1. Solve $\sin 2x = \sqrt{2} \cos x$, $0 \le x \le \pi$.

(Total 6 marks)

- **2.** Let $\sin x = s$.
 - (a) Show that the equation $4 \cos 2x + 3 \sin x \csc^3 x + 6 = 0$ can be expressed as $8s^4 10s^2 + 3 = 0$.

(3)

(b) Hence solve the equation for x, in the interval $[0, \pi]$.

(6) (Total 9 marks)

3. The angle θ satisfies the equation $2 \tan^2 \theta - 5 \sec \theta - 10 = 0$, where θ is in the second quadrant. Find the value of sec θ .

(Total 6 marks)

(2)

(5)

(3)

(5)

- 4. (a) Sketch the curve $f(x) = \sin 2x$, $0 \le x \le \pi$.
 - (b) Hence sketch on a separate diagram the graph of $g(x) = \csc 2x$, $0 \le x \le \pi$, clearly stating the coordinates of any local maximum or minimum points and the equations of any asymptotes.
 - (c) Show that $\tan x + \cot x \equiv 2 \csc 2x$.
 - (d) Hence or otherwise, find the coordinates of the local maximum and local minimum points on the graph of $y = \tan 2x + \cot 2x$, $0 \le x \le \frac{\pi}{2}$.
 - (e) Find the solution of the equation $\csc 2x = 1.5 \tan x 0.5, 0 \le x \le \frac{\pi}{2}$.

(6) (Total 21 marks)