Exponential function

We will analyse functions $f(x) = a^x$, where $a \in \mathbb{R}^+$, i.e. a is a positive real number.

$$f(x) = 3^x$$
,

$$f(x) = 3^x$$
,

ii
$$f(x) = (0.2)^x$$
,

- $f(x) = 3^x$,
- ii $f(x) = (0.2)^x$,
- iii $f(x) = (1.3)^x$,

- $f(x) = 3^x$
- ii $f(x) = (0.2)^x$,
- iii $f(x) = (1.3)^x$,
- iv $f(x) = 1^x$.

These are some examples of an exponential function:

$$f(x) = 3^x$$

ii
$$f(x) = (0.2)^x$$
,

iii
$$f(x) = (1.3)^x$$
,

iv
$$f(x) = 1^x$$
.

These are some examples of an exponential function:

$$i f(x) = 3^x,$$

ii
$$f(x) = (0.2)^x$$
,

iii
$$f(x) = (1.3)^x$$
,

iv
$$f(x) = 1^x$$
.

$$f(x) = a^x$$
, where $a > 1$, examples (i) and (iii),

These are some examples of an exponential function:

i
$$f(x) = 3^x$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

$$f(x) = a^x$$
, where $a > 1$, examples (i) and (iii), $f(x) = a^x$, where $0 < a < 1$, example (ii),

These are some examples of an exponential function:

i
$$f(x) = 3^x$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

$$f(x) = a^x$$
, where $a > 1$, examples (i) and (iii), $f(x) = a^x$, where $0 < a < 1$, example (ii), $f(x) = a^x$, where $a = 1$.

These are some examples of an exponential function:

i
$$f(x) = 3^x$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

Each of the above is of the form $f(x) = a^x$, but we divide them into 3 categories:

$$f(x) = a^x$$
, where $a > 1$, examples (i) and (iii), $f(x) = a^x$, where $0 < a < 1$, example (ii), $f(x) = a^x$, where $a = 1$.

We will analyse them separately.

We will start with $f(x) = a^x$, where a > 1.

We will start with $f(x) = a^x$, where a > 1. Examples include: $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 5^x$.

4 / 20

We will start with $f(x) = a^x$, where a > 1. Examples include: $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 5^x$.

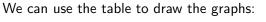
We will start with the primary school approach. Substitute some value for x and organize the results into a table:

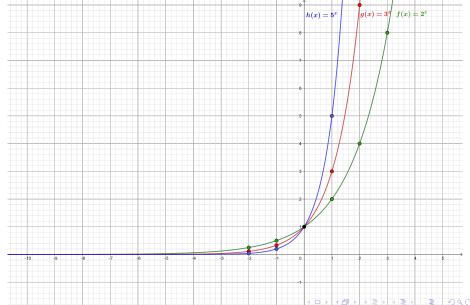
We will start with $f(x) = a^x$, where a > 1. Examples include: $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 5^x$.

We will start with the primary school approach. Substitute some value for x and organize the results into a table:

×	-2	-1	0	1	2	3	4
f(x)	0.25	0.5	1	2	4	8	16
g(x)	0.(1)	0.(3)	1	3	9	27	81
h(x)	0.004	0.02	1	5	25	125	625

We can use the table to draw the graphs:





What observations can we make?

What observations can we make?

For x = 0, the value is 1.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.).

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0. $\lim_{x\to -\infty} f(x) = 0$.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty$.

As x approaches minus infinity, the values of the function approach 0. $\lim_{x\to -\infty} f(x)=0$.

The function is always positive.

What observations can we make?

For x = 0, the value is 1. No surprises here since $f(0) = a^0 = 1$.

The greater the argument, the greater the value. So the function is **increasing**.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0. $\lim_{x\to -\infty} f(x)=0$.

The function is always positive. The range is $]0,\infty[$.

Based on these observations we can do some exercises.

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

7 / 20

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}, \ 7^{\sqrt{2}}, \ 7^2, \ 7^{-\sqrt{6}}, \ 7^{2\sqrt{2}}$$

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with a > 1 (7 > 1),

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with a > 1 (7 > 1), so it's an increasing function,

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with a > 1 (7 > 1), so it's an increasing function, so the greater the argument, the greater the value.

a > 1

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with a > 1 (7 > 1), so it's an increasing function, so the greater the argument, the greater the value. We will organize the arguments first:

a > 1

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with a > 1 (7 > 1), so it's an increasing function, so the greater the argument, the greater the value. We will organize the arguments first:

$$-\sqrt{6} < \sqrt{2} < \sqrt{3} < 2 < 2\sqrt{2}$$

a > 1

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where a > 1.

Arrange the following in ascending order:

$$7^{\sqrt{3}}$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with a > 1 (7 > 1), so it's an increasing function, so the greater the argument, the greater the value. We will organize the arguments first:

$$-\sqrt{6} < \sqrt{2} < \sqrt{3} < 2 < 2\sqrt{2}$$

so we have:

$$7^{-\sqrt{6}} < 7^{\sqrt{2}} < 7^{\sqrt{3}} < 7^2 < 7^{2\sqrt{2}}$$

Find the range of
$$f(x) = \frac{2}{3^x + 1}$$
.

Find the range of
$$f(x) = \frac{2}{3^x + 1}$$
.

In the denominator we have a function 3^x , whose range is $]0,\infty[$.

Find the range of
$$f(x) = \frac{2}{3^x + 1}$$
.

In the denominator we have a function 3^x , whose range is $]0,\infty[$.

So the range of values of the denominator is $]1,\infty[$.

Find the range of
$$f(x) = \frac{2}{3^x + 1}$$
.

In the denominator we have a function 3^x , whose range is $]0,\infty[$.

So the range of values of the denominator is $]1,\infty[$. The denominator is then always positive, so the greater the denominator, the smaller the whole fraction and *vice versa*.

Find the range of $f(x) = \frac{2}{3^x + 1}$.

In the denominator we have a function 3^x , whose range is $]0,\infty[$.

So the range of values of the denominator is $]1,\infty[$. The denominator is then always positive, so the greater the denominator, the smaller the whole fraction and *vice versa*.

So the range of the function will be]0,2[(0 when the denominator approaches ∞ , and 2 when the denominator approaches 1).

8 / 20

Find the range of
$$f(x) = \frac{2^x + 4}{2^x + 1}$$
.

Find the range of
$$f(x) = \frac{2^x + 4}{2^x + 1}$$
.

We will rearrange the function:

Find the range of $f(x) = \frac{2^x + 4}{2^x + 1}$.

We will rearrange the function:

$$f(x) = \frac{2^{x} + 4}{2^{x} + 1} = \frac{2^{x} + 1 + 3}{2^{x} + 1} = 1 + \frac{3}{2^{x} + 1}$$

Find the range of $f(x) = \frac{2^x + 4}{2^x + 1}$.

We will rearrange the function:

$$f(x) = \frac{2^{x} + 4}{2^{x} + 1} = \frac{2^{x} + 1 + 3}{2^{x} + 1} = 1 + \frac{3}{2^{x} + 1}$$

Now the problem is similar to the previous one.

Find the range of $f(x) = \frac{2^x + 4}{2^x + 1}$.

We will rearrange the function:

$$f(x) = \frac{2^{x} + 4}{2^{x} + 1} = \frac{2^{x} + 1 + 3}{2^{x} + 1} = 1 + \frac{3}{2^{x} + 1}$$

Now the problem is similar to the previous one. 2^x+1 has range of $]1,\infty[$, so $\frac{3}{2^x+1}$ has range of]0,3[,

Find the range of $f(x) = \frac{2^x + 4}{2^x + 1}$.

We will rearrange the function:

$$f(x) = \frac{2^{x} + 4}{2^{x} + 1} = \frac{2^{x} + 1 + 3}{2^{x} + 1} = 1 + \frac{3}{2^{x} + 1}$$

Now the problem is similar to the previous one. 2^x+1 has range of $]1,\infty[$, so $\frac{3}{2^x+1}$ has range of]0,3[,

We add 1 so in the end the range of the function is]1,4[.

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you.

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic.

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

With $t \in]0, \infty[$ (since this is the range of 6^{\times}).

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

With $t \in]0, \infty[$ (since this is the range of 6^x). Now we analyse the quadratic:

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

With $t \in]0, \infty[$ (since this is the range of 6^x). Now we analyse the quadratic: a = -1 < 0, so arms downwards.

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

With $t \in]0, \infty[$ (since this is the range of 6^x). Now we analyse the quadratic: a = -1 < 0, so arms downwards. No roots.

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

With $t \in]0, \infty[$ (since this is the range of 6^x). Now we analyse the quadratic: a = -1 < 0, so arms downwards. No roots. Y-intercept (0, -5).

Find the range of $f(x) = -36^x - 4 \cdot 6^x - 5$.

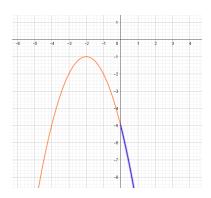
This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$f(t) = -t^2 - 4t - 5$$

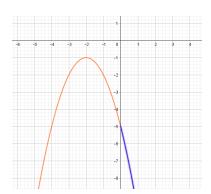
With $t \in]0, \infty[$ (since this is the range of 6^x). Now we analyse the quadratic: a = -1 < 0, so arms downwards. No roots. Y-intercept (0, -5). The vertex is (-2, -1).

The graph looks like this

The graph looks like this



The graph looks like this



But we're interested in the blue part only (since $t \in]0, \infty[$), so in the end the range is $]-\infty, -5[$.

Short but important note must be made here. The blue part of the graph of the quadratic is **not** the graph of f(x) (in particular the domain of f(x) is all real numbers), but the ranges of these functions are the same.

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

We get the function $f(t) = 2^t$, which is easy to analyse,

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

We get the function $f(t) = 2^t$, which is easy to analyse, we just need to find its domain.

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

We get the function $f(t) = 2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1, 1]$, then $t = -x^2 + 9 \in [8, 9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain [-1, 1]).

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

We get the function $f(t) = 2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1, 1]$, then $t = -x^2 + 9 \in [8, 9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain [-1, 1]).

We go back to $f(t) = 2^t$,

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

We get the function $f(t) = 2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1, 1]$, then $t = -x^2 + 9 \in [8, 9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain [-1, 1]).

We go back to $f(t) = 2^t$, the domain is $t \in [8, 9]$ and 2^t is an increasing function,

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1, 1]$.

We will set $t = -x^2 + 9$ to simplify things.

We get the function $f(t) = 2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1, 1]$, then $t = -x^2 + 9 \in [8, 9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain [-1, 1]).

We go back to $f(t) = 2^t$, the domain is $t \in [8, 9]$ and 2^t is an increasing function, so the range is $[2^8, 2^9]$, so [256, 512].

Now we will consider the case $f(x) = a^x$, where 0 < a < 1.

Now we will consider the case $f(x) = a^x$, where 0 < a < 1. Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

Now we will consider the case $f(x) = a^x$, where 0 < a < 1. Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case a>1, namely create a table and based on that draw the graph.

Now we will consider the case $f(x) = a^x$, where 0 < a < 1. Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case a>1, namely create a table and based on that draw the graph.

We will however look at this differently. Let's compare $f_1(x) = (0.5)^x$ and $f_2(x) = 2^x$,

Now we will consider the case $f(x) = a^x$, where 0 < a < 1. Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case a>1, namely create a table and based on that draw the graph.

We will however look at this differently. Let's compare $f_1(x) = (0.5)^x$ and $f_2(x) = 2^x$, we have:

$$f_1(x) = \left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x} = f_2(-x)$$

What does this mean?

Now we will consider the case $f(x) = a^x$, where 0 < a < 1. Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case a>1, namely create a table and based on that draw the graph.

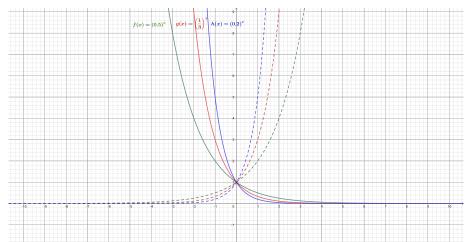
We will however look at this differently. Let's compare $f_1(x) = (0.5)^x$ and $f_2(x) = 2^x$, we have:

$$f_1(x) = \left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x} = f_2(-x)$$

What does this mean? It means that the graph of $f_1(x)$ is a reflection of the graph of $f_2(x)$ in the y-axis.

So the graphs of $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$ look as follows (dotted lines represent graphs of 2^x , 3^x and 5^x):

So the graphs of $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$ look as follows (dotted lines represent graphs of 2^x , 3^x and 5^x):



What do we see?

What do we see? The observation are similar:

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value.

16 / 20

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0.

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0$.

16 / 20

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0$.

As *x* approaches minus infinity, the values of the function approach infinity.

16 / 20

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0$.

As x approaches minus infinity, the values of the function approach infinity. $\lim_{x\to -\infty} f(x) = \infty$.

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0$.

As x approaches minus infinity, the values of the function approach infinity. $\lim_{x\to -\infty} f(x) = \infty$.

The function is always positive

What do we see? The observation are similar:

For x = 0, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is **decreasing**.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0$.

As x approaches minus infinity, the values of the function approach infinity. $\lim_{x\to -\infty} f(x) = \infty$.

The function is always positive The range of values is $]0, \infty[$.

Arrange in ascending order:

$$\left(\frac{1}{4}\right)^{\sqrt{5}}, \quad \left(\frac{1}{4}\right)^{\sqrt{3}}, \quad \left(\frac{1}{4}\right)^{-1}, \quad \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \quad \left(\frac{1}{4}\right)^{3}, \quad \left(\frac{1}{4}\right)^{2}$$

Arrange in ascending order:

$$\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \left(\frac{1}{4}\right)^{-1}, \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \left(\frac{1}{4}\right)^{3}, \ \left(\frac{1}{4}\right)^{2}$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^x$, since $0 < \frac{1}{4} < 1$, the function is decreasing.

Arrange in ascending order:

$$\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \left(\frac{1}{4}\right)^{-1}, \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \left(\frac{1}{4}\right)^{3}, \ \left(\frac{1}{4}\right)^{2}$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^x$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

Arrange in ascending order:

$$\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \left(\frac{1}{4}\right)^{-1}, \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \left(\frac{1}{4}\right)^{3}, \ \left(\frac{1}{4}\right)^{2}$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^x$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

$$-1<-\frac{1}{2}<\sqrt{3}<2<\sqrt{5}<3$$

Arrange in ascending order:

$$\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \left(\frac{1}{4}\right)^{-1}, \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \left(\frac{1}{4}\right)^{3}, \ \left(\frac{1}{4}\right)^{2}$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^x$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

$$-1<-\frac{1}{2}<\sqrt{3}<2<\sqrt{5}<3$$

Since the function is decreasing (the larger the argument, the smaller the value) we have:

Arrange in ascending order:

$$\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \left(\frac{1}{4}\right)^{-1}, \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \left(\frac{1}{4}\right)^{3}, \ \left(\frac{1}{4}\right)^{2}$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^x$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

$$-1<-\frac{1}{2}<\sqrt{3}<2<\sqrt{5}<3$$

Since the function is decreasing (the larger the argument, the smaller the value) we have:

$$\left(\frac{1}{4}\right)^3 < \left(\frac{1}{4}\right)^{\sqrt{5}} < \left(\frac{1}{4}\right)^2 < \left(\frac{1}{4}\right)^{\sqrt{3}} < \left(\frac{1}{4}\right)^{-\frac{1}{2}} < \left(\frac{1}{4}\right)^{-1}$$

4□ > 4₫ > 4₫ > 4₫ > 4 € > € *) 4(*

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})^t$.

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})^t$. We need to find its domain.

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})^t$.

We need to find its domain. Since $x \in [0,3]$, then $t = x^2 - 2x + 1 \in [0,4]$ (t = 0 for x = 1 and t = 4 for x = 3).

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})^t$.

We need to find its domain. Since $x \in [0,3]$, then $t = x^2 - 2x + 1 \in [0,4]$ (t = 0 for x = 1 and t = 4 for x = 3).

f(t) is decreasing so we will get the least value for t = 4,

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})^t$.

We need to find its domain. Since $x \in [0,3]$, then $t = x^2 - 2x + 1 \in [0,4]$ (t = 0 for x = 1 and t = 4 for x = 3).

f(t) is decreasing so we will get the least value for t = 4,

$$f(4)=(\frac{\sqrt{3}}{3})^4=\frac{1}{9}$$
 and the greatest value for $t=0$, $f(0)=1$.

Find the set of values of
$$f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2 - 2x + 1}$$
 for $x \in [0, 3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})^t$.

We need to find its domain. Since $x \in [0,3]$, then $t = x^2 - 2x + 1 \in [0,4]$ (t = 0 for x = 1 and t = 4 for x = 3).

f(t) is decreasing so we will get the least value for t = 4,

$$f(4)=(\frac{\sqrt{3}}{3})^4=\frac{1}{9}$$
 and the greatest value for $t=0$, $f(0)=1$.

So in the end the range is $\left[\frac{1}{9}, 1\right]$.

a = 1

Finally the case $f(x) = a^x$, where a = 1.

a = 1

Finally the case $f(x) = a^x$, where a = 1. This is a trivial case $f(x) = a^x = 1^x = 1$.

a=1

Finally the case $f(x) = a^x$, where a = 1. This is a trivial case $f(x) = a^x = 1^x = 1$. So we have a constant function, whose graph is a horizontal line y = 1.

a=1

Finally the case $f(x) = a^x$, where a = 1. This is a trivial case $f(x) = a^x = 1^x = 1$. So we have a constant function, whose graph is a horizontal line y = 1. No more needs to be said about this case.

In case of any questions you can email me at t.j.lechowski@gmail.com.