
Mixed examination practice 18

Short questions

- 1. Find $\frac{dy}{dx}$ for each of the following:
 - (a) $y = x^2 \arcsin x$

(b)
$$xe^y = 4y^2$$
 [7 marks]

2. Differentiate
$$f(x) = \arccos(1-x^2)$$
. [4 marks]

- 4. Find the equation of the normal to the curve with equation $4x^2 + xy^2 3y^3 = 56$ at the point (-5, 2). [7 marks]
- 5. Given that $y = \arctan(x^2)$ find $\frac{d^2y}{dx^2}$. [5 marks]
- 6. Find the gradient of the curve with equation $4 \sin x \cos y + \sec^2 y = 5$ at the point $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$. [6 marks]
- 7. The graph of $y = xe^{-kx}$ has a stationary point when $x = \frac{2}{5}$. [4 marks]
- 8. A curve has equation $f(x) = \frac{a}{b + e^{-cx}}$, $a \ne 0, b, c > 0$.

(a) Show that
$$f''(x) = \frac{ac^2 e^{-cx} (e^{-cx} - b)}{(b + e^{-cx})^3}$$
.

- (b) Find the coordinates of the point on the curve where f''(x) = 0.
- (c) Show that this is a point of inflexion. [8 marks] (© IB Organization 2003)
- 9. Find the coordinates of stationary points on the curve with equation $(y-2)^2 e^x = 4x$. [7 marks]

Long questions

- 1. A curve has equation $y = \frac{x^2}{1 2x}$.
 - (a) Write down the equation of the vertical asymptote of the curve.
 - (b) Use differentiation to find the coordinates of stationary points on the curve.
 - (c) Determine the nature of the stationary points.
 - (d) Sketch the graph of $y = \frac{x^2}{1 2x}$.

[15 marks]

- **2.** The function f is defined by $f(x) = \frac{x^2}{2^x}$, for x > 0.
 - (a) (i) Show that $f'(x) = \frac{2x x^2 \ln 2}{2^x}$.
 - (ii) Obtain an expression for f''(x), simplifying your answer as far as possible.
 - (b) (i) Find the exact value of x satisfying the equation f'(x) = 0.
 - (ii) Show that this value gives a maximum value for f(x).
 - (c) Find the *x*-coordinates of the two points of inflexion on the graph of *f*. [12 marks]

(© IB Organization 2003)

- 3. Let $f(x) = \arccos(\sqrt{1-9x^2})$ for $0 < x < \frac{1}{3}$.
 - (a) Show that $f'(x) = \frac{3}{\sqrt{1 9x^2}}$.
 - (b) Show that f''(x) > 0 for all $x \in]0, \frac{1}{3}[$.
 - (c) Let $g(x) = \arccos(kx)$. If g'(x) = -pf'(x) for $0 < x < \frac{1}{3}$, find the values of p and k. [12 marks]
- **4.** A curve is given by the implicit equation $x^2 xy + y^2 = 12$.
 - (a) Find the coordinates of the stationary points on the curve.
 - (b) Show that at the stationary points, $(x-2y)\frac{d^2y}{dx^2} = 2$.
 - (c) Hence determine the nature of the stationary points.

X

- 5. If $f(x) = \sec x$, $0 \le x \le \pi$ the inverse function is $f^{-1}(x) = \operatorname{arcsec} x$.
 - (a) Write down the domain of arcsec *x*.
 - (b) Sketch the graph of $y = \operatorname{arcsec} x$.
 - (c) Show that the derivative of $\sec x$ is $\sec x \tan x$.
 - (d) Find the derivative of arcsec *x* with respect to *x*, justifying carefully the sign of your answer.

[12 marks]

[16 marks]

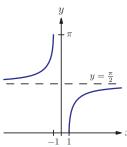
(ii)
$$\frac{10}{25+4x^2}$$

- (c) (i) $\arcsin x + \frac{x}{\sqrt{1 x^2}}$
 - (ii) $2x \arccos x \frac{x^2}{\sqrt{1-x^2}}$
- (d) (i) $\frac{2x}{1+(x^2+1)^2}$
 - (ii) $\frac{-2x}{\sqrt{1-(1-x^2)^2}}$
- 2. $-\frac{3}{\sqrt{35}}$
- 4. $\frac{dy}{dx} = -\frac{1 + \tan^2\left(\frac{1}{x}\right)}{1 + \tan^2\left(\frac{1}{x}\right)}$
- 5. (a) $\arcsin x + \frac{x}{\sqrt{1-x^2}}$
 - (b) $x \arcsin x + \sqrt{1 x^2} + c$

Mixed examination practice 18

Short questions

- 1. (a) $2x \arcsin x + \frac{x^2}{\sqrt{1-x^2}}$ (b) $\frac{e^y}{8y xe^y}$
- 2. $\frac{2x}{\sqrt{1-(1-x^2)^2}}$
- 3. $\frac{16}{225}$
- 4. $y = \frac{14}{9}x + \frac{88}{9}$
- 5. $\frac{2(1-3x^4)}{(1+x^4)^2}$
- 6. $-\frac{1}{7}$
- 7. $\frac{5}{2}$
- **8.** (b) $-\ln \frac{b}{c}, \frac{a}{2h}$
- 9. $\left(1, \frac{2\sqrt{e}-2}{\sqrt{e}}\right), \left(1, \frac{2\sqrt{e}+2}{\sqrt{e}}\right)$


Long questions

1. (a) $x = \frac{1}{2}$

(d)

- (b) (0,0),(1,-1)
- (c) (0,0)local min (1,-1)local max
- **2.** (a) (ii) $\frac{(\ln 2)^2 x^2 4x \ln 2 + 2}{2^x}$

 - (b) (i) $\frac{2}{\ln 2}$ (c) $\frac{2 \pm \sqrt{2}}{\ln 2}$
- 3. (c) k = 3, p = 1
- **4.** (a) (2,4),(-2,-4)
 - (c) (2,4)local max; (-2,-4)local min
- 5. (a) $x \ge 1, x \le -1$

(d) $\frac{1}{r\sqrt{r^2-1}}$

Chapter 19

Exercise 19A

- **1.** (a) (i) $(x+3)^5 + c$ (ii) $\frac{1}{6}(x-2)^6 + c$

 - (b) (i) $\frac{1}{32}(4x-5)^8+c$ (ii) $2(\frac{1}{8}x+1)^4+c$
 - (c) (i) $-\frac{8}{7}\left(3-\frac{1}{2}x\right)^7+c$ (ii) $-\frac{1}{9}(4-x)^9+c$
 - (d) (i) $\frac{1}{3}(2x-1)^{\frac{3}{2}}+c$ (ii) $-\frac{4}{5}(2-5x)^{\frac{7}{4}}+c$
- - (e) (i) $4\left(2+\frac{x}{3}\right)^{\frac{1}{4}}+c$ (ii) $2\left(4-3x\right)^{-1}+c$