

L'Hôpital's Rule

Limits of the form $\lim \frac{f(x)}{g(x)}$ can be evaluated by the following theorem in the *indeterminate cases* where f(x) and g(x) both approach 0 or both approach $\pm\infty$.

L'Hôpital's Rule

If f(x) and g(x) either both approach 0 or both approach $\pm \infty$, then

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

Here, "lim" stands for any of

 $\lim_{x \to +\infty} \lim_{x \to \infty} \lim_{x \to a} \lim_{x \to a^+} \lim_{x \to a^-} \lim_{x \to a^-}$

For a sketch of the proof, see Problems 1, 11, and 12. It is assumed, in the case of the last three types of limits, that $g'(x) \neq 0$ for x sufficiently close to a, and in the case of the first two limits, that $g'(x) \neq 0$ for sufficiently large or sufficiently small values of x. (The corresponding statements about $g(x) \neq 0$ follow by Rolle's Theorem.)

EXAMPLE 27.1: Since $\ln x$ approaches $+\infty$ as x approaches $+\infty$, L'Hôpital's Rule implies that

$$\lim_{x \to +\infty} \frac{\ln x}{x} = \lim_{x \to +\infty} \frac{1/x}{1} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

EXAMPLE 27.2: Since e^x approaches $+\infty$ as x approaches $+\infty$, L'Hôpital's Rule implies that

$$\lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$$

EXAMPLE 27.3: We already know from Problem 13(*a*) of Chapter 7 that

$$\lim_{x \to +\infty} \frac{3x^2 + 5x - 8}{7x^2 - 2x + 1} = \frac{3}{7}$$

Since both $3x^2 + 5x - 8$ and $7x^2 - 2x + 1$ approach $+\infty$ as x approaches $+\infty$, L'Hôpital's Rule tells us that

$$\lim_{x \to +\infty} \frac{3x^2 + 5x - 8}{7x^2 - 2x + 1} = \lim_{x \to +\infty} \frac{6x + 5}{14x - 2}$$

and another application of the rule tells us that

$$\lim_{x \to +\infty} \frac{6x+5}{14x-2} = \lim_{x \to +\infty} \frac{6}{14} = \frac{6}{14} = \frac{3}{7}$$

EXAMPLE 27.4: Since tan *x* approaches 0 as *x* approaches 0, L'Hôpital's Rule implies that

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sec^2 x}{1} = \lim_{x \to 0} \frac{1}{\cos^2 x} = \frac{1}{1^2} = 1$$

Indeterminate Type $0 \cdot \infty$

If f(x) approaches 0 and g(x) approaches $\pm \infty$, we do not know how to find $\lim f(x)g(x)$. Sometimes such a problem can be transformed into a problem to which L'Hôpital's Rule is applicable.

EXAMPLE 27.5: As *x* approaches 0 from the right, $\ln x$ approaches $-\infty$. So, we do not know how to find $\lim_{x\to 0^+} x \ln x$. But as *x* approaches 0 from the right, 1/x approaches $+\infty$. So, by L'Hôpital's Rule,

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0$$

Indeterminate Type $\infty - \infty$

If f(x) and g(x) both approach ∞ , we do not know what happens to $\lim(f(x) - g(x))$. Sometimes we can transform the problem into a L'Hôpital's-type problem.

EXAMPLE 27.6: $\lim_{x\to 0} \left(\csc x - \frac{1}{x} \right)$ is a problem of this kind. But,

$$\lim_{x \to 0} \left(\csc x - \frac{1}{x} \right) = \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x}$$

Since $x - \sin x$ and $x \sin x$ both approach 0, L'Hôpital's Rule applies and we get $\lim_{x \to 0} \frac{1 - \cos x}{x \cos x + \sin x}$. Here both numerator and denominator approach 0 and L'Hôpital's Rule yeilds

$$\lim_{x \to 0} \frac{\sin x}{-x \sin x + \cos x + \cos x} = \frac{0}{0+1+1} = \frac{0}{2} = 0$$

Indeterminate Types 0° , ∞° , and 1^{∞}

If lim y is of one of these types, then lim (ln y) will be of type $0 \cdot \infty$.

EXAMPLE 27.7: In $\lim_{x\to 0^+} x^{\sin x}$, $y = x^{\sin x}$ is of type 0^0 and we do not know what happens in the limit. But $\ln y = \sin x \ln x = \frac{\ln x}{\csc x}$ and $\ln x$ and $\csc x$ approach $\pm \infty$. So, by L'Hôpital's Rule,

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{1/x}{-\csc x \cot x} = \lim_{x \to 0^+} -\frac{\sin^2 x}{x \cos x} = -\lim_{x \to 0^+} \frac{\sin x}{x} \frac{\sin x}{\cos x}$$
$$= -\lim_{x \to 0^+} \frac{\sin x}{x} \lim_{x \to 0^+} \tan x = -(1)(0) = 0$$

Here, we used the fact that $\lim_{x\to 0^+} ((\sin x)/x) = 1$ (Problem 1 of Chapter 17). Now, since $\lim_{x\to 0^+} \ln y = 0$,

$$\lim_{x \to 0^+} y = \lim_{x \to 0^+} e^{\ln y} = e^0 = 1$$

EXAMPLE 27.8: In $\lim_{x\to 0^+} |\ln x|^x$, $y = |\ln x|^x$ is of type ∞^0 , and it is not clear what happens in the limit. But $\ln y = x \ln |\ln x| = \frac{\ln |\ln x|}{1/x}$ and both $\ln |\ln x|$ and 1/x approach + ∞ . So L'Hôpital's Rule yields

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \left(\frac{1}{x \ln x} \right) / \left(-\frac{1}{x^2} \right) = \lim_{x \to 0^+} -\frac{x}{\ln x} = 0,$$

since

$$\lim_{x \to 0^+} \frac{1}{\ln x} = 0. \quad \text{Hence,} \quad \lim_{x \to 0^+} y = \lim_{x \to 0^+} e^{\ln y} = e^0 = 1$$

EXAMPLE 27.9: In $\lim_{x \to 1} x^{1/(x-1)}$, $y = x^{1/(x-1)}$ is of type 1^{∞} and we cannot see what happens in the limit. But $\ln y = \frac{\ln x}{x-1}$ and both the numerator and the denominator approach 0. So by L'Hôpital's Rule, we get

$$\lim_{x \to 1} \ln y = \lim_{x \to 1} \frac{1/x}{1} = 1. \quad \text{Hence,} \quad \lim_{x \to 1} y = \lim_{x \to 1} e^{\ln y} = e^1 = e^1$$

SOLVED PROBLEMS

1. Prove the following $\frac{0}{0}$ form of L'Hôpital's Rule. Assume f(x) and g(x) are differentiable and $g'(x) \neq 0$ in some open interval (a, b) and $\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x)$. Then, if $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ exists,

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

Since $\lim_{x\to a^+} f(x) = 0 = \lim_{x\to a^+} g(x)$, we may assume that f(a) and g(a) are defined and that f(a) = g(a) = 0. Replacing *b* by *x* in the Extended Law of the Mean (Theorem 13.5), and using the fact that f(a) = g(a) = 0, we obtain

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$$

for some x_0 with $a < x_0 < x$. So, $x_0 \rightarrow a^+$ as $x \rightarrow a^+$. Hence,

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

We also can obtain the $\frac{0}{0}$ form of L'Hôpital's Rule for $\lim_{x \to a^-}$ (simply let u = -x), and then the results for $\lim_{x \to a^-}$ and $\lim_{x \to a^+}$ yield the $\frac{0}{0}$ form of L'Hôpital's Rule $\lim_{x \to a^-}$.

2. We already know by Examples 1 and 2 that $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ and $\lim_{x \to +\infty} \frac{x}{e^x} = 0$. Show further that $\lim_{x \to +\infty} \frac{(\ln x)^n}{x} = 0$ and $\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$ for all positive integers *n*.

Use mathematical induction. Assume these results for a given $n \ge 1$. By L'Hôpital's Rule,

$$\lim_{x \to +\infty} \frac{(\ln x)^{n+1}}{x} = \lim_{x \to +\infty} \frac{(n+1)(\ln x)^n (1/x)}{1} = (n+1) \lim_{x \to +\infty} \frac{(\ln x)^n}{x} = (n+1)(0) = 0$$

Likewise,

$$\lim_{x \to +\infty} \frac{x^{n+1}}{e^x} = \lim_{x \to +\infty} \frac{(n+1)x^n}{e^x} = (n+1)\lim_{x \to +\infty} \frac{x^n}{e^x} = (n+1)(0) = 0$$

- 3. Use L'Hôpital's Rule one or more times to evaluate the following limits. Always check that the appropriate assumptions hold.
 - (a) $\lim_{x \to 0} \frac{x + \sin 2x}{x \sin 2x}$ We get $\lim_{x \to 0} \frac{1 + 2\cos 2x}{1 - 2\cos 2x} = \frac{1 + 2(1)}{1 - 2(1)} = -3.$ (b) $\lim_{x\to 0^+} \frac{e^x - 1}{x^2}$.

We get $\lim_{x\to 0^+} \frac{e^x}{2x} = \frac{1}{2} \lim_{x\to 0^+} \frac{e^x}{x} = +\infty$ by Example 2.

(c) $\lim_{x\to 0} \frac{e^x + e^{-x} - x^2 - 2}{\sin^2 x - x^2}$.

We obtain $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{2\sin x \cos x - 2x} = \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{\sin 2x - 2x}.$

By repeated uses of L'Hôpital's Rule, we get

$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{2\cos 2x - 2} = \lim_{x \to 0} \frac{e^x - e^{-x}}{-4\sin 2x} =$$

$$\lim_{x \to 0} \frac{e^x + e^{-x}}{-8\cos 2x} = \frac{1+1}{-8(1)} = -\frac{2}{8} = -\frac{1}{4}$$

- (d) $\lim_{x \to \pi^+} \frac{\sin x}{\sqrt{x \pi}}$ We get $\lim_{x \to \pi^+} \frac{\cos x}{1/[2(x-\pi)^{1/2}]} = \lim_{x \to \pi^+} 2(x-\pi)^{1/2} \cos x = 0.$
- (e) $\lim_{x \to 0^+} \frac{\ln \sin x}{\ln \tan x}$ One obtains $\lim_{x \to 0^+} \frac{(\cos x)/(\sin x)}{(\sec^2 x)/(\tan x)} = \lim_{x \to 0^+} \cos^4 x = 1$
- $\lim_{x\to 0}\frac{\cot x}{\cot 2x}.$ (f)

The direct use of L'Hôpital's Rule

$$\lim_{x \to 0} \frac{-\csc^2 x}{-2\csc^2(2x)} = \frac{1}{4} \lim_{x \to 0} \frac{2\csc^2 x(\cot x)}{(\csc^2(2x))(\cot 2x)}$$

leads us to ever more complicated limits. Instead, if we change from cot to tan, we get

$$\lim_{x \to 0} \frac{\cot x}{\cot 2x} = \lim_{x \to 0} \frac{\tan 2x}{\tan x} = \lim_{x \to 0} \frac{2 \sec^2(2x)}{\sec^2 x} = 2 \lim_{x \to 0} \frac{\cos^2 x}{\cos^2(2x)} = 2\frac{1}{1} = 2$$

(g) $\lim x^2 \ln x$.

This is of type $0 \cdot \infty$. Then L'Hôspiutal's Rule can be brought in as follows:

$$\lim_{x \to 0^+} \frac{\ln x}{1/x^2} = \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = \lim_{x \to 0^+} -\frac{1}{2}x^2 = 0$$

(h) $\lim_{x \to \infty} (1 - \tan x) \sec 2x$.

This is of type $0 \cdot \infty$. However, it is equal to

$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\cos 2x} = \lim_{x \to \pi/4} \frac{-\sec^2 x}{-2\sin 2x} = \frac{-2}{-2} = 1$$

(Here we used the value $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.)

(i) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right).$

This is type $\infty - \infty$. But it is equal to

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \lim_{x \to 0} \frac{e^x - 1}{xe^x + e^x - 1} = \lim_{x \to 0} \frac{e^x}{xe^x + 2e^x} = \frac{1}{0 + 2} = \frac{1}{2}$$

(j) $\lim_{x \to \infty} (\csc x - \cot x)$. This is of type $\infty - \infty$. But it is equal to

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to 0} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0$$

(k) $\lim_{x\to(\pi/2)^-} (\tan x)^{\cos x}.$

This if of type ∞^0 . Let $y = (\tan x)^{\cos x}$. Then $\ln y = (\cos x)(\ln \tan x) = \frac{\ln \tan x}{\sec x}$.

$$\lim_{x \to (\pi/2)^{-}} \ln y = \lim_{x \to (\pi/2)^{-}} \frac{\ln \tan x}{\sec x} = \lim_{x \to (\pi/2)^{-}} (\sec^2 x / \tan x) / (\sec x \tan x) = \lim_{x \to (\pi/2)^{-}} \frac{\cos x}{\sin^2 x} = \frac{0}{1} = 1$$

(1)
$$\lim_{x \to +\infty} \frac{\sqrt{2+x^2}}{x}.$$

We get $\lim_{x \to +\infty} \frac{x}{\sqrt{2+x^2}} = \lim_{x \to +\infty} \frac{\sqrt{2+x^2}}{x}$ and we are going around in a circle. So, L'Hôpital's Rule is of no use. But,
$$\lim_{x \to +\infty} \frac{\sqrt{2+x^2}}{x} = \lim_{x \to +\infty} \sqrt{\frac{2+x^2}{x}} = \lim_{x \to +\infty} \sqrt{\frac{2+x^2}{x^2}} = \lim_{x \to +\infty} \sqrt{\frac{2}{x^2}+1}$$

$$\lim_{x \to +\infty} \frac{\sqrt{2+x^2}}{x} = \lim_{x \to +\infty} \sqrt{\frac{2+x^2}{x^2}} = \lim_{x \to +\infty} \sqrt{\frac{2}{x^2}} + 1$$
$$= \sqrt{0+1} = 1$$

Criticize the following use of L'Hôpital's Rule: 4.

$$\lim_{x \to 2} \frac{x^3 - x^2 - x - 2}{x^3 - 3x^2 + 3x - 2} = \lim_{x \to 2} \frac{3x^2 - 2x - 1}{3x^2 - 6x + 3} = \lim_{x \to 2} \frac{6x - 2}{6x - 6} = \lim_{x \to 2} \frac{6}{6} = 1$$

The second equation is an incorrect use of L'Hôpital's Rule, since $\lim_{x\to 2} (3x^2 - 2x - 1) = 7$ and $\lim_{x\to 2} (3x^2 - 6x + 3) = 3$. So, the correct limit should be $\frac{7}{3}$.

5.

(GC) Sketch the graph of $y = xe^{-x} = \frac{x}{e^x}$. See Fig 27-1. By Example 2, $\lim_{x \to +\infty} y = 0$. So, the positive x axis is a horizontal asymptote. Since $\lim_{x \to \infty} e^{-x} = +\infty$, $\lim_{x \to \infty} y = e^{-x} (1-x)$ and $y'' = e^{-x} (x-2)$. Then x = 1 is a critical number. By the second derivative test, there is a relative maximum at (1, 1/e) since y'' < 0 at x = 0. The graph is concave downward for x < 2 (where y'' < 0) and concave upward for x > 2 (where y'' > 0). (2, $2/e^2$) is an inflection point. The graphing calculator gives us the estimates $1/e \sim 0.37$ and $2/e^2 \sim 0.27$.

Fig. 27-1

(GC) Sketch the graph $y = x \ln x$. 6.

See Fig. 27-2. The graph is defined only for x > 0. Clearly, $\lim_{x \to \infty} y = +\infty$. By Example 5, $\lim_{x \to \infty} y = 0$. Since $y' = 1 + \ln x$ and y'' = 1/x > 0, the critical number at x = 1/e (where y' = 0) yields, by the second derivative test, a relative minimum at (1/e, -1/e). The graph is concave upward everywhere.

Fig. 27-2

SUPPLEMENTARY PROBLEMS

- Show that $\lim_{x \to -\infty} x^n e^x = 0$ for all positive integers *x*. 7.
- Find $\lim_{x\to+\infty} x\sin\frac{\pi}{x}$. 8.

Ans. π

- Sketch the graphs of the following functions: (a) $y = x \ln x$; (b) $y = \frac{\ln x}{x}$; (c) $y = x^2 e^x$ 9.
 - Ans. See Fig. 27-3.

(c)

10. Evaluate the following limits:

- $\lim_{x \to 4} \frac{x^4 256}{x 4} = 256$ (a) $\lim_{x \to 2} \frac{e^x - e^2}{x - 2} = e^2$ (d)
- (g)
- $\lim_{x \to -1} \frac{\ln(2+x)}{x+1} = 1$ $\lim_{x \to 0} \frac{8^x 2^x}{4x} = \frac{1}{2} \ln 2$ (j)
- $\lim_{x \to 0} \frac{\ln \cos x}{x^2} = -\frac{1}{2}$ (m)
- $\lim_{x \to \frac{1}{2}\pi} \frac{\csc 6x}{\csc 2x}$ $r = \frac{1}{3}$ (p) $\lim \frac{\ln \cot x}{\cos^2 x} = 0$
- (s) $e^{\csc^2 x}$ $x \rightarrow 0$
- $\lim x^2 e^x = 0$ (v)

(b)
$$\lim_{x \to 4} \frac{x^4 - 256}{x^2 - 16} = 32$$

(e) $\lim_{x \to 0} \frac{xe^x}{1 - e^x} = -1$

(h)
$$\lim_{x \to 0} \frac{\cos x - 1}{\cos 2x - 1} = \frac{1}{4}$$

 $2 \tan^{-1} x - x$

(k)
$$\lim_{x \to 0} \frac{2 \tan^2 x - x}{2x - \sin^{-1} x} = 1$$

(n)
$$\lim_{x \to 0} \frac{\cos 2x - \cos x}{\sin^2 x} = -\frac{3}{2}$$

(ii)
$$x \to 0$$
 $\sin^2 x$
(q) $\lim_{x \to +\infty} \frac{5x + 2 \ln x}{x + 3 \ln x} = 5$

(t)
$$\lim_{x \to 0^+} \frac{e^x + 3x^3}{4e^x + 2x^2} = \frac{1}{4}$$

(w)
$$\lim_{x \to 0} x \csc x = 1$$

(c)
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 9} = \frac{1}{2}$$

(f)
$$\lim_{x \to 0} \frac{e^x - 1}{\tan 2x} = \frac{1}{2}$$

(i)
$$\lim_{x \to 0} \frac{e^{2x} - e^{-2x}}{\sin x} = 4$$

(l)
$$\lim_{x \to 0} \frac{\ln \sec 2x}{\ln \sec x} = 4$$

(o)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}} = 0$$

(r)
$$\lim_{x \to +\infty} \frac{x^4 + x^2}{e^x + 1} = 0$$

(u)
$$\lim_{x \to 0} (e^x - 1)\cos x = 1$$

 $\lim_{x \to 1} \csc \pi x \ln x = -1/\pi$ (x)

- 11. Verify the sketch of the proof of the following $\frac{0}{0}$ form of L'Hôpital's Rule at $+\infty$. Assume f(x) and g(x) are differentiable and $g'(x) \neq 0$ for all $x \ge c$, and $\lim_{x \to +\infty} f(x) = 0 = \lim_{x \to +\infty} g(x)$. Then,
 - if $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ exists, $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$

Proof: Let F(u) = f(1/u) and G(u) = g(1/u). Then, by Problem 1 for $a \to 0^+$, and with F and G instead of f and g,

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{u \to 0^+} \frac{F(u)}{G(u)} = \lim_{u \to 0^+} \frac{F'(u)}{G'(u)}$$
$$= \lim_{u \to 0^+} \frac{(f'(1/u) \cdot (-1/u^2))}{(g'(1/u) \cdot (-1/u^2))} = \lim_{u \to 0^+} \frac{f'(1/u)}{g'(1/u)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

12. Fill in the gaps in the proof of the following $\frac{\infty}{\infty}$ form of L'Hôpital's Rule in the $\lim_{x \to a^+}$ case. (The other cases follow easy as in the $\frac{0}{0}$ form.) Assume f(x) and g(x) are differentiable and $g'(x) \neq 0$ in some open interval (a, b) and $\lim_{x \to a^+} f(x) = \pm \infty = \lim_{x \to a^+} g(x)$. Then,

if
$$K = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$
 exists, $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$

Proof: Assume $\in > 0$ and choose *c* so that $|K - (f'(x)/g'(x))| < \epsilon/2$ for a < x < c. Fix *d* in (a, c). Let a < y < d. By the extended mean value theorem, there exists x^* such that

$$y < x^* < d$$
 and $\frac{f(d) - f(y)}{g(d) - g(y)} = \frac{f'(x^*)}{g'(x^*)}$

Then

$$\left| K - \frac{f(d) - f(y)}{g(d) - g(y)} \right| < \frac{\epsilon}{2} \quad \text{and so} \quad \left| K - \left[\left(\frac{f(y)}{g(y)} - \frac{f(d)}{g(y)} \right) \middle/ \left(1 - \frac{g(d)}{g(y)} \right) \right] \right| < \frac{\epsilon}{2}$$

Now we let $y \to a^+$. Since $g(y) \to \pm \infty$ and f(d) and g(d) are constant, $f(d)/g(y) \to 0$ and $1 - g(d)/g(y) \to 1$. So, for y close to a,

$$\left|K - \frac{f(y)}{g(y)}\right| < \epsilon$$
. Hence, $\lim_{y \to a^+} \frac{f(y)}{g(y)} = K$

13. (GC) In the following cases, try to find the limit by analytic methods, and then check by estimating the limit on a graphing calculator: (a) $\lim_{x \to 0^+} x^{1/x}$; (b) $\lim_{x \to \infty} x^{1/x}$; (c) $\lim_{x \to 0} (1 - \cos x)^x$; (d) $\lim_{x \to +\infty} (\sqrt{x^2 + 3x} - x)$.

Ans. (a) 0; (b) 1; (c) 1; (d) $\frac{3}{2}$

14. The current in a coil containing a resistance *R*, an inductance, *L*, and a constant electromotive force, *E*, at time *t* is given by $i = \frac{E}{R}(1 - e^{-Rt/L})$. Obtain a formula for estimating *i* when *R* is very close to 0.

Ans. $\frac{Et}{L}$

