
Batory AA HL Homework June 16, 2020

Name:

1. (5 points)

(a) Find the coordinates of the points of intersection of the line 2x− 3y + 4 = 0
and the parabola y2 = 4x.

(b) Determine the value of c for which the line 2x− 3y+ c = 0 is tangent
to the parabola. Find the coordinates of the point of tangency.
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(c) Show that the equation of the normal at the point P (p2, 2p) (with
p 6= 0) on the parabola is

y = −px+ p3 + 2p

(d) The normal cuts the parabola again at point Q. Find, in terms of p,
the coordinates of point Q.
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2. (8 points)

(a) Show that x = 1 is a solution to the equation:

8x4 − 4x3 − 8x2 + 3x+ 1 = 0

And hence factorize the polynomial P (x) = 8x4− 4x3− 8x2+ 3x+ 1 into
a product of linear and cubic factor.

(b) Using the formula:

cosA− cosB = −2 sin
A+B

2

 sin
A−B

2


or otherwise, solve the equation:

cos 4θ = cos 3θ

for 0 ¬ θ ¬ π
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(c) By applying double angle and compound angle formulas express both
cos 4θ and cos 3θ in terms of cos θ only.

(d) Hence show that the solutions to the equation

8x3 + 4x2 − 4x− 1 = 0

are cos
2π
7
, cos

4π
7

and cos
6π
7

.

(e) Hence, or otherwise, find the value of sec
2π
7

sec
4π
7

sec
6π
7

.
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3. (7 points)

The diagram represents two straight lines OA and OB inclined at an an-
gle 2α. The circle of centre P1 has radius r and touches each of OA and
OB. A sequence of circles is drawn, decreasing in radius, each touching
OA, OB and its immediate predecessor.

(a) Prove that the radii of these circles are in geometric progression.
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Let Sn denote the sum of the areas of the first n circles and S denote the
sum to infinity of areas of all the circles.
(b) Prove that

S − Sn <
1

100
S

whenever

n >
1

log10
(
1+sinα
1−sinα

)

(c) Prove also that if the area of the first circle is equal to the sum of the
areas of all the other circles then sinα = 3− 2

√
2.


