4 Evaluate $f^{-1}(5)$ where **a** f(x) = 6 - x **b** $f(x) = \frac{10}{x+7}$ **c** $f(x) = \frac{2}{4x-3}$

5 If
$$f(x) = \frac{x+1}{x-2}$$
, find $f^{-1}(x)$.

EXAM-STYLE QUESTION

- **6** a Draw the graph of $f(x) = 2^x$ by making a table of values and plotting several points.
 - **b** Draw the line y = x on the same graph.
 - **c** Draw the graph of f^{-1} by reflecting the graph of f in the line y = x.
 - **d** State the domain and range of f and f^{-1} .
- 7 The function $f(x) = x^2$ has no inverse function. However, the square root function $g(x) = \sqrt{x}$ does have an inverse function. Find this inverse.

By comparing the range and domain explain why the inverse of $g(x) = \sqrt{x}$ is not the same as $f(x) = x^2$.

8 Prove that the graphs of a linear function and its inverse can never be perpendicular.

Extension material on CD: *Worksheet 1 - Polynomials*

1.6 Transforming functions

H

Investigation – functions

You should use your GDC to sketch all the graphs in this investigation.

- Sketch y = x, y = x + 1, y = x 4, y = x + 4 on the same axes.
 Compare and contrast your functions.
 What effect do the constant (number) terms have on the graphs of y = x + b?
- 2 Sketch y = x + 3, y = 2x + 3, y = 3x + 3, y = -2x + 3, y = 0.5x + 3 on the same axes. Compare and contrast your functions. What effect does changing the *x*-coefficient have?
- Sketch y = |x|, y = |x + 2|, y = |x 3| on the same axes.
 Compare and contrast your functions.
 What effect does changing the values of *h* have on the graphs of y = |x + h|?
- Sketch y = x², y = -x², y = 2x², y = 0.5x² on the same axes. Compare and contrast your functions. What effect does the negative sign have on the graph? What effect does changing the value of *a* have on the graphs of y = ax²?

You will also find this standard equation of a line written as y = mx + b or y = mx + c

The coefficient of *x* is the number that multiplies the *x*-value.

|x| means the modulus of x. See chapter 18 for more explanation.

```
y = x is the point (b, -a).
```

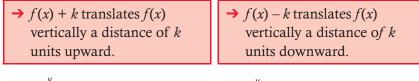
Note that the image of point (a, -b) after a reflection in the line

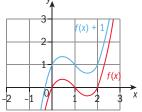
In the investigation you should have found that your graphs in parts 1, 2 and 3 were all the same shape but the position of the graphs changed. The graphs in part 4 should have been reflected or changed by stretching.

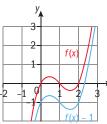
These are examples of 'transformations' of graphs. We will now look at these transformations in detail.

Translations

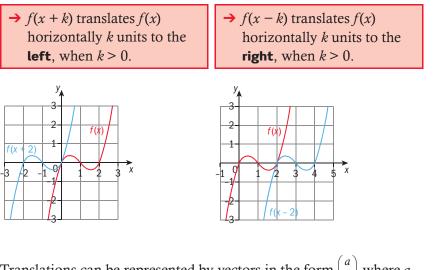
Shift upward or downward







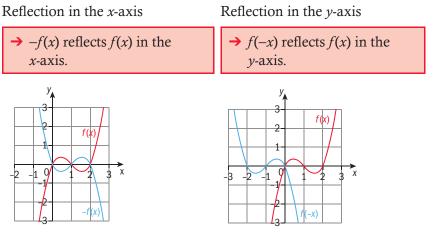
Shift to the right or left



Translations can be represented by vectors in the form $\begin{pmatrix} a \\ b \end{pmatrix}$ where *a* is the horizontal component and *b* is the vertical component.

 $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ is a horizontal shift of 3 units right. $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ is a vertical shift of 2 units down. Translation by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ denotes a horizontal shift of 3 units to the right, and a vertical shift of 2 units down. Try transforming some functions with different values of *k* on your GDC.

Reflections



Stretches

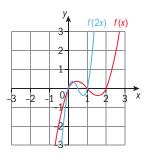
Horizontal stretch (or compress)

Vertical stretch (or compress)

vertically with scale

 $\rightarrow pf(x)$ stretches f(x)

 \rightarrow f(qx) stretches or compresses f(x) horizontally with scale factor $\frac{1}{2}$



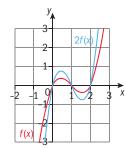
stretch of scale factor $\frac{1}{2}$.

When q > 1 the graph is

compressed towards the *y*-axis

stretched away from the *y*-axis.

When 0 < q < 1 the graph is

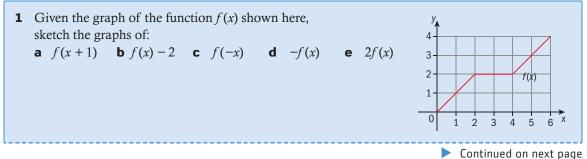


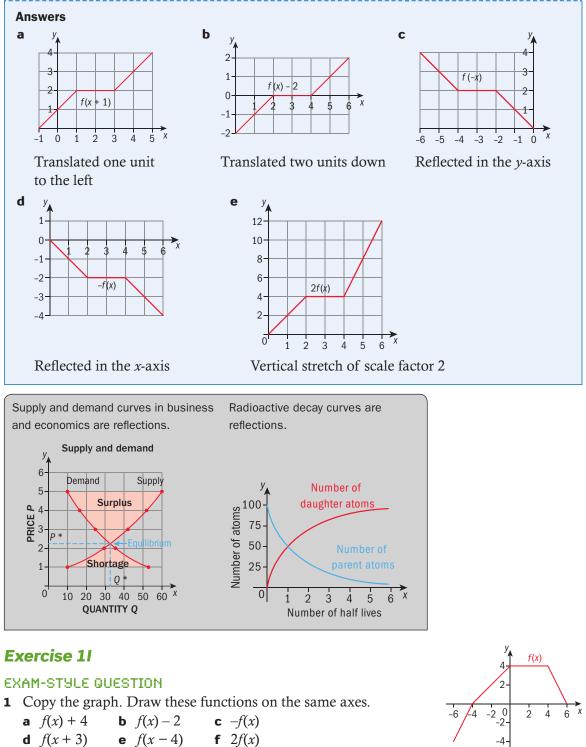
factor p.

The transformation is a **horizontal** The transformation is a **vertical** stretch of scale factor *p*. When p > 1 the graph stretches away from the *x*-axis. When 0 the graph iscompressed towards the x-axis.

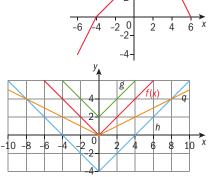
A stretch with a scale factor *p* where 0 will actuallycompress the graph.

Students often make mistakes with stretches. It is important to remember the different effects of, for example, 2f(x)and f(2x).

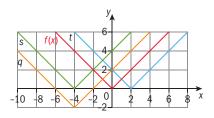




- **g** f(2x) **e** f(x-4)
- 2 Functions g, h and q are transformations of f(x). Write each transformation in terms of f(x).



3 Functions q, s and t are transformations of f(x). Write each transformation in terms of f(x).



EXAM-STYLE QUESTION

- 4 Copy the graph of f(x). Sketch the graph of each of these functions, and state the domain and range for each.
 - **a** 2f(x-5)

b
$$-f(2x) + 3$$

5 The graph of f(x) is shown. A is the point (1, 1). Make separate copies of the graph and draw the function after each transformation. On each graph, label the new position of A as A₁.

a f(x + 1) **b** f(x) + 1

c f(-x) **d** 2f(x)

e
$$f(x-2) + 3$$

6 In each case, describe the transformation that would change the graph of f(x) into the graph of g(x).

a
$$f(x) = x^3$$
, $g(x) = -(x^3)$

b
$$f(x) = x^2$$
, $g(x) = (x - 3)^2$

c f(x) = x, g(x) = -2x + 5

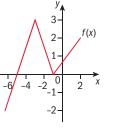
EXAM-STYLE QUESTION

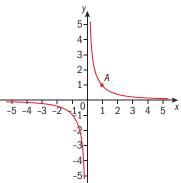
7 Let f(x) = 2x + 1.

- **a** Draw the graph of f(x) for $0 \le x \le 2$.
- **b** Let g(x) = f(x + 3) 2. On the same graph draw g(x)
 - for $-3 \le x \le -1$.

Review exercise

- **1** a If g(a) = 4a 5, find g(a 2). b If $h(x) = \frac{1+x}{1-x}$, find h(1-x).
- **2** a Evaluate f(x 3) when $f(x) = 2x^2 3x + 1$.
 - **b** For f(x) = 2x + 7 and $g(x) = 1 x^2$, find the composite function defined by $(f \circ g)(x)$.



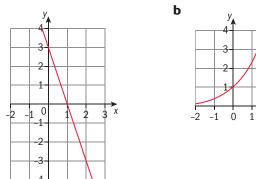


If a domain is given in the question, you must only draw the function for that domain.

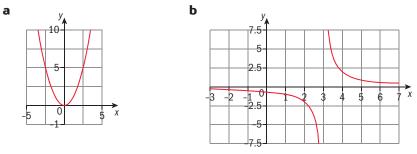
- **3** Find the inverses of these functions.
 - **a** $f(x) = \frac{3x + 17}{2}$ **b** $g(x) = 2x^3 + 3$

а

- 4 Find the inverse of $f(x) = -\frac{1}{5}x 1$. Then graph the function and its inverse.
- 5 Find the inverse functions for **a** f(x) = 3x + 5 **b** $f(x) = \sqrt[3]{x+2}$
- 6 Copy each graph and draw the inverse of each function.



7 Find the domain and range for each of these graphs.



3 x

EXAM-STYLE QUESTION

- **8** For each function, write a single equation to represent the given combination of transformations.
 - **a** f(x) = x, reflected in the *y*-axis, stretched vertically by a factor of 2, horizontally by a factor of $\frac{1}{3}$ and translated 3 units left and 2 units up.
 - **b** $f(x) = x^2$, reflected in the *x*-axis, stretched vertically by a factor of $\frac{1}{4}$, horizontally by a factor of 3, translated 5 units right and 1 unit down.
- **9** a Explain how to draw the inverse of a function from its graph.
 - **b** Graph the inverse of f(x) = 2x + 3.

EXAM-STYLE QUESTION

10 Let $f(x) = 2x^3 + 3$ and g(x) = 3x - 2.

a Find g(0). **b** Find $(f \circ g)(0)$. **c** Find $f^{-1}(x)$.

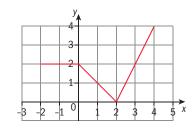
EXAM-STYLE QUESTIONS

11 The graph shows the function f(x), for $-2 \le x \le 4$.

- **a** Let h(x) = f(-x). Sketch the graph of h(x).
- **b** Let $g(x) = \frac{1}{2}f(x-1)$. The point A(3, 2) on the graph of f is transformed to the point P on the graph of g. Find the coordinates of *P*.
- **12** The functions *f* and *g* are defined as f(x) = 3xand g(x) = x + 2.
 - **a** Find an expression for $(f \circ g)(x)$.
 - **b** Show that $f^{-1}(12) + g^{-1}(12) = 14$.

13 Let g(x) = 2x - 1, $h(x) = \frac{3x}{x-2}$, $x \neq 2$

- **a** Find an expression for $(h \circ g)(x)$. Simplify your answer.
- **b** Solve the equation $(h \circ g)(x) = 0$.



The instruction 'Show that...' means 'Obtain the required result (possibly using information given) without the formality of proof'.

For 'Show that' questions you do not usually need to use a calculator. A good method is to cover up the right-hand side of the equation and then work out the left-hand side until your answer is the same as the righthand side.

Review exercise

- 1 Use your GDC to sketch the function and state the domain and range of $f(x) = \sqrt{x+2}$.
- **2** Sketch the function y = (x + 1)(x 3) and state its domain and range.
- **3** Sketch the function $y = \frac{1}{x+2}$ and state its domain and range.

EXAM-STYLE QUESTIONS

- 4 The function f(x) is defined as $f(x) = 2 + \frac{1}{x+1}, x \neq -1$.
 - **a** Sketch the curve f(x) for $-3 \le x \le 2$.
 - **b** Use your GDC to help you write down the value of the x-intercept and the y-intercept.
- **5** a Sketch the graph of $f(x) = \frac{1}{x^2}$
 - **b** For what value of x is f(x) undefined?
 - **c** State the domain and range of f(x).
- 6 Given the function $f(x) = \frac{2x-5}{x+2}$
 - a write down the equations of the asymptotes
 - **b** sketch the function
 - **c** write down the coordinates of the intercepts with both axes.
- 7 Let $f(x) = 2 x^2$ and $g(x) = x^2 2$.
 - **a** Sketch both functions on one graph with $-3 \le x \le 3$.
 - **b** Solve f(x) = g(x).

EXAM-STYLE QUESTIONS

- **8** Let $f(x) = x^3 3$.
 - **a** Find the inverse function $f^{-1}(x)$.
 - **b** Sketch both f(x) and $f^{-1}(x)$ on the same axes.
 - **c** Solve $f(x) = f^{-1}(x)$.

9 $f(x) = e^{2x-1} + \frac{2}{x+1}, x \neq 1.$

Sketch the curve of f(x) for $-5 \le x \le 2$, including any asymptotes.

10 Consider the functions *f* and *g* where f(x) = 3x - 2 and g(x) = x - 3.

- **a** Find the inverse function, f^{-1} .
- **b** Given that $g^{-1}(x) = x + 3$, find $(g^{-1} \circ f)(x)$.
- **c** Show that $(f^{-1} \circ g)(x) = \frac{x-1}{3}$.
- **d** Solve $(f^{-1} \circ g)(x) = (g^{-1} \circ f)(x)$

Let $h(x) = \frac{f(x)}{g(x)}, x \neq 2.$

- **d** Sketch the graph of *h* for $-6 \le x \le 10$ and $-4 \le y \le 10$, including any asymptotes.
- e Write down the equations of the asymptotes.

CHAPTER 1 SUMMARY

Introducing functions

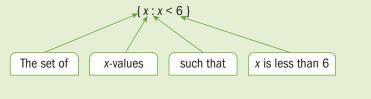
- A relation is a set of ordered pairs.
- The **domain** is the set of all the first numbers (*x*-values) of the ordered pairs.
- The range is the set of the second numbers (y-values) in each pair.
- A function is a relation where every *x*-value is related to a unique *y*-value.
- A relation is a function if any vertical line drawn will not intersect the graph more than once. This is called the **vertical line test**.

The domain and range of a relation on a Cartesian plane

Interval notation:

Use round brackets (,) if the value is not included in the graph or when the graph is undefined at that point (a hole or **asymptote**, or a jump). Use square brackets [,] if the value is included in the graph.

• Set notation:



Continued on next page

When IB exams have words in **bold** script, it means that you must do exactly what is required. For example the equation could be given as x = 3 but not just as 3.

Function notation

• f(x) is read as 'f of x' and means 'the value of function f at x'.

Composite functions

- The composition of the function *f* with the function *g* is written as *f*(*g*(*x*)), which is read as '*f* of *g* of *x*', or (*f* ∘ *g*)(*x*), which is read as '*f* composed with *g* of *x*'.
- A composite function applies one function to the result of another and is defined by (f ∘ g)(x) = f(g(x)).

Inverse functions

- The **inverse** of a function f(x) is $f^{-1}(x)$. It reverses the action of the function.
- Functions f(x) and g(x) are inverses of one another if: (f ∘ g)(x) = x for all of the x-values in the domain of g and (g ∘ f)(x) = x for all of the x-values in the domain of f.
- You can use the **horizontal line test** to identify inverse functions. If a horizontal line crosses a function more than once, there is no inverse function.

The graphs of inverse functions

- The graph of the inverse of a function is a reflection of that function in the line *y* = *x*.
- To find the inverse function algebraically, replace f(x) with y and solve for y.
- The function *I*(*x*) = *x* is called the identity function. It leaves *x* unchanged.
 So *f* ∘ *f* ⁻¹ = *I*.

Transformations of functions

- f(x) + k translates f(x) vertically a distance of k units upward.
- f(x) k translates f(x) vertically a distance of k units downward.
- f(x + k) translates f(x) horizontally k units to the left, where k > 0.
- f(x k) translates f(x) horizontally k units to the right, where k > 0.
- -f(x) reflects f(x) in the x-axis.
- f(-x) reflects f(x) in the *y*-axis.
- f(qx) stretches f(x) horizontally with scale factor $\frac{1}{q}$.
- *pf*(*x*) stretches *f*(*x*) vertically with scale factor *p*.