total 6 marks)

(a) Find the value of *a*, the value of *b* and the value of *c*.

(b) Using the values of *a*, *b* and *c* found in part (a), sketch the graph of $y = \left| \frac{b + cx}{a + x} \right|$ on the axes below, showing clearly all intercepts and asymptotes.

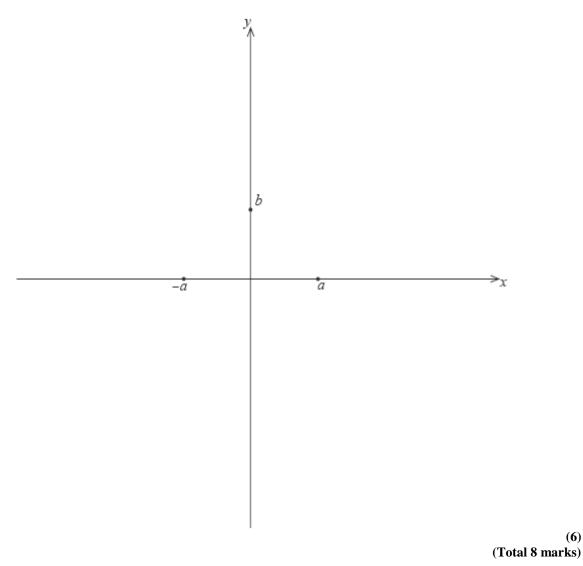

(4)

- 8. The quadratic function $f(x) = p + qx x^2$ has a maximum value of 5 when x = 3.
 - (a) Find the value of *p* and the value of *q*.
 - (b) The graph of f(x) is translated 3 units in the positive direction parallel to the *x*-axis. Determine the equation of the new graph.

(2) (Total 6 marks)

(4)

9. The diagram below shows the graph of the function y = f(x), defined for all $x \in \mathbb{R}$, where b > a > 0.



Consider the function $g(x) = \frac{1}{f(x-a)-b}$.

(a) Find the largest possible domain of the function g.

(2)

On the axes below, sketch the graph of y = g(x). On the graph, indicate any asymptotes and local maxima or minima, and write down their equations and coordinates. (b)

(6)