10. [Maximum mark: 6]

A given polynomial function is defined as $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$. The roots of the polynomial equation f(x) = 0 are consecutive terms of a geometric sequence with a common ratio of $\frac{1}{2}$ and first term 2.

Given that $a_{\scriptscriptstyle n-1}\!=\!-63$ and $a_{\scriptscriptstyle n}\!=16$ find

(a) the degree of the polynomial;

[4]

(b) the value of a_0 .

[2]

Do **not** write solutions on this page.

12. [Maximum mark: 21]

The following graph represents a function y = f(x), where $-3 \le x \le 5$. The function has a maximum at (3, 1) and a minimum at (-1, -1).

- (a) The functions u and v are defined as u(x) = x 3, v(x) = 2x where $x \in \mathbb{R}$.
 - (i) State the range of the function $u \circ f$.
 - (ii) State the range of the function $u \circ v \circ f$.
 - (iii) Find the largest possible domain of the function $f \circ v \circ u$. [7]
- (b) (i) Explain why f does not have an inverse.
 - (ii) The domain of f is restricted to define a function g so that it has an inverse g^{-1} . State the largest possible domain of g.
 - (iii) Sketch a graph of $y = g^{-1}(x)$, showing clearly the *y*-intercept and stating the coordinates of the endpoints. [6]

Consider the function defined by $h(x) = \frac{2x-5}{x+d}$, $x \neq -d$ and $d \in \mathbb{R}$.

- (c) (i) Find an expression for the inverse function $h^{-1}(x)$.
 - (ii) Find the value of d such that h is a self-inverse function.

For this value of d, there is a function k such that $h \circ k(x) = \frac{2x}{x+1}$, $x \neq -1$.

(iii) Find
$$k(x)$$
. [8]

Turn over