Intro to logarithms

イロト イ団ト イヨト イヨト

Definition

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

< ロ > < 同 > < 三 > < 三

Definition

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

What does it mean?

Image: Image:

- ∢ ∃ ▶

Definition

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

What does it mean? First of all the assumptions (restrictions) are important. The number a, called the base of the logarithm, has to be greater than 0 and cannot be equal to 1.

Definition

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

What does it mean? First of all the assumptions (restrictions) are important. The number a, called the base of the logarithm, has to be greater than 0 and cannot be equal to 1. The number b (which we take the logarithm of) has to be greater than 0.

Definition

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

What does it mean? First of all the assumptions (restrictions) are important. The number a, called the base of the logarithm, has to be greater than 0 and cannot be equal to 1. The number b (which we take the logarithm of) has to be greater than 0.

So the expressions like $\log_1 3$, $\log_{-2} 5$ or $\log_4(-1)$ are not defined in real numbers (similarly to expressions like $\sqrt{-6}$).

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

イロト イヨト イヨト イヨト

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

イロト イヨト イヨト イヨト

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

Secondly $\log_a b = c$ means a raised to the power of c is equal to b.

Tomasz Lechowski

Batory 2IB A & A HL

April 27, 2020 3 / 16

Image: A match a ma

For a > 0, $a \neq 1$ and b > 0 we have:

$$\log_a b = c \iff a^c = b$$

Secondly $\log_a b = c$ means *a* raised to the power of *c* is equal to *b*. So if we want to calculate $\log_a b$, we need to find a number to which we need to raise *a* to to get *b*.

We will practice the above definition in this presentation.

-

Image: A match a ma

Calculate $\log_{\frac{1}{3}} 81$.

ヘロト 人間 と 人間 と 人間 と

Calculate $\log_{\frac{1}{3}} 81$.

We need to find the power to which to raise $\frac{1}{3}$ to get 81.

イロト イ団ト イヨト イヨト

Calculate $\log_{\frac{1}{3}} 81$.

We need to find the power to which to raise $\frac{1}{3}$ to get 81. This can be written as an exponential equation:

$$\left(\frac{1}{3}\right)^{x} = 81$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Calculate $\log_{\frac{1}{3}} 81$.

We need to find the power to which to raise $\frac{1}{3}$ to get 81. This can be written as an exponential equation:

$$\left(\frac{1}{3}\right)^{x} = 81$$

So we have:

$$3^{-x} = 3^4$$

Calculate $\log_{\frac{1}{3}} 81$.

We need to find the power to which to raise $\frac{1}{3}$ to get 81. This can be written as an exponential equation:

$$\left(\frac{1}{3}\right)^{x} = 81$$

So we have:

$$3^{-x} = 3^4$$

which gives x = -4.

(日) (同) (三) (三)

Calculate $\log_{\frac{1}{3}} 81$.

We need to find the power to which to raise $\frac{1}{3}$ to get 81. This can be written as an exponential equation:

$$\left(\frac{1}{3}\right)^{x} = 81$$

So we have:

$$3^{-x} = 3^4$$

which gives x = -4.

So $\log_{\frac{1}{3}} 81 = -4$.

イロト イヨト イヨト イヨト

Calculate $\log_6 \frac{1}{216}$.

<ロ> (日) (日) (日) (日) (日)

Calculate $\log_6 \frac{1}{216}$.

We need to find the power to which to raise 6 to get $\frac{1}{216}$.

(日) (同) (三) (三)

Calculate $\log_6 \frac{1}{216}$.

We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential equation:

$$6^{x} = \frac{1}{216}$$

(日) (同) (三) (三)

Calculate $\log_6 \frac{1}{216}$.

We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential equation:

$$6^{x} = \frac{1}{216}$$

This gives:

$$6^{x} = 6^{-3}$$

Calculate $\log_6 \frac{1}{216}$.

We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential equation:

$$6^{x} = \frac{1}{216}$$

This gives:

$$6^{x} = 6^{-3}$$

so x = -3.

(日) (同) (三) (三)

Calculate $\log_6 \frac{1}{216}$.

We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential equation:

$$6^{x} = \frac{1}{216}$$

This gives:

$$6^{x} = 6^{-3}$$

so x = -3.

So $\log_6 \frac{1}{216} = -3$.

E 990

(日) (周) (三) (三)

Calculate $\log_{\frac{1}{4}} 16$.

◆□> ◆□> ◆豆> ◆豆> □ 豆

Calculate $\log_{\frac{1}{4}} 16$.

We need to find the power to which to raise $\frac{1}{4}$, to get 16.

イロト イヨト イヨト イヨト

Calculate $\log_{\frac{1}{4}} 16$.

We need to find the power to which to raise $\frac{1}{4}$, to get 16. We can rewrite this as an exponential equation:

$$\left(\frac{1}{4}\right)^{x} = 16$$

(日) (同) (三) (三)

Calculate $\log_{\frac{1}{4}} 16$.

We need to find the power to which to raise $\frac{1}{4}$, to get 16. We can rewrite this as an exponential equation:

$$\left(\frac{1}{4}\right)^x = 16$$

We can change all terms into powers of 4 (or 2)

$$4^{-x} = 4^2$$

Calculate $\log_{\frac{1}{4}} 16$.

We need to find the power to which to raise $\frac{1}{4}$, to get 16. We can rewrite this as an exponential equation:

$$\left(\frac{1}{4}\right)^x = 16$$

We can change all terms into powers of 4 (or 2)

$$4^{-x} = 4^2$$

so x = -2.

Calculate $\log_{\frac{1}{4}} 16$.

We need to find the power to which to raise $\frac{1}{4}$, to get 16. We can rewrite this as an exponential equation:

$$\left(\frac{1}{4}\right)^x = 16$$

We can change all terms into powers of 4 (or 2)

$$4^{-x} = 4^2$$

so x = -2.

So $\log_{\frac{1}{4}} 16 = -2.$

Tomasz Lechowski

(日) (周) (三) (三)

Calculate $\log_{2\sqrt{2}} 16$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Calculate $\log_{2\sqrt{2}} 16$.

We need to find the power to which to raise $2\sqrt{2}$ to get 16.

Calculate $\log_{2\sqrt{2}} 16$.

We need to find the power to which to raise $2\sqrt{2}$ to get 16. We write the corresponding exponential equation:

$$(2\sqrt{2})^{x} = 16$$

< ロ > < 同 > < 三 > < 三

Calculate $\log_{2\sqrt{2}} 16$.

We need to find the power to which to raise $2\sqrt{2}$ to get 16. We write the corresponding exponential equation:

$$(2\sqrt{2})^{x} = 16$$

Change into powers of 2:

$$2^{\frac{3}{2}x} = 2^4$$

< ロ > < 同 > < 三 > < 三

Calculate $\log_{2\sqrt{2}} 16$.

We need to find the power to which to raise $2\sqrt{2}$ to get 16. We write the corresponding exponential equation:

$$(2\sqrt{2})^x = 16$$

Change into powers of 2:

$$2^{\frac{3}{2}x} = 2^4$$

so $x = \frac{8}{3}$.

(日) (同) (三) (三)

Calculate $\log_{2\sqrt{2}} 16$.

We need to find the power to which to raise $2\sqrt{2}$ to get 16. We write the corresponding exponential equation:

$$(2\sqrt{2})^{x} = 16$$

Change into powers of 2:

$$2^{\frac{3}{2}x} = 2^4$$

so $x = \frac{8}{3}$.

So we have $\log_{2\sqrt{2}} 16 = \frac{8}{3}$.

(日) (周) (三) (三)

Calculate $\log_5 125\sqrt{5}$.

<ロ> (日) (日) (日) (日) (日)
Calculate $\log_5 125\sqrt{5}$.

We need to find the power to which to raise 5 to get $125\sqrt{5}$.

Calculate $\log_5 125\sqrt{5}$.

We need to find the power to which to raise 5 to get $125\sqrt{5}$. The corresponding exponential equation is:

 $5^{\times} = 125\sqrt{5}$

Calculate $\log_5 125\sqrt{5}$.

We need to find the power to which to raise 5 to get $125\sqrt{5}$. The corresponding exponential equation is:

$$5^{x} = 125\sqrt{5}$$

Which gives:

$$5^{x} = 5^{3.5}$$

Calculate $\log_5 125\sqrt{5}$.

We need to find the power to which to raise 5 to get $125\sqrt{5}$. The corresponding exponential equation is:

$$5^{x} = 125\sqrt{5}$$

Which gives:

$$5^{x} = 5^{3.5}$$

so x = 3.5.

Calculate $\log_5 125\sqrt{5}$.

We need to find the power to which to raise 5 to get $125\sqrt{5}$. The corresponding exponential equation is:

$$5^{x} = 125\sqrt{5}$$

Which gives:

$$5^{x} = 5^{3.5}$$

so x = 3.5.

So we have $\log_5 125\sqrt{5} = 3.5$.

- ∢ ∃ ▶

Calculate $\log_{3\sqrt{3}} 81\sqrt[3]{3}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Calculate $\log_{3\sqrt{3}} 81\sqrt[3]{3}$.

We need to find the power to which to raise $3\sqrt{3}$ to get $81\sqrt[3]{3}$.

イロン 不聞と 不同と 不同と

Calculate $\log_{3\sqrt{3}} 81\sqrt[3]{3}$.

We need to find the power to which to raise $3\sqrt{3}$ to get $81\sqrt[3]{3}$. We need to solve the following exponential equation:

 $(3\sqrt{3})^{x} = 81\sqrt[3]{3}$

イロト イヨト イヨト

Calculate $\log_{3\sqrt{3}} 81\sqrt[3]{3}$.

We need to find the power to which to raise $3\sqrt{3}$ to get $81\sqrt[3]{3}$. We need to solve the following exponential equation:

$$(3\sqrt{3})^{\times} = 81\sqrt[3]{3}$$

Change into powers of 3:

$$3^{\frac{3}{2}x} = 3^{4\frac{1}{3}}$$

3

Calculate $\log_{3\sqrt{3}} 81\sqrt[3]{3}$.

We need to find the power to which to raise $3\sqrt{3}$ to get $81\sqrt[3]{3}$. We need to solve the following exponential equation:

$$(3\sqrt{3})^{\times} = 81\sqrt[3]{3}$$

Change into powers of 3:

$$3^{\frac{3}{2}x} = 3^{4\frac{1}{3}}$$

this gives $x = \frac{26}{9}$.

Calculate $\log_{3\sqrt{3}} 81\sqrt[3]{3}$.

We need to find the power to which to raise $3\sqrt{3}$ to get $81\sqrt[3]{3}$. We need to solve the following exponential equation:

$$(3\sqrt{3})^x = 81\sqrt[3]{3}$$

Change into powers of 3:

$$3^{\frac{3}{2}x} = 3^{4\frac{1}{3}}$$

this gives $x = \frac{26}{9}$.

So we have $\log_{3\sqrt{3}} 81\sqrt[3]{3} = \frac{26}{9}$.

イロト イポト イヨト イヨト 二日

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

▲□ > ▲圖 > ▲目 > ▲目 > □ = − の < @

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2\sqrt[5]{64}}{\sqrt{8}}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2\sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$\left(\frac{1}{4}\right)^{\times} = \frac{2\sqrt[5]{64}}{\sqrt{8}}$$

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2\sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$\left(\frac{1}{4}\right)^{x} = \frac{2\sqrt[5]{64}}{\sqrt{8}}$$

Change into powers of 2

$$2^{-2x} = \frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}$$

イロト 不得下 イヨト イヨト 二日

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2\sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$\left(\frac{1}{4}\right)^{\times} = \frac{2\sqrt[5]{64}}{\sqrt{8}}$$

Change into powers of 2

$$2^{-2x} = \frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}$$
$$2^{-2x} = 2^{\frac{7}{10}}$$

SO:

イロト イポト イヨト イヨト 二日

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2\sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$\left(\frac{1}{4}\right)^{\times} = \frac{2\sqrt[5]{64}}{\sqrt{8}}$$

Change into powers of 2

$$2^{-2x} = \frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}$$
$$2^{-2x} = 2^{\frac{7}{10}}$$

which gives $x = -\frac{7}{20}$.

SO:

Calculate $\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2\sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$\left(\frac{1}{4}\right)^{\times} = \frac{2\sqrt[5]{64}}{\sqrt{8}}$$

Change into powers of 2

$$2^{-2x} = \frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}$$

SO:

$$2^{-2x} = 2^{\frac{7}{10}}$$

which gives $x = -\frac{7}{20}$.

So in the end
$$\log_{\frac{1}{4}} \frac{2\sqrt[5]{64}}{\sqrt{8}} = -\frac{7}{20}$$
.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Solve the following equation:

$$\log_2 x = -3$$

3

<ロ> (日) (日) (日) (日) (日)

Solve the following equation:

$$\log_2 x = -3$$

Note that we must have x > 0.

Tom	267	l ect	DOWE	
1011	asz	Leci	10005	ĸı,

Batory 2IB A & A HL

April 27, 2020 12 / 16

-

3

Solve the following equation:

$$\log_2 x = -3$$

Note that we must have x > 0. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_2 x = -3$$

Note that we must have x > 0. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_2 x = -3$$

Note that we must have x > 0. The corresponding exponential equation is:

$$2^{-3} = x$$

3

Solve the following equation:

$$\log_2 x = -3$$

Note that we must have x > 0. The corresponding exponential equation is:

$$2^{-3} = x$$

So $x = \frac{1}{8}$.

0 00 0 0 7	achow	e la r
TOTTASZ 1		581
	20011011	

3

Solve the following equation:

$$\log_{\sqrt{3}} x = -4$$

3

<ロ> (日) (日) (日) (日) (日)

Solve the following equation:

$$\log_{\sqrt{3}} x = -4$$

Note that again we must have x > 0.

Tomasz	lech	oweki
10111032	Leen	0003101

Batory 2IB A & A HL

April 27, 2020 13 / 16

-

Image: A match a ma

Solve the following equation:

$$\log_{\sqrt{3}} x = -4$$

Note that again we must have x > 0. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_{\sqrt{3}} x = -4$$

Note that again we must have x > 0. The corresponding exponential equation is:

3

Solve the following equation:

$$\operatorname{og}_{\sqrt{3}} x = -4$$

Note that again we must have x > 0. The corresponding exponential equation is:

$$(\sqrt{3})^{-4} = x$$

Batory 2IB A & A HL

April 27, 2020 13 / 16

3

Solve the following equation:

$$\log_{\sqrt{3}} x = -4$$

Note that again we must have x > 0. The corresponding exponential equation is:

$$(\sqrt{3})^{-4} = x$$

So $x = \frac{1}{9}$.

イロト 不得下 イヨト イヨト 二日

Solve the following equation:

$$\log_x 9 = 2$$

3

<ロ> (日) (日) (日) (日) (日)

Solve the following equation:

$$\log_x 9 = 2$$

Note that we must have x > 0 and $x \neq 1$.

3

イロト イヨト イヨト

Solve the following equation:

$$\log_x 9 = 2$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_x 9 = 2$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_x 9 = 2$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

$$x^{2} = 9$$

3

Solve the following equation:

$$\log_x 9 = 2$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

$$x^{2} = 9$$

So x = 3 ($x \neq -3$, as it has to be positive).

イロト イ理ト イヨト イヨト 二日
Solve the following equation:

$$\log_x 64 = 3$$

æ

イロト イ団ト イヨト イヨト

Solve the following equation:

$$\log_{x} 64 = 3$$

Note that we must have x > 0 and $x \neq 1$.

3

Solve the following equation:

$$\log_{x} 64 = 3$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_{x} 64 = 3$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

3

Solve the following equation:

$$\log_{x} 64 = 3$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

$$x^3 = 64$$

3

Solve the following equation:

$$\log_{x} 64 = 3$$

Note that we must have x > 0 and $x \neq 1$. The corresponding exponential equation is:

$$x^{3} = 64$$

So *x* = 4.

T	
Iomasz Lecr	
	0005101

3

- ∢ ≣ →

In case of any questions you can email me at t.j.lechowski@gmail.com.

-				
	maez	I ACK	DOWE	
10	11/232	Leci	10005	ο.

Batory 2IB A & A HL

April 27, 2020 16 / 16