Batory AA HL Short Test 8 May 15, 2020

Name:

1. (5 points) Differentiate from the first principles the following functions:
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2. (4 points) Consider the following function:

3 or r <1
fle) = d
ax +b for x>1

Find the values of a and b so that f is differentiable at x = 1.
First of all the function needs to be continuous at = 1, so we must have:

lim f(z)= lim f(x)=1

r—1— z—1t

This gives the equation

at+b=1

Secondly the derivatives must be equal as they approach 1. For x < 1 we
have f'(z) = 32% and for x > 1 we have f'(z) = a.

This gives a = 3, so b = —2.
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3. (4 points) Solve the following equation:

for 0 < z < 3.

cosx-l—cosg—Fl:O

Using double angle formula for cosine we get:

2COSQ§—1—|—COS§+1=0

2

2

Cancel the 1s and factor out the cosine:

COS:;(QCOS:U-Fl) =0

x
Letting a = 5 we solve:

for0 < a<

This gives

So we get

37

5

cosa =0

2

or cCoOs¥ = ——
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4. (7 points) Consider the function

x2—4

z—1

flz) =
(a) Write down the equations of the asymptotes of the graph of y = f(z).

The vertical asymptote is of course
r=1

For the oblique asymptote we need to perform the division (synthetic or
long, both work well) and we get that the oblique asymptote is

y=x+1

(b) Show that the range of values of f(z) is all real numbers.

We start with

Rearranging gives:

P —yr+y—4=0

We want to show that this equation will have solutions for x for any value
of y. Treating the equation as a quadratic in x we have the discriminant:

A=y —4dy+16=(y—2)>+12>0

The discriminant is always positive, so the equation will always have two
solutions for z, so the range of y is all real numbers. ]
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(c) Sketch the graph of g(z) = f(]z|) and hence state the set of all possible
values of parameter k, such that the equation:

g(z) =k

has four solutions.

We will sketch y = f(x) first. We already have the asymptotes. We know
the range. The zeroes are of course x = £2. We can analyse the sign of
the function and we get the following graph:

y=x+1
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Now the graph of g(z) will look as follows:

8 y=ax+1

Now y = k is a horizontal line. So we need the value of k so that the
horizontal line y = k will intersect the graph of g four times. The graph
of g clearly shows that we must have k > 4.



