L’Hopital’s Rule

Limits of the form lim % can be evaluated by the following theorem in the indeterminate cases where f(x)

and g(x) both approach 0 or both approach +eo.

L’Hopital’s Rule

If f(x) and g(x) either both approach 0 or both approach te<, then

. fx) L f(x)
hmw =lim (%)

Here, “lim” stands for any of

lim, lim, lim, lim, lim

X—>+Hoo X—>—co x—a x—a* x—a

For a sketch of the proof, see Problems 1, 11, and 12. It is assumed, in the case of the last three types of
limits, that g’(x) # 0 for x sufficiently close to a, and in the case of the first two limits, that g’(x) # O for
sufficiently large or sufficiently small values of x. (The corresponding statements about g(x) # O follow by

Rolle’s Theorem.)

EXAMPLE 27.1:

EXAMPLE 27.2:

EXAMPLE 27.3:

Since In x approaches +oo as x approaches +oo, L’Hopital’s Rule implies that

fim X _ i WXy

x>0 X X—yfoo x40 X

Since e* approaches +eo as x approaches +oo, L’Hopital’s Rule implies that

lim % =lim 4 =0
x40 €7 X—teo €

We already know from Problem 13(a) of Chapter 7 that

. 3x*4+5x-8_3
Im o+ 17

Since both 3x% + 5x — 8 and 7x? — 2x + 1 approach +eo as x approaches +eo, L’Hopital’s Rule tells us that

. 3x*+5x—-8 _ ;. 6x+5
R ey R LU v o
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and another application of the rule tells us that

6x+5 . 6
lim =lim &£=5&=3
X—>+oo 14X 2 X—>too 14 14 7

EXAMPLE 27.4: Since tan x approaches 0 as x approaches 0, L’Hopital’s Rule implies that

2
lim 80X _ i SEC°X _ iy L _ 1

=1
=0 X X0 0 cos’x 12

Indeterminate Type 0--

If f(x) approaches 0 and g(x) approaches +co, we do not know how to find lim f(x)g(x). Sometimes such a
problem can be transformed into a problem to which L’Hopital’s Rule is applicable.

EXAMPLE 27.5:  As x approaches 0 from the right, In x approaches —o. So, we do not know how to find 11_)151 xInx.
But as x approaches 0 from the right, 1/x approaches +e. So, by L’Ho6pital’s Rule,

In x 1/x Lo
fimoxinx= i T =l pge = =0

Indeterminate Type co—co

If f(x) and g(x) both approach oo, we do not know what happens to lim( f(x) — g(x)). Sometimes we can
transform the problem into a L’Hopital’s-type problem.

EXAMPLE 27.6: lin%(cscx - %) is a problem of this kind. But,

lim (cscx — 4| = lim (—4—— 1) = 1jm 2=sinx
x—=0 X x—0 \ SInX X x—0  XSInXx

Since x — sin x and x sin x both approach 0, L’Hopital’s Rule applies and we get lin{} xc})gxc%' Here both
numerator and denominator approach 0 and L’Hdpital’s Rule yeilds -

lim sin x _ 0 :QZO
>0 —xsinx+cosx+cosx O+1+1 2

Indeterminate Types 0°, «<°, and 1~
If lim y is of one of these types, then lim (In y) will be of type O- co.

EXAMPLE 27.7: In lim x*"*, y=x%"* is of type 0° and we do not know what happens in the limit. But

x—0*

In y=sinxInx= cl:c); and In x and csc x approach +e. So, by L’Hopital’s Rule,

1 . in? . sinx sinx
llmlny—llm Ix =lim -3 X — iy
x—0 x>0t —CSCXCOtX x50 XCOSX x—=0" X  COSX
. sinx .
=—1lim lim tanx =—(1)(0)=0
x—0* x—0*

Here, we used the fact that ljrg((sin x)/x)=1(Problem 1 of Chapter 17). Now, since lirg Iny=0,

limy=lime" =’ =1

x—0* x—0*
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EXAMPLE 27.8: In lirg nxl*, y=Inxl* is of type o, and it is not clear what happens in the limit. But

Inlln x|

Iny=xInlln xl= T and both 1Inlln x| and 1/x approach +eo. So L’Hopital’s Rule yields

1 ) o im- X =
lim 1ny_hm(xlnxj/( xz)_xhqur)} nx
since

1 1 — Iny — ,0 —
}Lrg hx = 0. Hence, hmy = ll_)me =e’'=1

EXAMPLE 27.9: In hmx ), y=x"D is of type 1= and we cannot see what happens in the limit. But Iny =
and both the numerator and the denominator approach 0. So by L’Hopital’s Rule, we get

hmlny—llm]/x 1. Hence, llmy—llme]“‘—e—e

x—l x—l -1 x>l

SOLVED PROBLEMS

1. Prove the following 8 form of L’Hopital’s Rule. Assume f(x) and g(x) are differentiable and g’(x) # 0 in some

open interval (a, b) and hm fx)=0= hm g(x). Then, if hm {gc EX; exists,
i SO o F@)

x—a* g(x) x—at & (x)

Since 11m fx)=0= 11m g(x), we may assume that f(a) and g(a) are defined and that f(a) = g(a) =
Replacmg b by x in the Extended Law of the Mean (Theorem 13.5), and using the fact that f(a) = g(a) 0, we
obtain

[ _ f) = fla) _ ['(x)
g(x)  gv)—gla@)  g'(xy)

for some X, with a<x,<x. So, x,—>a" as x — a*. Hence,

fx) . f(x)
xoat g(x) A]LT g’ (x)

We also can obtain the % form of L’Hopital’s Rule for hm (simply let u = —x), and then the results for hm and
hm yield the % form of L’Hopital’s Rule lim.

x—a

2. We already know by Examples 1 and 2 that lim 17 =0 and lim ix =0. Show further that hm

X—>too X—>+oo

0" _ ) and
X

lim 2~ =0 for all positive integers n.
y—teo €F

Use mathematical induction. Assume these results for a given n =1. By L’Hopital’s Rule,

I 0™ w

X—>+eo X r—>+eo

(n+1)1in+1w(lnTx)n:(n+l)(0)=0

Likewise,

lim 2L — lim (n+Dx"
X e.\'

X—4oo € X—>too

=(n+1)1im)ef—ﬁ=(n+1)(0)=o
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3. Use L’Hopital’s Rule one or more times to evaluate the following limits. Always check that the appropriate

assumptions hold.

(@ lim < +sin2x

x>0 X—sin2x’
1+2cos2x _ 1+2(1) _ _
S0 1—=2cos2x — 1-2(1)
. -1

(b) lim e .

-0 X

We get h

We get lim Z—X =1 1lim 7A = +oo by Example 2.

x50t 22X 2 50

X X _ 2 _
(©) lim&£te =x"=2
x—0 SIN“ X —X

X . X _ =X
We obtain lim =¢-—¢_~=2% e —et—2x
o0 2sinxcosx —2x  +o0 sin2x—2x

By repeated uses of L’Hopital’s Rule, we get

et te =2 .. ef—e*
1;‘33 2cos2x—2 lHo —4sin2x

lim € e 1+l _ 2 |1
. 0 —8cos2x ~ —8(1) 8 4

d) lim 28X

@ 5=z

We get hm hm 2(x—m)"?>cosx=0.

1/[2( )”2]
. Insinx

© Ah_{(r)1 In tan x° ( /(sinx)
One obtains hm M hm cos*x=1

. (sec? x)/(tanx) x>0

. cotx

() £1£)I(} cot2x’

The direct use of L’Hopital’s Rule

. —csc? . 2csc? x(cot x
lim —=SsCX__ _ 1 (cotx)

lim s~ M (osc?(2x)) (ot 23)
leads us to ever more complicated limits. Instead, if we change from cot to tan, we get

lim -COtX _ i tan2x _ . 2sec*(2x) _ 1. cos’x _ol_
10 COt2Xx im0 tanx x50 sec’x -0 €08?(2x) 1

2

(@ 1i1})1+ x21n x.

This is of type 0- co. Then L’Hospiutal’s Rule can be brought in as follows:

Inx _ A o
I P = = lim=ex7 =0
(h) lin}A(l —tanx)sec2.x.

This is of type 0- .. However, it is equal to
I—tanx _ ;. —sec’x _ =2 _,

xon/4 COS2X xon/4 —28In2x 27
@ tim(L-—Lo)

This is type co— 0. But it is equal to
—1-x_ -1 _ et __1 _1
1x1—>o x(e* —1) _Pi% xe*'+e*'—1_£1§(} xe*+2e* ~ 0+27 2
(j) lin(}(cscx—cotx)

(Here we used the value cos % =

-

This is of type oo — co. But it is equal to

. ( 1 _cosx)zi l-cosx _ . sinx _
—o\sinx  sinx x>0 Sinx x—0 COSX
(k) lim (tanx)>*.
x—=(m/2)”
Intanx

This if of type o°. Let y = (tan x)**. Then Iny = (cos x)(In tan x) = secx
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So

lim Iny= Intanx _ 1m _(sec” x/tanx)/(secxtanx)= lim COSX g=1
X (m2) o2y SECX  x(m/2 @) sinfx 1
2
A lim Y2EX
X—>+o0 X

/ 2
We get 11 im- \/ o = lin; 2; X and we are going around in a circle. So, L’'Hopital’s Rule is of no use. But,
x X—>

2 2
lim ¥2XX i 2452 i 2 41
X—>+oo X X—>+oo X x40 | X
0+1=1

Criticize the following use of L’Hdpital’s Rule:

lim x—x —x=2 1m3x —2x=1_im 6x—2 l.mgzl

o2 X3 =3x2+3x—-2 .52 3x*2—6x+3 52 6x—6 6

The second equation is an incorrect use of L’Hopital’s Rule, since liIIZI (Bx>=2x—-1)=7and 11n21 (Bx?2—6x+3)=3.
So, the correct limit should be Z. ’

(GC) Sketch the graph of y=xe™ = e_{'

See Fig 27-1. By Example 2, 15& ¥=0. So, the positive x axis is a horizontal asyomptote. Since
lim e = 4o0, lim y=—o0, y'= e’;(l —x) andy” = ¢ (x—2). Then x = 1 is a critical number. By the second
derivative test',t_t}ﬁ?:re is a relative maximum at (1, 1/e) since y” < 0 at x = 0. The graph is concave downward for
x <2 (where ¥”< 0) and concave upward for x > 2 (where y” > 0). (2, 2/¢?) is an inflection point. The graphing
calculator gives us the estimates 1/e ~ 0.37 and 2/e* ~ 0.27.

V4

1(2.2¢7%)

Fig. 27-1

(GC) Sketch the graph y=x Inx.
See Fig. 27-2. The graph is defined only for x > 0. Clearly, hm | y = oo By Example 5, hm y=0. Since y’ =1+1Inx

and y” =1/x >0, the critical number at x = 1/e (where y’ = 0) yields, by the second derlvatlve test, a relative
minimum at (1/e, —1/e). The graph is concave upward everywhere.

y

(=]
e p—

Q=

Fig. 27-2
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SUPPLEMENTARY PROBLEMS

7. Show that lim x"e*=0 for all positive integers x.

X—>—o0

8. Find lim xsin%.

X—>teo

Ans. 1w

9. Sketch the graphs of the following functions: (a) y=x—1nx; (b) y= lnTx; (c) y=x’e"

Ans. See Fig. 27-3.

(a) (b)
A
L —d4e2
T T T >
242 =2 22
(c)
Fig. 27-3
10. Evaluate the following limits:
. ox* =256 _ . oxt =256 _ Lox?=3x_ 1
(@ lm =5 =256 (b) lim =g =32 (© lm<="9=7
. e -t _ S AR e —1_1
() lmS—=e () m =1 ) M a2 T2
. In(2+x) . cosx—1 _1 g eF e
(®) ;}gg x+1 =1 (h) 1(:0 cos2x—1 4 @ P—r)% sinx
. L8 =2 1 2tan'x—x _ . Insec2x _
¢ MNm =72 & lim S =] M M secx T
Incosx 1 . cos2x—cosx __ 3 . Inx
(m) lim =5 =— m I T2 (o) lim ~Z==0
cscbx _ 1 i 5x+21nx_5 lim x4+x2:0
(p) xa%—n csc2x 3 (q) XLI?N x+3Inx - (r) x5+ 1
lim Incotx _ lim € +3x°_ _ 1 L
(o lim S © Imgee =g (w lim (e ~Tcosx =1
(v) lim x%*=0 (w) lim xescx=1 (x) lim csczxlny=—1/7



11.

12.
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¥) xliﬁ e gec? x = 0 (2) %gxg (x—sin™ x)csc%c:—% @) 133 (x24—4 - x12)=_%
)ty (- ) =0 © Jim (e’ tan' ) == @t (gh-5) =3
@ tm(&-=2o)=-1 @ EE“%&-j%):o @) 1 x =1

(1) lim (cosx)"* =1 (i) lim (e* +3x)"  =e* G" }1&1& (1—e*) =1/e

") XILIE[ (sinx—cosx)" " =1fe (1) XLII_I;I[ (tanx)™" =1 (m’) lim XX = g-n

@ lim (141" =e © lim =0 ®) Jim =0

@ tim 55 =0 @) tim 2=

) Tim U= g € iy 1=t

w0 (I1+x)In(1—x) 5o 1+X o0 (1—x)

Verify the sketch of the proof of the following % form of L’Hopital’s Rule at +eo. Assume f(x) and g(x) are
differentiable and g’(x) # 0 for all x > ¢, and lim f(x)=0= lim g(x). Then,

. f'(x) . f) . )
if )LIEG g’'(x) exists, xlg?w g(x) }Lnfw g’ (%)

Proof: Let F(u) = f(1/u) and G(u) = g(1/u). Then, by Problem 1 for a — 0*, and with F and G instead of fand g,

f() . F) . F'(u)
lim = =i G = Im G

_ (fAfw)-(=1w?)) _ . Q) . f(x)
= ) — o ()~ M0

Fill in the gaps in the proof of the followmg — form of L’Hdpital’s Rule in the }LTE case. (The other cases follow

easy as in the 0 form.) Assume f(x) and g(x) are differentiable and g’(x)# 0 in some open interval (a, b) and
lim f(x)=teo= lim g(x). Then,

. e . fx) fx)
it K=lmegrny o exists o limegee= lim s

Proof: Assume € >0 and choose ¢ so that K — (f"(x)/g’(x))l< e/2 fora<x < c.Fixdin(a, ¢). Leta<y<d. By
the extended mean value theorem, there exists x* such that

f@-fO» _ f1&x)
gd)—g(y)  g'(x")

F@-fO)|_ e (0 1@) /), _ g@
%gww@<2zm” F[@wgmyOmﬂ}

Now we let y — a*. Since g(¥) =t and f(d) and g(d) are constant, f(d)/g(y) — 0 and 1— g(d)/g(y) = 1. So,
for y close to a,

y<x'<d and

Then

€

2

Hence, )]”? —==K

‘ g(y)
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13. (GCO) In the following cases, try to find the limit by analytic methods, and then check by estimating the limit on a
graphing calculator: (a) lim X' (b) lim x'™; () lim (1-cosx)"; (d) li_{?m(\/xz +3x - x),

Ans. (a) 0; (b) 1;(c) 1;(d) 3

14. The current in a coil containing a resistance R, an inductance, L, and a constant electromotive force, E, at time ¢ is
given by i = %(1 — e ®/L). Obtain a formula for estimating i when R is very close to 0.

Et
Ans. I



	Chapter 27 L’Hôpital’s Rule
	L’Hôpital’s Rule
	Indeterminate Type 0 · &#8734;
	Indeterminate Type &#8734; - &#8734;
	Indeterminate Types 0[sup(0)], &#8734;[sup(0)], and 1&#8734;


