Harmonic form

Tomasz		

Batory 2IB A & A HL

March 30, 2020 1 / 12

イロト イ団ト イヨト イヨト

2

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function?

3

(日) (同) (三) (三)

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function? Think about it for a moment.

3

(日) (同) (三) (三)

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function? Think about it for a moment.

I will use the following argument: the range of $\cos x$ is [-1, 1], so the range of $3\cos x$ is [-3, 3], similarly the range of $4\sin x$ is [-4, 4], so the range of $3\cos x + 4\sin x$ is [-7, 7].

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function? Think about it for a moment.

I will use the following argument: the range of $\cos x$ is [-1, 1], so the range of $3\cos x$ is [-3, 3], similarly the range of $4\sin x$ is [-4, 4], so the range of $3\cos x + 4\sin x$ is [-7, 7]. Correct?

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function? Think about it for a moment.

I will use the following argument: the range of $\cos x$ is [-1, 1], so the range of $3\cos x$ is [-3, 3], similarly the range of $4\sin x$ is [-4, 4], so the range of $3\cos x + 4\sin x$ is [-7, 7]. Correct? **NO**!

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function? Think about it for a moment.

I will use the following argument: the range of $\cos x$ is [-1, 1], so the range of $3\cos x$ is [-3, 3], similarly the range of $4\sin x$ is [-4, 4], so the range of $3\cos x + 4\sin x$ is [-7, 7]. Correct? **NO**!

The range of $f(x) = 3\cos x + 4\sin x$ is **not** [-7, 7].

Let's start with a simple question. Consider a function

 $f(x) = 3\cos x + 4\sin x$

What is the range of this function? Think about it for a moment.

I will use the following argument: the range of $\cos x$ is [-1, 1], so the range of $3\cos x$ is [-3, 3], similarly the range of $4\sin x$ is [-4, 4], so the range of $3\cos x + 4\sin x$ is [-7, 7]. Correct? **NO**!

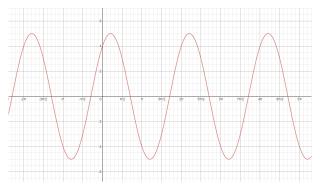
The range of $f(x) = 3\cos x + 4\sin x$ is **not** [-7,7]. The reason the above argument is wrong is that $\cos x$ and $\sin x$ are maximal/minimal for different values of x (there is no x for which $\cos x = 1$ and $\sin x = 1$ simultaneously).

Tomasz Lechowski

So what is the range of $f(x) = 3\cos x + 4\sin x$?

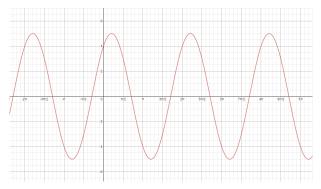
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

So what is the range of $f(x) = 3\cos x + 4\sin x$? Let's graph this using technology:



▲ □ ► ▲ □ ► ▲

So what is the range of $f(x) = 3\cos x + 4\sin x$? Let's graph this using technology:



We can actually see what the range is from the graph, but that won't always be possible. What's more important is that the graph is a trigonometric function. So we should be able to write f(x) as a single

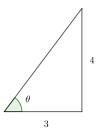
Tomasz Lechowski

If we look at the expression $3\cos x + 4\sin x$ it looks a little bit like the formula for the compound angle.

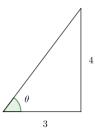
3

(日) (同) (三) (三)

If we look at the expression $3\cos x + 4\sin x$ it looks a little bit like the formula for the compound angle. What we want to do is to replace 3 with a $\cos \theta$ and 4 with a $\sin \theta$. In order to do so we can draw an auxiliary right triangle with the angle θ , the adjacent side 3 and the opposite side 4:



If we look at the expression $3\cos x + 4\sin x$ it looks a little bit like the formula for the compound angle. What we want to do is to replace 3 with a $\cos \theta$ and 4 with a $\sin \theta$. In order to do so we can draw an auxiliary right triangle with the angle θ , the adjacent side 3 and the opposite side 4:



The hypotenuse is then 5 and $\theta = \arctan\left(\frac{4}{3}\right)$.

All of this allows us to write:

$$3\cos x + 4\sin x = 5\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right)$$

All of this allows us to write:

$$3\cos x + 4\sin x = 5\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right)$$

which gives:

$$5\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right) = 5(\cos\theta\cos x + \sin\theta\sin x)$$

where $\theta = \arctan\left(\frac{4}{3}\right)$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

All of this allows us to write:

$$3\cos x + 4\sin x = 5\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right)$$

which gives:

$$5\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right) = 5(\cos\theta\cos x + \sin\theta\sin x)$$

where $\theta = \arctan\left(\frac{4}{3}\right)$. Now we use the compound angle formula to get:

$$5(\cos\theta\cos x + \sin\theta\sin x) = 5\cos(x-\theta)$$

• • = • •

In the end we got the

$$f(x) = 5\cos(x-\theta)$$

where $\theta = \arctan\left(\frac{4}{3}\right)$.

3

<ロ> (日) (日) (日) (日) (日)

۱

In the end we got the

$$f(x) = 5\cos(x - heta)$$

where $heta = \arctan{\left(rac{4}{3}
ight)}.$

 θ corresponds to a horizontal shift, so it doesn't influence the range. The amplitude is 5, so the range of f is [-5, 5].

3

(日) (周) (三) (三)

Find the range of $f(x) = 2 \sin x - \cos x$.

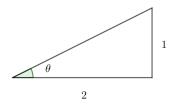
(日) (四) (王) (王) (王)

Find the range of $f(x) = 2 \sin x - \cos x$.

We will try to write f(x) in the form $R\sin(x-\theta)$.

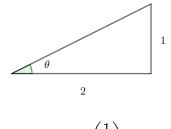
Find the range of $f(x) = 2 \sin x - \cos x$.

We will try to write f(x) in the form $R \sin(x - \theta)$. So we want to change the 2 into cos and 1 into sin. We can draw a triangle with adjacent side 2 and the opposite side 1.



Find the range of $f(x) = 2 \sin x - \cos x$.

We will try to write f(x) in the form $R \sin(x - \theta)$. So we want to change the 2 into cos and 1 into sin. We can draw a triangle with adjacent side 2 and the opposite side 1.



The hypotenuse is $\sqrt{5}$ and $\theta = \arctan\left(\frac{1}{2}\right)$.

We can now write:

$$2\sin x - \cos x = \sqrt{5} \left(\frac{2}{\sqrt{5}} \sin x - \frac{1}{\sqrt{5}} \cos x \right) =$$
$$= \sqrt{5} \left(\cos \theta \sin x - \sin \theta \cos x \right)$$
$$= \sqrt{5} \sin(x - \theta)$$

where
$$\theta = \arctan\left(\frac{1}{2}\right)$$
.

(日) (四) (三) (三) (三)

We can now write:

$$2\sin x - \cos x = \sqrt{5} \left(\frac{2}{\sqrt{5}} \sin x - \frac{1}{\sqrt{5}} \cos x \right) =$$
$$= \sqrt{5} \left(\cos \theta \sin x - \sin \theta \cos x \right)$$
$$= \sqrt{5} \sin(x - \theta)$$

where
$$\theta = \arctan\left(\frac{1}{2}\right)$$
.

So $f(x) = \sqrt{5} \sin(x - \theta)$, which means that the range of f(x) is $[-\sqrt{5}, \sqrt{5}]$.

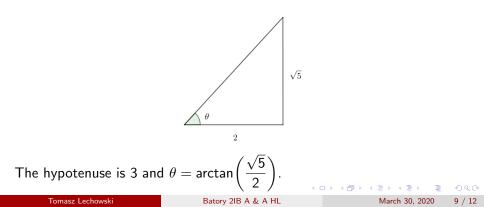
(日) (四) (王) (王) (王)

Find the range of $f(x) = 2\sin x + \sqrt{5}\cos x$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Find the range of $f(x) = 2\sin x + \sqrt{5}\cos x$.

We will try to write f(x) in the form $R\sin(x + \theta)$. So we want to change the 2 into cos and $\sqrt{5}$ into sin. We will draw a triangle with adjacent side 2 and opposite side $\sqrt{5}$:

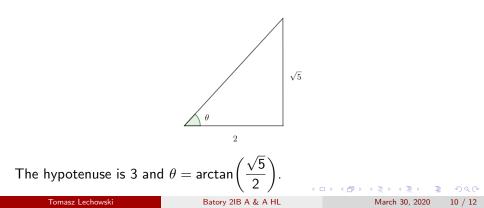


Find the range of $f(x) = 2\sin x + \sqrt{5}\cos x$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Find the range of $f(x) = 2\sin x + \sqrt{5}\cos x$.

We will try to write f(x) in the form $R\sin(x + \theta)$. So we want to change the 2 into cos and $\sqrt{5}$ into sin. We will draw a triangle with adjacent side 2 and opposite side $\sqrt{5}$:



We get:

$$2\sin x + \sqrt{5}\cos x = 3\left(\frac{2}{3}\sin x + \frac{\sqrt{5}}{3}\cos x\right) =$$
$$= 3\left(\cos\theta\sin x + \sin\theta\cos x\right)$$
$$= 3\sin(x+\theta)$$

where
$$\theta = \arctan\left(\frac{\sqrt{5}}{2}\right)$$
.

We get:

$$2\sin x + \sqrt{5}\cos x = 3\left(\frac{2}{3}\sin x + \frac{\sqrt{5}}{3}\cos x\right) =$$
$$= 3\left(\cos\theta\sin x + \sin\theta\cos x\right)$$
$$= 3\sin(x+\theta)$$

where $\theta = \arctan\left(\frac{\sqrt{5}}{2}\right)$.

So $f(x) = 3\sin(x + \theta)$, which means that the range of f(x) is [-3, 3].

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

I anticipate many questions, make sure you try to understand the above examples, but we will go back and expand this on Tuesday.