Intervals

0 00 0 0 7	0.0	hower	
LUILIASZ.			

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Na prezentacji zostanie omówiony sposób zapisu przediałów (intervals) i działania na nich. Przedziały są zbiorami, więc wszystkie działania na zbiorach możemy stosować do przedziałów

We will use the following notation:

 $\langle a, b \rangle$ denotes all real numbers x such that $a \leqslant x \leqslant b$

э

< □ > < 同 > < 回 > < 回 > < 回 >

We will use the following notation:

- $\langle a, b \rangle$ denotes all real numbers x such that $a \leqslant x \leqslant b$
- (a, b) denotes all x such that $a < x \leq b$

э

We will use the following notation:

- $\langle a, b \rangle$ denotes all real numbers x such that $a \leqslant x \leqslant b$
- (a, b) denotes all x such that $a < x \leq b$
- (a, b) denotes all x such that $a \leq x < b$

We will use the following notation:

- $\langle a, b \rangle$ denotes all real numbers x such that $a \leqslant x \leqslant b$
- (a, b) denotes all x such that $a < x \leq b$
- (a, b) denotes all x such that $a \leq x < b$
- (a, b) denotes all x such that a < x < b

We will use the following notation:

- $\langle a, b \rangle$ denotes all real numbers x such that $a \leqslant x \leqslant b$
- (a, b) denotes all x such that $a < x \leq b$
- (a, b) denotes all x such that $a \leq x < b$
- (a, b) denotes all x such that a < x < b
- So for example $(-1, 3) = \{x : x \in \mathbb{R} \land -1 < x \leq 3\}.$

3

We will use the following notation:

- $\langle a, b \rangle$ denotes all real numbers x such that $a \leqslant x \leqslant b$
- (a, b) denotes all x such that $a < x \leq b$
- (a, b) denotes all x such that $a \leq x < b$
- (a, b) denotes all x such that a < x < b

So for example $(-1, 3) = \{x : x \in \mathbb{R} \land -1 < x \leq 3\}$. Note that because we will work in real numbers, I'll no longer write that x has to be a real number (in other words unless stated otherwise we assume that x is a real number).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(a,∞) denotes all x such that $a \leq x$

3

 (a,∞) denotes all x such that $a \leq x$

 (a, ∞) denotes all x such that a < x

3

イロト イヨト イヨト イヨト

- (a,∞) denotes all x such that $a \leq x$
- (a, ∞) denotes all x such that a < x
- $(-\infty, b)$ denotes all x such that $x \leq b$

э

- (a,∞) denotes all x such that $a \leq x$
- (a, ∞) denotes all x such that a < x
- $(-\infty, b)$ denotes all x such that $x \leq b$
- $(-\infty, b)$ denotes all x such that x < b

 (a,∞) denotes all x such that $a \leq x$

 (a, ∞) denotes all x such that a < x

 $(-\infty, b)$ denotes all x such that $x \leqslant b$

 $(-\infty, b)$ denotes all x such that x < b

Note that we never include ∞ (or $-\infty$) as it is not a number.

A D N A B N A B N A B N

Remember that intervals are just sets of numbers (often infinite), so all the operations on sets can be used. We will practice those operations on the next slides.

Let:

$$A = (1,4)$$
 $B = (-\infty,3)$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

Tomasz Lechowski

Batory mat-fiz 1

16 września 2020 6 / 23

イロト イ部ト イヨト イヨト 二日

Let:

$$A = (1,4)$$
 $B = (-\infty,3)$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

It is often helpful to mark both sets on a number line:

_	_				
		_	 	 	

Batory mat-fiz 1

э

A D N A B N A B N A B N

$$A = (1,4)$$
 $B = (-\infty,3)$

A is marked with red, B with blue.

э

イロト イヨト イヨト イヨト

• $A \cup B$ is the union of the sets, so it is the part coloured by at least one of the colours.

3

・ロト ・四ト ・ヨト ・ヨト

- $A \cup B$ is the union of the sets, so it is the part coloured by at least one of the colours.
- $A \cap B$ is the intersection, so it is the part coloured by both colours.

< □ > < 同 > < 回 > < Ξ > < Ξ

- *A* ∪ *B* is the union of the sets, so it is the part coloured by at least one of the colours.
- $A \cap B$ is the intersection, so it is the part coloured by both colours.
- *A B* is the difference between *A* and *B*, so it is the part coloured **only** in red.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- *A* ∪ *B* is the union of the sets, so it is the part coloured by at least one of the colours.
- $A \cap B$ is the intersection, so it is the part coloured by both colours.
- *A B* is the difference between *A* and *B*, so it is the part coloured **only** in red.
- B A is the difference between B and A, so it is the part coloured only in blue.

< □ > < 同 > < 回 > < 回 > < 回 >

$$A \cup B = (-\infty, 4)$$

TOTAL ST		
TOTTUSE	1000	

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$A \cup B = (-\infty, 4)$

Tomasz Lechowski

Batory mat-fiz 1

16 września 2020 9 / 23

- 2

<ロト < 四ト < 三ト < 三ト

$$A \cap B = (1,3)$$

_			
		1000	

Longo or T	0.0	hower	100
TOHIASZ	Let	10005	× I
	_		

3

ヘロト 人間 とくほとくほど

$$A - B = \langle 3, 4 \rangle$$

1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 2 3	

Batory mat-fiz 1

16 września 2020 11 / 23

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Why is 3 in this set?

0 00 0 0 7	achow	ela.
TOTTASZ 1		581
	20011011	

Batory mat-fiz 1

16 września 2020 11 / 23

3

<ロト < 四ト < 三ト < 三ト

Why is 3 in this set? 3 belongs to A - B, since it belongs to A and doesn't belong to B. $B = (-\infty, 3)$, so 3 is outside of B.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$$B - A = (-\infty, 1)$$

_			
		1000	

Batory mat-fiz 1

16 września 2020 12 / 23

-				
	0 00 0 0 7	0.0	hower	
	loniasz.	Let.	10005	× I

16 września 2020 12 / 23

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let:

$$A = (0,5)$$
 $B = \langle 1,3 \rangle$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

Tomasz Lechowski

Batory mat-fiz 1

16 września 2020 13 / 23

2

イロト イヨト イヨト イヨト

Let:

$$A = (0,5)$$
 $B = \langle 1,3 \rangle$

Find $A \cup B$, $A \cap B$, A - B oraz B - A.

Again it is useful to mark the sets on the number line.

0 00 0 0 7	00	hower	100
TOTTASZ 1			
10111GDL	_		

Batory mat-fiz 1

16 września 2020 13 / 23

э

イロト イヨト イヨト イヨト

A is red, B is blue:

Batory mat-fiz 1

16 września 2020 14 / 23

2

<ロト < 四ト < 三ト < 三ト

$$A \cup B = (0,5)$$

_			
		1000	

Batory mat-fiz 1

16 września 2020 15 / 23

Longo or T	0.0	hower	100
TOHIASZ	Let	10005	× I
	_		

Batory mat-fiz 1

16 września 2020 15 / 23

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

$$A \cap B = \langle 1, 3 \rangle$$

_			
		1000	

Batory mat-fiz 1

16 września 2020 16 / 23

$$A \cap B = \langle 1, 3 \rangle$$

0.000.007	0.0	howing	
TOHIASZ	Let.	10005	^ I

Batory mat-fiz 1

16 września 2020 16 / 23

- 2

$A-B=(0,1)\cup \langle 3,5 angle$

0 00 0 0 7	0.0	hower	
LUILIASZ.			

Batory mat-fiz 1

16 września 2020 17 / 23

$A-B=(0,1)\cup \langle 3,5\rangle$

Longo or T	0.0	hower	100
TOHIASZ	Let	10005	× I
	_		

Batory mat-fiz 1

16 września 2020 17 / 23

- 2

$$B - A = \emptyset$$

omasz	Lec	hows	ki

Batory mat-fiz 1

16 września 2020 18 / 23

Let:

$$A = (-\infty, 4)$$
 $B = (1, \infty)$

Find the sets A', B'.

3

We will use red for A and blue for B:

3

イロト イヨト イヨト イヨト

We will use red for A and blue for B:

• A' is the complement of A, so it is the part **not** coloured in red.

Tomasz Lechowski

< □ > < 同 > < 回 > < Ξ > < Ξ

We will use red for A and blue for B:

• A' is the complement of A, so it is the part **not** coloured in red.

• B' is the complement of B, so it is the part **not** coloured in blue.

$$A' = (4,\infty)$$

Batory mat-fiz 1

16 września 2020 21 / 23

$$A' = (4,\infty)$$

-				
	0 00 0 0 7	0.0	hower	
	loniasz.	Let.	10005	× I

Batory mat-fiz 1

16 września 2020 21 / 23

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$B' = (-\infty, 1)$$

_			
		1000	

-				
	0 00 0 0 7	0.0	hower	
	loniasz.	Let.	10005	× I

16 września 2020 22 / 23

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The short test at the beginning of the class will be similar to the examples above.

3

< □ > < 同 > < 回 > < 回 > < 回 >

The short test at the beginning of the class will be similar to the examples above.

You may want to try questions 1.60, 1.61 and 1.62 from the exercise book.

4 1 1 4 1 1 1