Intro to logarithms

We have the following definition of logarithms:
Definition
For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

We have the following definition of logarithms:
Definition
For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

What does it mean?

We have the following definition of logarithms:
Definition
For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

What does it mean? First of all the assumptions (restrictions) are important. The number a, called the base of the logarithm, has to be greater than 0 and cannot be equal to 1 .

We have the following definition of logarithms:

Definition

For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

What does it mean? First of all the assumptions (restrictions) are important. The number a, called the base of the logarithm, has to be greater than 0 and cannot be equal to 1 . The number b (which we take the logarithm of) has to be greater than 0 .

We have the following definition of logarithms:

Definition

For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

What does it mean? First of all the assumptions (restrictions) are important. The number a, called the base of the logarithm, has to be greater than 0 and cannot be equal to 1 . The number b (which we take the logarithm of) has to be greater than 0.

So the expressions like $\log _{1} 3, \log _{-2} 5$ or $\log _{4}(-1)$ are not defined in real numbers (similarly to expressions like $\sqrt{-6}$).

Definition

For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

Definition

For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

Definition

For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

Secondly $\log _{a} b=c$ means a raised to the power of c is equal to b.

Definition

For $a>0, a \neq 1$ and $b>0$ we have:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

Secondly $\log _{a} b=c$ means a raised to the power of c is equal to b. So if we want to calculate $\log _{a} b$, we need to find a number to which we need to raise a to to get b.

We will practice the above definition in this presentation.

Example 1

Calculate $\log _{\frac{1}{3}} 81$.

Example 1

Calculate $\log _{\frac{1}{3}} 81$.
We need to find the power to which to raise $\frac{1}{3}$ to get 81 .

Example 1

Calculate $\log _{\frac{1}{3}} 81$.
We need to find the power to which to raise $\frac{1}{3}$ to get 81 . This can be written as an exponential equation:

$$
\left(\frac{1}{3}\right)^{x}=81
$$

Example 1

Calculate $\log _{\frac{1}{3}} 81$.
We need to find the power to which to raise $\frac{1}{3}$ to get 81 . This can be written as an exponential equation:

$$
\left(\frac{1}{3}\right)^{x}=81
$$

So we have:

$$
3^{-x}=3^{4}
$$

Example 1

Calculate $\log _{\frac{1}{3}} 81$.
We need to find the power to which to raise $\frac{1}{3}$ to get 81 . This can be written as an exponential equation:

$$
\left(\frac{1}{3}\right)^{x}=81
$$

So we have:

$$
3^{-x}=3^{4}
$$

which gives $x=-4$.

Example 1

Calculate $\log _{\frac{1}{3}} 81$.
We need to find the power to which to raise $\frac{1}{3}$ to get 81 . This can be written as an exponential equation:

$$
\left(\frac{1}{3}\right)^{x}=81
$$

So we have:

$$
3^{-x}=3^{4}
$$

which gives $x=-4$.
So $\log _{\frac{1}{3}} 81=-4$.

Example 2

Calculate $\log _{6} \frac{1}{216}$.

Example 2

Calculate $\log _{6} \frac{1}{216}$.
We need to find the power to which to raise 6 to get $\frac{1}{216}$.

Example 2

Calculate $\log _{6} \frac{1}{216}$.
We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential eqaution:

$$
6^{x}=\frac{1}{216}
$$

Example 2

Calculate $\log _{6} \frac{1}{216}$.
We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential eqaution:

$$
6^{x}=\frac{1}{216}
$$

This gives:

$$
6^{x}=6^{-3}
$$

Example 2

Calculate $\log _{6} \frac{1}{216}$.
We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential eqaution:

$$
6^{x}=\frac{1}{216}
$$

This gives:

$$
6^{x}=6^{-3}
$$

so $x=-3$.

Example 2

Calculate $\log _{6} \frac{1}{216}$.
We need to find the power to which to raise 6 to get $\frac{1}{216}$. We can write this as an exponential eqaution:

$$
6^{x}=\frac{1}{216}
$$

This gives:

$$
6^{x}=6^{-3}
$$

so $x=-3$.
So $\log _{6} \frac{1}{216}=-3$.

Example 3

Calculate $\log _{\frac{1}{4}} 16$.

Example 3

Calculate $\log _{\frac{1}{4}} 16$.
We need to find the power to which to raise $\frac{1}{4}$, to get 16 .

Example 3

Calculate $\log _{\frac{1}{4}} 16$.
We need to find the power to which to raise $\frac{1}{4}$, to get 16 . We can rewrite this as an exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=16
$$

Example 3

Calculate $\log _{\frac{1}{4}} 16$.
We need to find the power to which to raise $\frac{1}{4}$, to get 16 . We can rewrite this as an exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=16
$$

We can change all terms into powers of 4 (or 2)

$$
4^{-x}=4^{2}
$$

Example 3

Calculate $\log _{\frac{1}{4}} 16$.
We need to find the power to which to raise $\frac{1}{4}$, to get 16 . We can rewrite this as an exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=16
$$

We can change all terms into powers of 4 (or 2)

$$
4^{-x}=4^{2}
$$

so $x=-2$.

Example 3

Calculate $\log _{\frac{1}{4}} 16$.
We need to find the power to which to raise $\frac{1}{4}$, to get 16 . We can rewrite this as an exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=16
$$

We can change all terms into powers of 4 (or 2)

$$
4^{-x}=4^{2}
$$

so $x=-2$.
So $\log _{\frac{1}{4}} 16=-2$.

Example 4

Calculate $\log _{2 \sqrt{2}} 16$.

Example 4

Calculate $\log _{2 \sqrt{2}} 16$.
We need to find the power to which to raise $2 \sqrt{2}$ to get 16 .

Example 4

Calculate $\log _{2 \sqrt{2}} 16$.
We need to find the power to which to raise $2 \sqrt{2}$ to get 16 . We write the corresponding exponential equation:

$$
(2 \sqrt{2})^{x}=16
$$

Example 4

Calculate $\log _{2 \sqrt{2}} 16$.
We need to find the power to which to raise $2 \sqrt{2}$ to get 16 . We write the corresponding exponential equation:

$$
(2 \sqrt{2})^{x}=16
$$

Change into powers of 2 :

$$
2^{\frac{3}{2} x}=2^{4}
$$

Example 4

Calculate $\log _{2 \sqrt{2}} 16$.
We need to find the power to which to raise $2 \sqrt{2}$ to get 16 . We write the corresponding exponential equation:

$$
(2 \sqrt{2})^{x}=16
$$

Change into powers of 2 :

$$
2^{\frac{3}{2} x}=2^{4}
$$

so $x=\frac{8}{3}$.

Example 4

Calculate $\log _{2 \sqrt{2}} 16$.
We need to find the power to which to raise $2 \sqrt{2}$ to get 16 . We write the corresponding exponential equation:

$$
(2 \sqrt{2})^{x}=16
$$

Change into powers of 2 :

$$
2^{\frac{3}{2} x}=2^{4}
$$

so $x=\frac{8}{3}$.
So we have $\log _{2 \sqrt{2}} 16=\frac{8}{3}$.

Example 5

Calculate $\log _{5} 125 \sqrt{5}$.

Example 5

Calculate $\log _{5} 125 \sqrt{5}$.
We need to find the power to which to raise 5 to get $125 \sqrt{5}$.

Example 5

Calculate $\log _{5} 125 \sqrt{5}$.
We need to find the power to which to raise 5 to get $125 \sqrt{5}$. The corresponding exponential equation is:

$$
5^{x}=125 \sqrt{5}
$$

Example 5

Calculate $\log _{5} 125 \sqrt{5}$.
We need to find the power to which to raise 5 to get $125 \sqrt{5}$. The corresponding exponential equation is:

$$
5^{x}=125 \sqrt{5}
$$

Which gives:

$$
5^{x}=5^{3.5}
$$

Example 5

Calculate $\log _{5} 125 \sqrt{5}$.
We need to find the power to which to raise 5 to get $125 \sqrt{5}$. The corresponding exponential equation is:

$$
5^{x}=125 \sqrt{5}
$$

Which gives:

$$
5^{x}=5^{3.5}
$$

so $x=3.5$.

Example 5

Calculate $\log _{5} 125 \sqrt{5}$.
We need to find the power to which to raise 5 to get $125 \sqrt{5}$. The corresponding exponential equation is:

$$
5^{x}=125 \sqrt{5}
$$

Which gives:

$$
5^{x}=5^{3.5}
$$

so $x=3.5$.
So we have $\log _{5} 125 \sqrt{5}=3.5$.

Example 6

Calculate $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}$.

Example 6

Calculate $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}$.
We need to find the power to which to raise $3 \sqrt{3}$ to get $81 \sqrt[3]{3}$.

Example 6

Calculate $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}$.
We need to find the power to which to raise $3 \sqrt{3}$ to get $81 \sqrt[3]{3}$. We need to solve the following exponential equation:

$$
(3 \sqrt{3})^{x}=81 \sqrt[3]{3}
$$

Example 6

Calculate $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}$.
We need to find the power to which to raise $3 \sqrt{3}$ to get $81 \sqrt[3]{3}$. We need to solve the following exponential equation:

$$
(3 \sqrt{3})^{x}=81 \sqrt[3]{3}
$$

Change into powers of 3 :

$$
3^{\frac{3}{2} x}=3^{4 \frac{1}{3}}
$$

Example 6

Calculate $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}$.
We need to find the power to which to raise $3 \sqrt{3}$ to get $81 \sqrt[3]{3}$. We need to solve the following exponential equation:

$$
(3 \sqrt{3})^{x}=81 \sqrt[3]{3}
$$

Change into powers of 3 :

$$
3^{\frac{3}{2} x}=3^{4 \frac{1}{3}}
$$

this gives $x=\frac{26}{9}$.

Example 6

Calculate $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}$.
We need to find the power to which to raise $3 \sqrt{3}$ to get $81 \sqrt[3]{3}$. We need to solve the following exponential equation:

$$
(3 \sqrt{3})^{x}=81 \sqrt[3]{3}
$$

Change into powers of 3 :

$$
3^{\frac{3}{2} x}=3^{4 \frac{1}{3}}
$$

this gives $x=\frac{26}{9}$.
So we have $\log _{3 \sqrt{3}} 81 \sqrt[3]{3}=\frac{26}{9}$.

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.

We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2 \sqrt[5]{64}}{\sqrt{8}}$.

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.
We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2 \sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=\frac{2 \sqrt[5]{64}}{\sqrt{8}}
$$

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.
We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2 \sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=\frac{2 \sqrt[5]{64}}{\sqrt{8}}
$$

Change into powers of 2

$$
2^{-2 x}=\frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}
$$

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.
We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2 \sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=\frac{2 \sqrt[5]{64}}{\sqrt{8}}
$$

Change into powers of 2

$$
2^{-2 x}=\frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}
$$

so:

$$
2^{-2 x}=2^{\frac{7}{10}}
$$

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.
We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2 \sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=\frac{2 \sqrt[5]{64}}{\sqrt{8}}
$$

Change into powers of 2

$$
2^{-2 x}=\frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}
$$

so:

$$
2^{-2 x}=2^{\frac{7}{10}}
$$

which gives $x=-\frac{7}{20}$.

Example 7

Calculate $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}$.
We need to find the power to which to raise $\frac{1}{4}$ to get $\frac{2 \sqrt[5]{64}}{\sqrt{8}}$. We write the corresponding exponential equation:

$$
\left(\frac{1}{4}\right)^{x}=\frac{2 \sqrt[5]{64}}{\sqrt{8}}
$$

Change into powers of 2

$$
2^{-2 x}=\frac{2 \cdot 2^{\frac{6}{5}}}{2^{\frac{3}{2}}}
$$

so:

$$
2^{-2 x}=2^{\frac{7}{10}}
$$

which gives $x=-\frac{7}{20}$.
So in the end $\log _{\frac{1}{4}} \frac{2 \sqrt[5]{64}}{\sqrt{8}}=-\frac{7}{20}$.

Example 8

Solve the following equation:

$$
\log _{2} x=-3
$$

Example 8

Solve the following equation:

$$
\log _{2} x=-3
$$

Note that we must have $x>0$.

Example 8

Solve the following equation:

$$
\log _{2} x=-3
$$

Note that we must have $x>0$. The corresponding exponential equation is:

Example 8

Solve the following equation:

$$
\log _{2} x=-3
$$

Note that we must have $x>0$. The corresponding exponential equation is:

Example 8

Solve the following equation:

$$
\log _{2} x=-3
$$

Note that we must have $x>0$. The corresponding exponential equation is:

$$
2^{-3}=x
$$

Example 8

Solve the following equation:

$$
\log _{2} x=-3
$$

Note that we must have $x>0$. The corresponding exponential equation is:

$$
2^{-3}=x
$$

So $x=\frac{1}{8}$.

Example 9

Solve the following equation:

$$
\log _{\sqrt{3}} x=-4
$$

Example 9

Solve the following equation:

$$
\log _{\sqrt{3}} x=-4
$$

Note that again we must have $x>0$.

Example 9

Solve the following equation:

$$
\log _{\sqrt{3}} x=-4
$$

Note that again we must have $x>0$. The corresponding exponential equation is:

Example 9

Solve the following equation:

$$
\log _{\sqrt{3}} x=-4
$$

Note that again we must have $x>0$. The corresponding exponential equation is:

Example 9

Solve the following equation:

$$
\log _{\sqrt{3}} x=-4
$$

Note that again we must have $x>0$. The corresponding exponential equation is:

$$
(\sqrt{3})^{-4}=x
$$

Example 9

Solve the following equation:

$$
\log _{\sqrt{3}} x=-4
$$

Note that again we must have $x>0$. The corresponding exponential equation is:

$$
(\sqrt{3})^{-4}=x
$$

So $x=\frac{1}{9}$.

Example 10

Solve the following equation:

$$
\log _{x} 9=2
$$

Example 10

Solve the following equation:

$$
\log _{x} 9=2
$$

Note that we must have $x>0$ and $x \neq 1$.

Example 10

Solve the following equation:

$$
\log _{x} 9=2
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

Example 10

Solve the following equation:

$$
\log _{x} 9=2
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

Example 10

Solve the following equation:

$$
\log _{x} 9=2
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

$$
x^{2}=9
$$

Example 10

Solve the following equation:

$$
\log _{x} 9=2
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

$$
x^{2}=9
$$

So $x=3(x \neq-3$, as it has to be positive $)$.

Example 11

Solve the following equation:

$$
\log _{x} 64=3
$$

Example 11

Solve the following equation:

$$
\log _{x} 64=3
$$

Note that we must have $x>0$ and $x \neq 1$.

Example 11

Solve the following equation:

$$
\log _{x} 64=3
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

Example 11

Solve the following equation:

$$
\log _{x} 64=3
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

Example 11

Solve the following equation:

$$
\log _{x} 64=3
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

$$
x^{3}=64
$$

Example 11

Solve the following equation:

$$
\log _{x} 64=3
$$

Note that we must have $x>0$ and $x \neq 1$. The corresponding exponential equation is:

$$
x^{3}=64
$$

So $x=4$.

In case of any questions you can email me at t.j.lechowski@gmail.com.

