Exam-style questions

- P2: Find the coefficient of the term in x^5 in the binomial expansion of $(3+x)(4-2x)^8$. (4 marks)
- **18 P1:** The coefficient of x^2 in the binomial expansion of $(1+3x)^n$ where $n \in \mathbb{Q}$ is 495. Determine the possible values of n. (6 marks)
- P2: Find the value of $\sum_{n=0}^{n=15} (1.6^n 12n + 1)$, giving your answer correct to 1 decimal place. (6 marks)
- **20 P1:** Prove the binomial coefficient identity $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$ (6 marks)
- P2: Find the sum of all integers between 500 and 1400 (inclusive) that are not divisible by 7. (7 marks)
- **P1:** Prove by contradiction that for all $n \in \mathbb{Z}^+$, if $n^3 + 3$ is odd, then n is even. (7 marks)
- **P1:** Prove, by mathematical induction, that $5^{2n-1} + 1$ is divisible by 6 for all $n \in \mathbb{N}$. (8 marks)

- P2: a Find the first four terms, in ascending powers of x, of the binomial expansion of $\sqrt[3]{(1-x)}$, |x| < 1. (4 marks)
 - **b** Use your answer to part **a** to find an approximation for $\sqrt[3]{63}$ to six decimal places. You must show all your working. (5 marks)
- **P2:** Seven women and two men are chosen to sit in a row and have their photograph taken.
 - **a** How many different ways can they be arranged? (1 mark)
 - **b** How many ways can they be arranged if the men must sit together? (2 marks)
 - c How many ways can they be arranged if the men must sit apart?
 (2 marks)
 - **d** How many ways can they be arranged if there must be at least two women separating the men?

 (3 marks)