Name:

1. (5 points) Differentiate from the first principles the following functions:

(a)
$$
f(x) = x^2 - 3x
$$

So $f'(x) = 2x - 3$.

$$
\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 3(x + \Delta x) - x^2 + 3x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x(\Delta x) + (\Delta x)^2 - 3\Delta x}{\Delta x} =
$$

$$
= \lim_{\Delta x \to 0} (2x + \Delta x - 3) = 2x - 3
$$

(b)
$$
g(x) = \frac{2}{\sqrt{x}}
$$

\n
$$
\lim_{\Delta x \to 0} \frac{\frac{2}{\sqrt{x + \Delta x}} - \frac{2}{\sqrt{x}}}{\Delta x} = \lim_{\Delta x \to 0} \frac{2(\sqrt{x} - \sqrt{x + \Delta x})}{\Delta x \sqrt{x} \sqrt{x + \Delta x}} =
$$
\n
$$
= \lim_{\Delta x \to 0} \frac{2(\sqrt{x} - \sqrt{x + \Delta x})(\sqrt{x} + \sqrt{x + \Delta x})}{\Delta x \sqrt{x} \sqrt{x + \Delta x} (\sqrt{x} + \sqrt{x + \Delta x})} =
$$
\n
$$
= \lim_{\Delta x \to 0} \frac{-2\Delta x}{\Delta x \sqrt{x} \sqrt{x + \Delta x} (\sqrt{x} + \sqrt{x + \Delta x})} =
$$
\n
$$
= \lim_{\Delta x \to 0} \frac{-2}{\sqrt{x} \sqrt{x + \Delta x} (\sqrt{x} + \sqrt{x + \Delta x})} = -\frac{1}{x \sqrt{x}}
$$

So
$$
g'(x) = -\frac{1}{x\sqrt{x}}
$$
.

2. (4 points) Consider the following function:

$$
f(x) = \begin{cases} x^3 & \text{for } x < 1\\ ax + b & \text{for } x \ge 1 \end{cases}
$$

Find the values of *a* and *b* so that *f* is differentiable at $x = 1$.

First of all the function needs to be continuous at $x = 1$, so we must have:

$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 1
$$

This gives the equation

$$
a + b = 1
$$

Secondly the derivatives must be equal as they approach 1. For *x <* 1 we have $f'(x) = 3x^2$ and for $x > 1$ we have $f'(x) = a$.

This gives $a = 3$, so $b = -2$.

3. (4 points) Solve the following equation:

$$
\cos x + \cos \frac{x}{2} + 1 = 0
$$

for $0 \le x \le 3\pi$.

Using double angle formula for cosine we get:

$$
2\cos^2\frac{x}{2} - 1 + \cos\frac{x}{2} + 1 = 0
$$

Cancel the 1s and factor out the cosine:

$$
\cos\frac{x}{2}\left(2\cos\frac{x}{2} + 1\right) = 0
$$

Letting $\alpha =$ *x* 2 we solve:

$$
\cos \alpha = 0 \qquad \text{or} \qquad \cos \alpha = -\frac{1}{2}
$$

for $0 \le \alpha \le$ 3*π* 2 .

This gives

$$
\alpha \in \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3} \right\}
$$

$$
x \in \left\{ \pi, \frac{4\pi}{3}, \frac{8\pi}{3}, 3\pi \right\}
$$

So we get

4. (7 points) Consider the function

$$
f(x) = \frac{x^2 - 4}{x - 1}
$$

(a) Write down the equations of the asymptotes of the graph of $y = f(x)$.

The vertical asymptote is of course

 $x=1$

For the oblique asymptote we need to perform the division (synthetic or long, both work well) and we get that the oblique asymptote is

$$
y = x + 1
$$

(b) Show that the range of values of $f(x)$ is all real numbers.

We start with

$$
y = \frac{x^2 - 4}{x - 1}
$$

Rearranging gives:

$$
x^2 - yx + y - 4 = 0
$$

We want to show that this equation will have solutions for *x* for any value of *y*. Treating the equation as a quadratic in *x* we have the discriminant:

$$
\Delta = y^2 - 4y + 16 = (y - 2)^2 + 12 > 0
$$

The discriminant is always positive, so the equation will always have two solutions for *x*, so the range of *y* is all real numbers. \Box

(c) Sketch the graph of $g(x) = f(|x|)$ and hence state the set of all possible values of parameter k , such that the equation:

$$
g(x) = k
$$

has four solutions.

We will sketch $y = f(x)$ first. We already have the asymptotes. We know the range. The zeroes are of course $x = \pm 2$. We can analyse the sign of the function and we get the following graph:

Now the graph of $g(x)$ will look as follows:

Now $y = k$ is a horizontal line. So we need the value of k so that the horizontal line $y = k$ will intersect the graph of g four times. The graph of *g* clearly shows that we must have $k > 4$.