- 6 Two of the assessment criteria personal engagement and reflection are about **what you think about the topic** you are exploring. Don't hesitate to pose your own relevant and insightful questions as part of your report, and then to address these questions using mathematics at a suitably sophisticated level along with sufficient written commentary.
- 7 Although your teacher will expect and require you to work independently, you are allowed to **consult with your teacher** and your teacher is allowed to give you advice and feedback to a certain extent while you are working on your report. It is especially important to check with your teacher that any **mathematics in your report is correct**. Your teacher will not give mathematical answers or corrections, but can indicate where any errors have been made or where improvement is needed.

Mathematical Exploration HL – Student Checklist

Is your report written entirely by yourself – and trying to avoid simply replicating work and ideas from sources you found during your research?	Yes	No
Have you strived to: apply your personal interest; develop your own ideas; and use critical thinking skills during your exploration and demonstrate these in your report?	Yes	No
Have you referred to the five assessment criteria while writing your report?	Yes	No
Does your report focus on good mathematical communication – and does it read like an article for a mathematical journal?	Yes	No
Does your report have a clearly identified introduction and conclusion?	Yes	No
Have you documented all of your source material in a detailed bibliography in line with the IB academic honesty policy?	Yes	No
Not including the bibliography, is your report 6 to 12 pages?	Yes	No
Are graphs, tables and diagrams sufficiently described and labelled?	Yes	No
To the best of your knowledge, have you used and demonstrated mathematics that is at the same level, or above, of that studied in IB Mathematics HL?	Yes	No
Have you attempted to discuss mathematical ideas, and use mathematics, with a sufficient level of sophistication and rigour?	Yes	No
Are formulae, graphs, tables and diagrams in the main body of text? (preferably no full-page graphs; and no separate appendices)	Yes	No
Have you used technology – such as a GDC, spreadsheet, mathematics software, drawing and word-processing software – to enhance mathematical communication?	Yes	No
Have you used appropriate mathematical language (notation, symbols, terminology) and defined key terms?	Yes	No
Is the mathematics in your report performed precisely and accurately?	Yes	No
Has calculator/computer notation and terminology not been used? ($y = x^2$, not $y = x^2$; \approx , not = for approximate values; π , not pi; $ x $, not abs(x); etc)	Yes	No
At suitable places in your report – especially in the conclusion – have you included reflective and explanatory comments about the mathematical topic being explored?	Yes	No

18

List of 200 ideas/topics for a Mathematical Exploration

The topics listed here range from fairly broad to quite narrow in scope. It is possible that some of these 200 could be the title or focus of a **Mathematical Exploration**, while others will require you to investigate further to identify a narrower focus to explore. Do not restrict yourself only to the topics listed below. This list is only the 'tip of the iceberg' with regard to potential topics for your Mathematical Exploration. Reading through this list may stimulate you to think of some other topic in which you would be interested in exploring. Many of the items listed below may be unfamiliar to you. A quick search on the internet should give you a better idea what each is about and help you determine if you're interested enough to investigate further – and see if it might be a suitable topic for your Mathematical Exploration.

	Algebra and number theory				
Modular arithmetic	Goldbach's conjecture	Probabilistic number theory			
Applications of complex numbers	Diophantine equations	Continued fractions			
General solution of a cubic equation	Applications of logarithms	Polar equations			
Patterns in Pascal's triangle	Finding prime numbers	Random numbers			
Pythagorean triples	Mersenne primes	Magic squares and cubes			
Loci and complex numbers	Matrices and Cramer's rule	Divisibility tests			
Egyptian fractions	Complex numbers and transformations	Euler's identity: $e^{i\pi} + 1 = 0$			
Chinese remainder theorem	Fermat's last theorem	Natural logarithms of complex numbers			
Twin primes problem	Hypercomplex numbers	Diophantine application: Cole numbers			
Odd perfect numbers	Euclidean algorithm for GCF	Palindrome numbers			
Factorable sets of integers of the form $ak + b$	Algebraic congruences	Inequalities related to Fibonacci numbers			
Combinatorics – art of counting	Boolean algebra	Graphical representation of roots of complex numbers			
Roots of unity	Fermat's little theorem	Prime number sieves			
Recurrence expressions for phi (golden ratio)					
Geometry					
Non-Euclidean geometries	Cavalieri's principle	Packing 2D and 3D shapes			
Ptolemy's theorem	Hexaflexagons	Heron's formula			
Geodesic domes	Proofs of Pythagorean theorem	Minimal surfaces and soap bubbles			
Tesseract – a 4D cube	Map projections	Tiling the plane – tessellations			
Penrose tiles	Morley's theorem	Cycloid curve			

	Geometry (continued)		
Symmetries of spider webs	Fractal tilings	Euler line of a triangle	
Fermat point for polygons and polyhedra	Pick's theorem and lattices	Properties of a regular pentagon	
Conic sections	Nine-point circle	Geometry of the catenary curve	
Regular polyhedra	Euler's formula for polyhedra	Eratosthenes – measuring earth's circumference	
Stacking cannon balls	Ceva's theorem for triangles	Constructing a cone from a circle	
Conic sections as loci of points	Consecutive integral triangles	Area of an ellipse	
Mandelbrot set and fractal shapes	Curves of constant width	Sierpinksi triangle	
Squaring the circle	Polyominoes	Reuleaux triangle	
Architecture and trigonometry	Spherical geometry	Gyroid – a minimal surface	
Geometric structure of the universe	Rigid and non-rigid geometric structures	Tangrams	
	Calculus/analysis and functions		
Mean value theorem	Torricelli's trumpet (Gabriel's horn)	Integrating to infinity	
Applications of power series	Newton's law of cooling	Fundamental theorem of calculus	
Brachistochrone (minimum time) problem	Second order differential equations	L'Hôpital's rule and evaluating limits	
Hyperbolic functions	The harmonic series	Torus – solid of revolution	
Projectile motion	Why e is base of natural logarithm function		
	Statistics and modelling		
Traffic flow	Logistic function and constrained growth	Modelling growth of tumours	
Modelling epidemics/spread of a virus	Modelling the shape of a bird's egg	Correlation coefficients	
Central limit theorem	Modelling change in record performances for a sport	Hypothesis testing	
Modelling radioactive decay	Least squares regression	Modelling the carrying capacity of the earth	
Regression to the mean	Modelling growth of computer power past few decades		
	Probability and probability distributio	ns	
The Monty Hall problem	Monte Carlo simulations	Random walks	
Insurance and calculating risks	Poisson distribution and queues	Determination of π by probability	
Lotteries	Bayes' theorem	Birthday paradox	
Normal distribution and natural phenomena	Medical tests and probability	Probability and expectation	

929

•

Games and game theory						
The prisoner's dilemma	Sudoku	Gambler's fallacy				
Poker and other card games	Knight's tour in chess	Billiards and snooker				
Zero sum games						
Topology and networks						
Knots	Steiner problem	Chinese postman problem				
Travelling salesman problem	Königsberg bridge problem	Handshake problem				
Möbius strip	Klein bottle					
	Logic and sets					
Codes and ciphers	Set theory and different 'size' infinities	Mathematical induction (strong)				
Proof by contradiction	Zeno's paradox of Achilles and the tortoise	Four colour map theorem				
Numerical analysis						
Linear programming	Fixed-point iteration	Methods of approximating π				
Applications of iteration	Newton's method	Estimating size of large crowds				
Generating the number e	Descartes' rule of signs	Methods for solving differential equations				
Physical, biological and social sciences						
Radiocarbon dating	Gravity, orbits and escape velocity	Mathematical methods in economics				
Biostatistics	Genetics	Crystallography				
Computing centres of mass	Elliptical orbits	Logarithmic scales – decibel, Richter, etc.				
Fibonacci sequence and spirals in nature	Predicting an eclipse	Change in a person's BMI over time				
Concepts of equilibrium in economics	Mathematics of the 'credit crunch'	Branching patterns of plants				
Column buckling – Euler theory						
Miscellaneous						
Paper folding	Designing bridges	Mathematics of rotating gears				
Mathematical card tricks	Curry's paradox – 'missing' square	Bar codes				
Applications of parabolas	Music – notes, pitches, scales	Voting systems				
<i>Flatland</i> by Edwin Abbott	Terminal velocity	Towers of Hanoi puzzle				
Photography	Art of M.C. Escher	Harmonic mean				
Sundials	Navigational systems	The abacus				
Construction of calendars	Slide rules	Different number systems				
Mathematics of juggling	Global positioning system (GPS)	Optical illusions				
Origami	Napier's bones	Celtic designs/knotwork				
Design of product packaging	Mathematics of weaving					