Name:

## SECTION A

1. (4 points) 12 and  $-\frac{4}{9}$  are the second and fifth term of a geometric sequence. Find the sum to infinity of this sequence.

2. (4 points) Triangle ABC has  $\angle ACB = 42^{\circ}, BC = 1.74 \ cm$  and area of 1.19  $cm^2$ .

(a) Find AC.

(b) Find AB

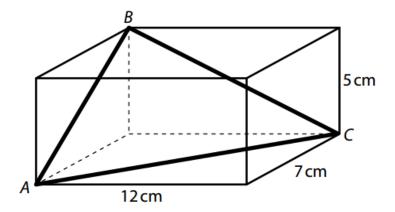
3. (4 points) The following frequency distribution of marks has mean 4.5

| Mark      | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------|---|---|---|---|---|---|---|
| Frequency | 2 | 4 | 6 | 9 | x | 9 | 4 |

(a) Find the value of x.

- (b) Write down the standard deviation of the marks.
- (c) Find the interquartile range of the marks.
- 4. (5 points) Given that  $\log_2 x = p$  and  $\log_5 x = q$ , express in terms of p and q:
  - (a)  $\log_x 10$

(b)  $\log x$ 


- 5. (5 points) Consider the function  $f(x) = \frac{|x-1|+3}{|x+1|-2}$ .
  - (a) Sketch the graph of f, clearly indicating any asymptotes and axes intercepts.

(b) Solve the inequality f(x) > 2.

- 6. (7 points) Consider the function  $f(x) = \frac{2e^x}{1+3e^x}$ .
  - (a) Find  $f^{-1}(x)$ .

(b) Find the domain and range of  $f^{-1}(x)$ .

- 7. (5 points) For the rectangular box shown, find:
  - (a) the measure of  $\angle ABC$ ,
  - (b) the area of triangle ABC.



- 8. (4 points)
  - (a) Solve the equation

$$a^x = e^{2x+1}$$

where a > 0, giving your for x in terms of a.

(b) For what value of a does the above equation have no solution?

9. (6 points) Given the following system of equations:

$$\begin{cases} \sin x + \cos y = 1\\ x = e^{\frac{y}{2}} + 1 \end{cases}$$

(a) Express y in terms of x in both equations.

(b) Hence solve the system of  $0 < x < \pi$  and  $0 < y < \pi$ .

- 10. (6 points) The radius and height of a cylinder are both equal to  $x \ cm$ . The curved surface area of the cylinder is increasing at a constant rate of  $10 \ cm^2/s$ . When x = 2, find the rate of change of:
  - (a) the radius of the cylinder,

(b) the volume of the cylinder.

- 11. (8 points) Consider the function  $f(x) = \ln x \sin x$ .
  - (a) State the largest possible domain of f.
  - (b) Find f'(x).

(b) By writing f(x) as  $\frac{\ln x}{\csc x}$ , find  $\lim_{x\to 0^+} f(x)$ .

## SECTION B

- 12. (14 points) Two boats A and B start moving from the same point P. Boat A moves in a straight line at  $20 \ km/h$  and boat B moves in a straight line at  $32 \ km/h$ . The angle between their paths is  $70^{\circ}$ .
  - (a) Find the distance between the two boats when t, the time after they started moving, is  $2.5 \ hours$ .

(b) Find the rate of change of the distance between the boats when  $t = 2.5 \ hours$ .

(c) When  $t = 2.5 \ hours$ , boat A continues along the same path and with the same speed, boat B changes its path (its speed is unchanged) so that it will meet boat A at some point X. Calculate the time t at which both boats will meet and the angle by which the boat B needs to turn in order to meet boat A.

- 13. (14 points) Consider the function  $f(x) = \frac{\log x}{x}$ .
  - (a) State the largest possible domain of the function.

(b) Calculate the coordinates of the stationary point of f and show that this point is a maximum.

(c) Find the range of f on the domain found in (a). Justify your answer.

(d) Hence (without calculating any numerical values) prove that:

$$e^{\pi} > \pi^e$$

.

## 14. (24 points) Consider the function

$$y(t) = e^{-\lambda t} \sin(pt + \alpha)$$

where  $\lambda, p$  and  $\alpha$  are constants.

## (a) Show that

$$\frac{d^2y}{dt^2} + 2\lambda \frac{dy}{dt} + (\lambda^2 + p^2)y = 0$$

(b) Given that  $\frac{dy}{dt}=-2p$  and  $\frac{d^2y}{dt^2}=-3p$ , when  $\alpha=0$  and  $t=\frac{\pi}{p}$ , calculate the value of  $\lambda$  and show that

$$p = \frac{3\pi}{4\ln 2}$$

- (c) Now consider a different case when  $\frac{dy}{dt}=0$  at t=0 and  $\lambda$  is not specified. Show that
  - (i)  $\lambda = p \cot \alpha$ ;

(ii) the values of t at which  $\frac{dy}{dt}=0$  are in an arithmetic progression, and find the common difference;

(iii) the values of y at which  $\frac{dy}{dt}=0$  are in a geometric progression, and find the common ratio in terms of  $\alpha$ .