

Self-assessment: 16 Basic differentiation and its applications

1. Differentiate the following:

(a)
$$\sqrt{x} - \frac{1}{\sqrt{x}}$$

(b) $\tan x + 2 \cos x$
(c) $x^2 - e^x$
(d) $3 \ln x - 1$

[8 marks]

2. Do not use a calculator to answer this question.

Find the equation of the normal to the curve $y = 2x - \ln x$ at the point where x = 3.

(accessible to students on the path to grade 3 or 4) [6 marks]

3. Find the exact coordinates of the stationary point on the graph of $y = 3e^{x} - x$.

(accessible to students on the path to grade 3 or 4) [6 marks]

- 4. (a) (i) Expand and simplify $(x+h)^2 x^2$.
 - (ii) Hence prove from first principles that the derivative of x^2 is 2x.

(accessible to students on the path to grade 5 or 6)

- (b) The function f is defined by $f(x) = x^2 + 4 \cos x$ for $0 < x < \pi$.
 - (i) By considering the graphs of y = x and $y = 2 \sin x$, show that f(x) has only one stationary point, and explain why this stationary point is between $\frac{\pi}{2}$ and π .
 - (ii) Find f''(x) and hence prove that the stationary point is a minimum.
 - (iii) Find the coordinates of the point of inflection on the graph of y = f(x).
 - (iv) Sketch the graph of y = f(x), clearly labelling the stationary point and the point of inflection.

(accessible to students on the path to grade 7)

[19 marks]