EXERCISE 15A

- a Is a function, since for every value of x there is only one corresponding value of y.
 - **b** Is not a function. When x = 2, y = 1 or 0.
- a Is a function, since for any value of x there is at most one value of y.
 - **b** Is a function, since for any value of x there is at most one value of y.
 - Is not a function. If $x^2 + y^2 = 9$, then $y = \pm \sqrt{9 x^2}$. So, for example, for x = 2, $y = \pm \sqrt{5}$.
- **a** function **b** not a function function
 - **d** not a function
- 4 Not a function as a 2 year old child could pay \$0 or \$20.
- 5 No, because a vertical line (the y-axis) would cut the relation more than once.
- 6 No. A vertical line is not a function. It will not pass the "vertical line" test.
- a $y^2 = x$ is a relation but not a function. $y = x^2$ is a function (and a relation). $y^2 = x$ has a horizontal axis of symmetry (the x-axis). $y = x^2$ has a vertical axis of symmetry (the y-axis). Both $y^2 = x$ and $y = x^2$ have vertex (0, 0). $y^2 = x$ is a rotation of $y = x^2$ clockwise through 90° about the origin or $y^2 = x$ is a reflection of $y = x^2$ in the line y = x.
 - The part of $y^2 = x$ in the first quadrant.
 - ii $y = \sqrt{x}$ is a function as any vertical line cuts the graph at most once.
- a Both curves are functions since any vertical line will cut each curve at most once.
 - **b** $y = \sqrt[3]{x}$

EXERCISE 15B

- -16

- **b** 3
- **c** 3

- **a** i $-\frac{7}{2}$ ii $-\frac{3}{4}$ iii $-\frac{4}{9}$ **b** x=4
- $x = \frac{9}{5}$

- **a** 7-3a **b** 7+3a **c** -3a-2 **d** 7-6a

- - 2 1 3x 1 3x 3h
 - **a** $2x^2 + 19x + 43$ **b** $2x^2 11x + 13$

 - $2x^2-3x-1$ $2x^4+3x^2-1$

 - $18x^2 + 9x 1$ $2x^2 + (4h + 3)x + 2h^2 + 3h 1$

- 8 f is the function which converts x into f(x) whereas f(x) is the value of the function at any value of x.
- **?** Note: Other answers are possible.

- 10 f(x) = -2x + 5
 - a H(30) = 800. After 30 minutes the balloon is 800 m high.
 - **b** t = 20 or 70. After 20 minutes and after 70 minutes the balloon is 600 m high.

 - **c** $0 \le t \le 80$ **d** 0 m to 900 m

 - **12** a = 3, b = -2 **13** a = 3, b = -1, c = -4
 - a V(4) = 5400; V(4) is the value of the photocopier in pounds after 4 years.
 - **b** t = 6. After 6 years the value of the photocopier is £3600.
 - £9000
- $0 \leqslant t \leqslant 10$

EXERCISE 15C

- \blacktriangle Demerit points (y)Amount over speed limit $(x \text{ km h}^{-1})$ 10 20 30
 - b Yes, since for every value of x, there is at most one value of y.
 - Domain is $\{x \mid x > 0\}$, Range is $\{2, 3, 5, 7, 9\}$
- a At any moment in time there can be only one temperature, so the graph is a function.
 - **b** Domain is $\{t \mid 0 \leqslant t \leqslant 30\}$, Range is $\{T \mid 15 \leqslant T \leqslant 25\}$
- **a** Domain is $\{x \mid -1 < x \le 5\}$, Range is $\{y \mid 1 < y \le 3\}$
 - **b** Domain is $\{x \mid x \neq 2\}$, Range is $\{y \mid y \neq -1\}$
 - Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid 0 < y \leqslant 2\}$
 - d Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid y \leqslant \frac{25}{4}\}$

 - Domain is $\{x \mid x \ge -4\}$, Range is $\{y \mid y \ge -3\}$
 - f Domain is $\{x \mid x \neq \pm 2\}$, Range is $\{y \mid y \leqslant -1 \text{ or } y > 0\}$
 - a true
- b false
- < true
- d true

- - **a** $\{y \mid y \geqslant 0\}$ **b** $\{y \mid y \leqslant 0\}$ **c** $\{y \mid y \geqslant 2\}$
- **d** $\{y \mid y \le 0\}$ **e** $\{y \mid y \le 1\}$ **f** $\{y \mid y \ge 3\}$

- $\{y \mid y \geqslant -\frac{9}{4}\}$ h $\{y \mid y \leqslant 9\}$ i $\{y \mid y \leqslant \frac{25}{12}\}$
- **a** $\{x \mid x \ge 0\}$

f(x)

16

- **d** $\{y \mid y \ge 0\}$
- a Domain is $\{x \mid x \ge -6\}$, Range is $\{y \mid y \ge 0\}$
 - **b** Domain is $\{x \mid x \neq 0\}$, Range is $\{y \mid y > 0\}$
 - Domain is $\{x \mid x \neq -1\}$, Range is $\{y \mid y \neq 0\}$
 - d Domain is $\{x \mid x > 0\}$, Range is $\{y \mid y < 0\}$
 - Domain is $\{x \mid x \neq 3\}$, Range is $\{y \mid y \neq 0\}$

 - f Domain is $\{x \mid x \leq 4\}$, Range is $\{y \mid y \geq 0\}$

Domain is $\{x \mid x \in \mathbb{R}\},\$ Range is $\{y \mid y \in \mathbb{R}\}$

$$f(x) = x^4 + 4x^3 - 16x + 3$$

Domain is $\{x \mid x \in \mathbb{R}\},\$ Range is $\{y \mid y \ge -8\}$

Domain is $\{x \mid x \in \mathbb{R}\},\$ Range is $\{y \mid y \ge 2\}$

Domain is $\{x \mid x \leqslant -2\}$ or $x \geqslant 2$, Range is $\{y \mid y \geqslant 0\}$

Domain is $\{x \mid -3 \leqslant x \leqslant 3\},\$ Range is $\{y \mid 0 \leqslant y \leqslant 3\}$ Range is $\{y \mid y \neq 1\}$

Domain is $\{x \mid x \neq 2\}$,

Domain is $\{x \mid x \neq -1 \text{ or } 2\}$, Range is $\{y \mid y \leqslant \frac{1}{3} \text{ or } y \geqslant 3\}$

Domain is $\{x \mid x \neq 0\}$, Range is $\{y \mid y \leqslant -2 \text{ or } y \geqslant 2\}$

Domain is $\{x \mid x \neq 0\}$, Range is $\{y \mid y \geqslant 2\}$

Domain is $\{x \mid x \neq 0\}$, Range is $\{y \mid y \leqslant -2\}$ or $y \geqslant 2$

k

Domain is $\{x \mid x \in \mathbb{R}\},\$ Range is $\{y \mid y > 0\}$

Domain is $\{x \mid x \in \mathbb{R}\},\$ Range is $\{y \mid y \le 0.531\}$

Range is $\{y \mid -42 \le y \le 28.0\}$

Range is $\{y \mid -12 \le y \le 6.27\}$

Range is $\{y \mid \frac{1}{2} < y < 1\}$

10 **a** $k \ge \frac{25}{4}$ **b** Range is $\{y \mid y \ge \sqrt{k - \frac{25}{4}}\}$

a Domain is $\{x \mid -2 \leqslant x \leqslant 2\}$ Range is $\{y \mid -2 \leqslant y \leqslant 2\}$

> **b** Domain is $\{-2, -1, 0, 1, 2\}$ Range is $\{-2, -\sqrt{3}, 0, \sqrt{3}, 2\}$

EXERCISE 15D.1

- i As k becomes larger the graphs move further from the origin.
 - ii quadrants 1 and 3

- i As |k| becomes larger, the graphs move further from the origin.
 - ii quadrants 2 and 4

- **a** $\{x \mid x \neq 0\}$ **b** $\{y \mid y \neq 0\}$ **c** x = 0 **d** y = 0

- **a** $y = \frac{6}{\pi}$ **b** $y = \frac{15}{\pi}$ **c** $y = -\frac{36}{\pi}$

EXERCISE 15D.2

- i vertical asymptote x = 2, horizontal asymptote y = 0
 - ii Domain is $\{x \mid x \neq 2\}$, Range is $\{y \mid y \neq 0\}$
 - iii no x-intercept, y-intercept $-\frac{3}{2}$
 - iv as $x \to 2^-$, $f(x) \to -\infty$
 - as $x \to 2^+$, $f(x) \to \infty$
 - as $x \to -\infty$, $f(x) \to 0^-$
 - as $x \to \infty$, $f(x) \to 0^+$

- vertical asymptote x = 3, horizontal asymptote y = 2
 - ii Domain is $\{x \mid x \neq 3\}$, Range is $\{y \mid y \neq 2\}$
 - iii x-intercept $\frac{5}{2}$, y-intercept $\frac{5}{3}$

iv as
$$x \to 3^-$$
, $f(x) \to -\infty$
as $x \to 3^+$, $f(x) \to \infty$

as
$$x \to -\infty$$
, $f(x) \to 2^-$

as
$$x \to \infty$$
, $f(x) \to 2^+$

- i vertical asymptote x = -1, horizontal asymptote y = 2
 - ii Domain is $\{x \mid x \neq -1\}$, Range is $\{y \mid y \neq 2\}$
 - iii x-intercept $\frac{1}{2}$, y-intercept -1

iv as
$$x \to -1^-$$
, $f(x) \to \infty$

as
$$x \to -1^+$$
, $f(x) \to -\infty$

as
$$x \to -\infty$$
, $f(x) \to 2^+$

as
$$x \to \infty$$
, $f(x) \to 2^-$

- i vertical asymptote is x = 1
 - x-intercept 0, y-intercept 0
 - iii $f(x) = 1 + \frac{1}{x-1}$, horizontal asymptote is y = 1

 \mathbf{v} as $x \to 1^-$, $f(x) \to -\infty$ as $x \to 1^+$, $f(x) \to \infty$ as $x \to -\infty$, $f(x) \to 1^$ as $x \to \infty$, $f(x) \to 1^+$

- i vertical asymptote is x = 2
 - ii x-intercept -3, y-intercept $-\frac{3}{2}$
 - iii $f(x) = 1 + \frac{5}{x-2}$, horizontal asymptote is y = 1

$$+$$
 $\begin{vmatrix} -1 & 1 & + \\ -3 & 2 & 2 \end{vmatrix}$ x

- \mathbf{v} as $x \to 2^-$, $f(x) \to -\infty$
 - as $x \to 2^+$, $f(x) \to \infty$
 - as $x \to -\infty$, $f(x) \to 1^-$
 - as $x \to \infty$, $f(x) \to 1^+$

- i vertical asymptote is x = -2
 - ii x-intercept $\frac{1}{3}$, y-intercept $-\frac{1}{2}$
 - iii $f(x) = 3 \frac{7}{x+2}$, horizontal asymptote is y = 3

$$+$$
 $\frac{1}{-2}$ $+$ x

- \mathbf{v} as $x \to -2^-$, $f(x) \to \infty$
 - as $x \to -2^+$, $f(x) \to -\infty$
 - as $x \to -\infty$, $f(x) \to 3^+$
 - as $x \to \infty$, $f(x) \to 3^-$

- i vertical asymptote is x = 3
 - ii x-intercept $-\frac{1}{2}$, y-intercept $\frac{1}{3}$
 - iii $f(x) = -2 \frac{7}{x-3}$, horizontal asymptote is y = -2

- \mathbf{v} as $x \to 3^-$, $f(x) \to \infty$
 - as $x \to 3^+$, $f(x) \to -\infty$
 - as $x \to -\infty$, $f(x) \to -2^+$
 - as $x \to \infty$, $f(x) \to -2^-$

- vertical asymptote is x = 3
 - ii x-intercept -2, y-intercept $\frac{4}{3}$
 - iii $f(x) = -2 + \frac{10}{3-x}$, horizontal asymptote is y = -2

 - \mathbf{v} as $x \to 3^-$, $f(x) \to \infty$
 - as $x \to 3^+$, $f(x) \to -\infty$
 - as $x \to -\infty$, $f(x) \to -2^+$
 - as $x \to \infty$, $f(x) \to -2^-$

- i vertical asymptote is $x = \frac{1}{2}$
 - ii x-intercept -3, y-intercept -3
 - iii $f(x) = \frac{1}{2} + \frac{7}{4x 2}$, horizontal asymptote is $y = \frac{1}{2}$

 - \mathbf{v} as $x \to \frac{1}{2}^-$, $f(x) \to -\infty$
 - as $x \to \frac{1}{2}^+$, $f(x) \to \infty$
 - as $x \to -\infty$, $f(x) \to \frac{1}{2}^-$
 - as $x \to \infty$, $f(x) \to \frac{1}{2}^+$

- a Domain is $\{x \mid x \neq -\frac{d}{c}\}$
 - vertical asymptote is $x = -\frac{d}{}$
 - x-intercept is $-\frac{b}{a}$, y-intercept is $\frac{b}{d}$
 - $\frac{ax+b}{cx+d} = \frac{\frac{a}{c}(cx+d) \frac{ad}{c} + b}{cx+d}$ and so on

As
$$x \to \infty$$
, $\frac{b - \frac{ad}{c}}{cx + d} \to 0$.

 \therefore the horizontal asymptote is $y = \frac{a}{-}$.

- **a** $-2-2x^2$ **b** $1+4x^2$
- **a** $-4x^2 16x 13$ **b** $10 2x^2$ **c** 14 **d** $-\frac{73}{16}$
- **a** 25x 42 **b** $\sqrt{8}$ **c** -7 **d** 2
- a i $x^2 6x + 10$ ii $2 x^2$ b $x = \pm \frac{1}{\sqrt{2}}$
- $(f \circ g)(x) = 9 \sqrt{x^2 + 4}$

Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid y \leq 7\}$

- **b** 53
 - $(f \circ f)(x) = 9 \sqrt{9 \sqrt{x}}$

Domain is $\{x \mid 0 \leqslant x \leqslant 81\}$, Range is $\{y \mid 6 \leqslant y \leqslant 9\}$

- **a** -6x 9 **b** x = -1

- a i $1-9x^2$ ii $1+6x-3x^2$ b $x=-\frac{1}{9}$

a $(f \circ g)(x) = \frac{1}{x-3}$

Domain is $\{x \mid x \neq 3\}$, Range is $\{y \mid y \neq 0\}$

b $(f \circ g)(x) = -\frac{1}{x^2 + 3x + 2}$

Domain is $\{x \mid x \neq -1, x \neq -2\}$

Range is $\{y \mid y \ge 4, y < 0\}$

- 9 **a** $f \circ g = \{(2, 7), (5, 2), (7, 5), (9, 9)\}$
 - **b** $g \circ f = \{(0, 2), (1, 0), (2, 1), (3, 3)\}$
- 10 **a** $(f \circ g)(x) = \frac{4x-2}{3x-1}$, Domain is $\{x \mid x \neq \frac{1}{3} \text{ or } 1\}$
 - **b** $(g \circ f)(x) = 2x + 5$, Domain is $\{x \mid x \neq -2\}$
 - $(g \circ g)(x) = x$, Domain is $\{x \mid x \neq 1\}$
- 11 a Let x = 0, b = d and so

$$ax + b = cx + b$$

 \therefore ax = cx for all x

Let x = 1, $\therefore a = c$

- **b** $(f \circ g)(x) = [2a]x + [2b+3] = 1x+0$ for all x 2a = 1 and 2b + 3 = 0
- Yes, $\{(g \circ f)(x) = [2a]x + [3a+b]\}$
- $(f \circ g)(x) = \sqrt{1 x^2}$

b Domain is $\{x \mid -1 \leqslant x \leqslant 1\}$, Range is $\{y \mid 0 \leqslant y \leqslant 1\}$

- $(g \circ f)(x) = 1 x$
- d Domain is $\{x \mid x \leq 1\}$, Range is $\{y \mid y \geq 0\}$
- 13 a $R_g \cap D_f \neq \emptyset$
 - **b** Domain is $\{x \mid x \in D_g, g(x) \in D_f\}$
- a $V \circ D = 6800 400t$

This is the value of Mila's car t years after purchase.

- **b** 4400; the value of Mila's car 6 years after purchase is \$4400.
- a $T \circ S$ ii $S \circ T$
- **b** €715
- 16 a V = 2000 20t

$$H \circ V = \sqrt[3]{\frac{24\,000 - 240t}{\pi}}$$

This is the height of the solution after t minutes.

d $(H \circ V)(30) \approx 17.5$; the height of the solution after 30 minutes is about 17.5 cm.

- ii, iii $f^{-1}(x) = \frac{x-1}{3}$ ii, iii $f^{-1}(x) = 4x 2$
- 2 a i $f^{-1}(x) = \frac{x-5}{2}$ b i $f^{-1}(x) = -2x + \frac{3}{2}$

 $f^{-1}(x) = x - 3$

y = f(x)

Domain is $\{x \mid -2 \leqslant x \leqslant 0\}$ Range is $\{y \mid 0 \leqslant y \leqslant 5\}$

Domain is $\{x \mid 0 \leqslant x \leqslant 5\}$

Range is $\{y \mid -2 \leqslant y \leqslant 0\}$

Domain is $\{x \mid x \leq 0\}$

Range is $\{y \mid y \ge 4\}$

Domain is $\{x \mid x \geqslant 4\}$

Range is $\{y \mid y \leq 0\}$

$$f$$
:
Domain is $\{x \mid x \in \mathbb{R}\}$
Range is $\{y \mid y \in \mathbb{R}\}$
 f^{-1} :

Domain is $\{x \mid x \in \mathbb{R}\}$ Range is $\{y \mid y \in \mathbb{R}\}$

f:

Domain is
$$\{x \mid x \in \mathbb{R}\}$$

Range is $\{y \mid y > 0\}$
 f^{-1} .

Domain is $\{x \mid x > 0\}$ Range is $\{y \mid y \in \mathbb{R}\}$

Domain is $\{x \mid x \in \mathbb{R}\}$ Range is $\{y \mid y \in \mathbb{R}\}$

Domain is $\{x \mid x \in \mathbb{R}\}$ Range is $\{y \mid y \in \mathbb{R}\}$

 $y = f(x) = f^{-1}(x)$

Domain is
$$\{x \mid x \in \mathbb{R}\}$$

Range is $\{y \mid y \in \mathbb{R}\}$
 f^{-1} :

Domain is $\{x \mid x \in \mathbb{R}\}$ Range is $\{y \mid y \in \mathbb{R}\}$

$$(f^{-1})^{-1}(x) = 2x - 5 = f(x)$$

- 5 a $\{(2, 1), (4, 2), (5, 3)\}$ b inverse does not exist $\{(1, 2), (0, -1), (2, 0), (3, 1)\}$
 - $\{(-1, -1), (0, 0), (1, 1)\}$
- 6 f(x) = x and f(x) = -x + c, $c \in \mathbb{R}$
- 7 Range is $\{y \mid -2 \le y < 3\}$

 $f^{-1}: x \mapsto \sqrt{x+4}$ b no

- **10** f is $y = \frac{1}{x}$, $x \neq 0$: f^{-1} is $x = \frac{1}{y}$

 - $\therefore \quad f = f^{-1}$
 - \therefore f is self-inverse.

The inverse function must also be a function and must therefore satisfy the vertical line test, which it can only do if the original function satisfies the horizontal line test.

b i is the only one.

i Domain is $\{x \mid x \ge 1\}$ or $\{x \mid x \le 1\}$

ii Domain is $\{x \mid x \ge 1\}$ or $\{x \mid x \le -2\}$

 $f^{-1}(x) = -\sqrt{x}$

13

Every vertical line cuts the graph once. So, it is a function.

A horizontal line above the vertex cuts the graph **twice**. So, it does not have an inverse.

b For $x \ge 2$, all horizontal lines cut the graph at most once. g(x) has an inverse.

Hint: Inverse is $x = y^2 - 4y + 3$ for $y \ge 2$

c g: Domain is $\{x \mid x \ge 2\}$, Range is $\{y \mid y \ge -1\}$ g^{-1} : Domain is $\{x \mid x \ge -1\}$, Range is $\{y \mid y \ge 2\}$

d Hint: Find $gg^{-1}(x)$ and $g^{-1}g(x)$ and show that they both equal x.

 $f^{-1}(x) = \sqrt{x-3} - 1, \ x \geqslant 3$

Domain is $\{x \mid x \geqslant 3\}$ Range is $\{y \mid y \geqslant -1\}$

15 a $f^{-1}(x) = 3 - \sqrt{13 - x}$

b f: Domain is $\{x \mid x \leq 3\}$, Range is $\{y \mid y \leq 13\}$ f^{-1} : Domain is $\{x \mid x \leq 13\}$, Range is $\{y \mid y \leq 3\}$

b i
$$f^{-1}(x) = \frac{5 - \sqrt{2x + 13}}{2}$$

ii Domain is $\{x \mid x \ge -\frac{13}{2}\}$, Range is $\{y \mid y \le \frac{5}{2}\}$

17 **a** $g^{-1}(x) = 8 - 2x$ **b** x = 10

b
$$x = 10$$

 $f^{-1}(-3) - g^{-1}(6) = -4 - (-4) = 0$ d x = 3

18 a 8x - 6 **b** k = 10

 $(f^{-1} \circ g^{-1})(x) = \frac{x+3}{8}$ and $(g \circ f)^{-1}(x) = \frac{x+3}{8}$

symmetrical about y = x

f is a self-inverse function.

 $f = f^{-1}$ f is a self-inverse function

- **20** d = -a **21 a** B(f(x), x)
- a Domain is $\{x \mid x \ge 0\}$
 - b No, as f(x) does not pass the horizontal line test.
 - $g^{-1}(x) = (3 \sqrt{x+8})^2$
 - ii g: Domain is $\{x \mid 0 \leqslant x \leqslant 9\}$ Range is $\{y \mid -8 \leqslant y \leqslant 1\}$
 - g^{-1} : Domain is $\{x \mid -8 \leqslant x \leqslant 1\}$ Range is $\{y \mid 0 \leqslant y \leqslant 9\}$
 - d $h^{-1}(x) = (3 + \sqrt{x+8})^2$
 - ii h: Domain is $\{x \mid x \ge 9\}$ Range is $\{y \mid y \ge -8\}$
 - h^{-1} : Domain is $\{x \mid x \ge -8\}$ Range is $\{y \mid y \geqslant 9\}$
 - x = -8

REVIEW SET 15A

- Domain is $\{x \mid x \in \mathbb{R}\}$ ii Range is $\{y \mid y > -4\}$
 - yes, it is a function
 - Domain is $\{x \mid x \in \mathbb{R}\}$
 - ii Range is $\{y \mid y \leqslant -1 \text{ or } y \geqslant 1\}$
 - iii no, not a function
 - Domain is $\{x \mid x \in \mathbb{R}\}$
 - ii Range is $\{y \mid -5 \le y \le 5\}$ iii yes, it is a function

- **a** 0 **b** -15 **c** $-\frac{5}{4}$ **3** a=-6, b=13
- x = 0
 - Domain is $\{x \mid x \neq 0\}$ Range is $\{y \mid y < 0\}$

- 5 a $f(-3) = (-3)^2 = 9$, $g(-\frac{4}{3}) = 1 6(-\frac{4}{3}) = 9$
 - **b** x = -4
- a Domain is $\{x \mid x \ge -4\}$, Range is $\{y \mid y \ge 0\}$
 - **b** Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid y \leq 1\}$
 - Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid y \geqslant -\frac{1}{8}\}$
- **a** $y = -\frac{20}{\pi}$ **b** $y = \frac{60}{\pi}$
- 8 a vertical asymptote x = 2, horizontal asymptote y = -4
 - **b** Domain is $\{x \mid x \neq 2\}$, Range is $\{y \mid y \neq -4\}$

- as $x \to 2^-$, $f(x) \to \infty$ as $x \to -\infty$, $f(x) \to -4^+$ as $x \to 2^+$, $f(x) \to -\infty$ as $x \to \infty$, $f(x) \to -4^ \therefore$ $f(x) = \frac{5x-1}{x-5}$ and $f(x) = \frac{5x-1}{x-5}$ \therefore $f = f^{-1}$ \therefore f is a self-inverse function.
- d x-intercept $-\frac{1}{4}$, y-intercept $\frac{1}{2}$

- 9 **a** 6x-3 **b** x=1
- 10 a $1 2\sqrt{x}$ b $\sqrt{1 2x}$ c 3
- 11 **a** $(f \circ g)(x) = \sqrt{x^2 1}$ Domain is $\{x \mid x \leqslant -1 \text{ or } x \geqslant 1\}$
 - Range is $\{y \mid y \ge 0\}$
 - **b** $(g \circ f)(x) = x 1$ Domain is $\{x \mid x \ge -2\}$, Range is $\{y \mid y \ge -3\}$
- 12 a = 1, b = -1
- 13

- 14 a $f^{-1}(x) = \frac{x-2}{4}$ b $f^{-1}(x) = \frac{3-4x}{5}$

15

- **b** Range is $\{y \mid 0 \leqslant y \leqslant 2\}$
- c i $x = \sqrt{3}$ ii $x = -\frac{1}{2}$
- 16 $(f^{-1} \circ h^{-1})(x) = (h \circ f)^{-1}(x) = x 2$
- 17 a

- $y = \frac{5x-1}{x-5}$ is symmetrical about y = x
- \therefore f is a self-inverse function.

- Any horizontal line cuts the graph at most once.
- $q^{-1}(x) = -3 \sqrt{x+2}, \ x \geqslant -2$
- Range of g is $\{y \mid y \ge -2\}$
- f Domain of g^{-1} is $\{x \mid x \ge -2\}$, Range of g^{-1} is $\{y \mid y \leq -3\}$

- **a** Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid y \ge -4\}$
 - **b** Domain is $\{x \mid x \ge -2\}$, Range is $\{y \mid 1 \le y < 3\}$
 - Domain is $\{x \mid x \in \mathbb{R}\}$, Range is $\{y \mid y = -1, 1, \text{ or } 2\}$
- **a** $x^2 x 2$ **b** $16x^2 12x$
- - a is a functionb is not a function
- a Domain is $\{x \mid x \neq \frac{1}{2}\}$, Range is $\{y \mid y \neq 10\}$
 - **b** Domain is $\{x \mid x \ge -7\}$, Range is $\{y \mid y \ge 0\}$

- **b** It is a function.
- Commain is $\{x \mid x \leq 9\}$, Range is $\{y \mid y \geq 0\}$
- **6** a = -2 **7** a = 1, b = -6, c = 5
- vertical asymptote is x = -2, horizontal asymptote is y = -1
 - **b** Domain is $\{x \mid x \neq -2\}$, Range is $\{y \mid y \neq -1\}$
 - x-intercept is 1, y-intercept is $\frac{1}{2}$
 - d as $x \to -2^-$, $f(x) \to -\infty$ as $x \to -\infty$, $f(x) \to -1^$ as $x \to -2^+$, $f(x) \to \infty$ as $x \to \infty$, $f(x) \to -1^+$

Range is $\{y \mid -6.88 \le y \le 4\}$

- $-4x^2+4x+2$
- **b** $5-2x^2$
- **c** 2

11
$$(f \circ g)(x) = \frac{1}{(x^2 - 4x + 3)^2}$$

Domain is $\{x \mid x \neq 3, x \neq 1\}$, Range is $\{y \mid y > 0\}$

- 12 a i $6x^2 3x + 5$ ii $18x^2 + 57x + 45$

 - **b** $x = -\frac{5}{11}$
- 13 a $D \circ S = 4.9t^2$

This is the distance travelled by the object after t seconds.

b $(D \circ S)(5) = 122.5 \text{ m}$

The object has travelled 122.5 m after 5 seconds.

- 14 $f^{-1}(x) = \frac{2x+29}{5}$
- 15 $(f^{-1} \circ h^{-1})(x) = (h \circ f)^{-1}(x) = \frac{4x+6}{15}$
- **16** a $(g \circ f)(x) = \frac{2}{3x+1}$ b $x = -\frac{1}{2}$

 - vertical asymptote $x = -\frac{1}{3}$, horizontal asymptote y = 0

- iii Range is $\{y \mid y \leqslant -\frac{1}{4} \text{ or } y \geqslant \frac{2}{7}\}$
- **17** 16
- 18 a a=2, b=-1
 - **b** Domain is $\{x \mid x \neq 2\}$, Range is $\{y \mid y \neq -1\}$
- 19 a $\frac{3x}{x-2}$ b $\frac{2x+1}{x-1}$
- 20 a $f^{-1}(x) = \sqrt{4 \sqrt{x + 13}}$

Domain is $\{x \mid -13 \leqslant x \leqslant 3\}$, Range is $\{y \mid 0 \leqslant y \leqslant 2\}$

 $g^{-1}(x) = \sqrt{4 + \sqrt{x + 13}}$

Domain is $\{x \mid x \ge -13\}$, Range is $\{y \mid y \ge 2\}$

 $h^{-1}(x) = -\sqrt{4 - \sqrt{x + 13}}$

Domain is $\{x \mid -13 \leqslant x \leqslant 3\}$,

Range is $\{y \mid -2 \leqslant y \leqslant 0\}$

d $j^{-1}(x) = -\sqrt{4 + \sqrt{x + 13}}$

Domain is $\{x \mid x \ge -13\}$, Range is $\{y \mid y \le -2\}$

EXERCISE 16A

3 **a**
$$g(x) = f(x-4)$$

b
$$g(x) = f(x+1) + 3$$

4 a
$$g(x) = 2x - 1$$

$$g(x) = 3x + 2$$

$$g(x) = -x^2 + 5x - 4$$
 $g(x) = x^2 - 6x + 4$

- (1, -9)
- **a** y-intercept is -1
- **b** x-intercepts are -2 and 5
- inconclusive
- 10 $g(x) = x^2 8x + 12$
- 11 $g(x) = \frac{7x + 15}{x + 2}$
- (3, 2)
- (0, 11)
- (5, 6)

- **b** i (-2, 4) ii (-5, 25) iii $\left(-1\frac{1}{2}, 2\frac{1}{4}\right)$

EXERCISE 16B

3 a
$$g(x) = 2f(x)$$

 $\mathbf{b} \quad g(x) = f\left(\frac{x}{3}\right) \qquad \qquad \mathbf{4} \quad cm$

$$g(x) = 2x^2 + 4$$

10 a
$$g(x) = 2x^2 + 4$$
 b $g(x) = 5 - x$ c $g(x) = \frac{1}{4}x^3 + 2x^2 - \frac{1}{2}$ d $g(x) = 8x^2 + 2x - 3$

 $y = x^2$ is transformed to $y = 3(x+1)^2 - 2$ by vertically stretching with scale factor 3 and then translating through

$$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

 $y = x^2$ is transformed to $y = \frac{1}{2}(x+1)^2 + 3$ by vertically stretching with scale factor $\frac{1}{2}$ and then translating through

 $y = x^2$ is transformed to $y = 2(x - \frac{3}{2})^2 + 1$ by vertically stretching with scale factor 2 and then translating through

 $y = x^2$ is transformed to $y = 2(x+1)^2 - 3$ by vertically stretching with scale factor 2 and then translating through $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$.

- a Horizontally stretching with scale factor $\frac{1}{2}$, then vertically stretching with scale factor 3.
 - **b** i $(\frac{3}{2}, -15)$ ii $(\frac{1}{2}, 6)$ iii (-1, 3)

- c i $(4, \frac{1}{3})$ ii $(-6, \frac{2}{3})$ iii (-14, 1)

- **16** $a = 5, b = \sqrt{10}$
- 17 **a** $y = \frac{1}{2x}$ **b** $y = \frac{3}{x}$ **c** $y = \frac{1}{x+3}$

-4

- $y = 4 + \frac{1}{x} = \frac{4x+1}{x}$
- 18 a $g(x) = \frac{3}{x-1} 1 = \frac{-x+4}{x-1}$
 - vertical asymptote x = 1, horizontal asymptote y = -1
 - Domain is $\{x \mid x \neq 1\}$, Range is $\{y \mid y \neq -1\}$

- 19 **a** $g(x) = \frac{6x+4}{2x+1}$
 - vertical asymptote $x = -\frac{1}{2}$, horizontal asymptote y = 3
 - Domain is $\{x \mid x \neq -\frac{1}{2}\}$, Range is $\{y \mid y \neq 3\}$

- A vertical stretch with scale factor 4 followed by a translation through $\binom{3}{33}$, or a translation through $\binom{3}{8\frac{1}{4}}$ followed by a vertical stretch with scale factor 4.

EXERCISE 16C

6 a
$$g(x) = -5x - 7$$
 b $g(x) = 2^{-x}$

b
$$g(x) = 2^{-x}$$

$$g(x) = -2x^2 - 1$$

d
$$g(x) = x^4 + 2x^3 - 3x^2 - 5x - 7$$

$$g(x) = x + 2x - 3$$

7 **a** i
$$(3,0)$$
 ii $(2,1)$ iii $(-3,-2)$

b i
$$(7, 1)$$
 ii $(-5, 0)$ iii $(-3, 2)$

a i
$$(-2, -1)$$
 ii $(0, 3)$ iii $(1, 2)$

b i
$$(-5, -4)$$
 ii $(0, 3)$ iii $(-2, 3)$

a A reflection in the y-axis and a reflection in the x-axis.

b (-3, 7) **c** (5, 1)

a A reflection in the x-axis.

b A vertical stretch with scale factor 3.

- **a** A reflection in the y-axis.
 - **b** A horizontal stretch with scale factor 2.

 $y = x^2$ is transformed to $y = -(x+2)^2 + 3$ by reflecting in the x-axis and then translating through

$$\begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
.

 $y = \frac{1}{x}$ is transformed to $y = -\frac{1}{x-3} + 2$

by reflecting in the x-axis and then translating through

$$\binom{3}{2}$$
.

EXERCISE 16D

x-intercepts are ± 1 , y-intercept is -1

y = f(x) has been translated 3 units upwards.

y = f(x) has been translated 1 unit to the right.

y = f(x) has been vertically stretched with scale factor 2.

y = f(x) has been reflected in the x-axis.

- A vertical translation through $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$. g(x) = f(x) - 2
 - A vertical stretch with scale factor $\frac{1}{2}$.
 - $g(x) = \frac{1}{2}f(x)$
 - A reflection in the y-axis.
- g(x) = f(-x)

a x-intercepts are -1 and β , y-intercept is $-\beta$

- 7 a f(-x-4)-1
- $\frac{1}{2}f(x+2) + \frac{1}{2}$
- **b** f(-x+4)-1**d** $\frac{1}{2}f(x+2)+1$
- $f(\frac{1}{4}x-3)-5$
- $f\left(\frac{x-3}{4}\right) 5$
- a A reflection in the x-axis, then a translation through $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$.
 - **b** A horizontal stretch with scale factor 2, then a translation through $\begin{pmatrix} 0 \\ -7 \end{pmatrix}$.
 - , then a horizontal stretch with A translation through scale factor $\frac{1}{3}$.
 - A vertical stretch with scale factor 2, a translation through then a horizontal stretch with scale factor 4.
 - A vertical stretch with scale factor 2, a horizontal stretch with scale factor $\frac{1}{3}$, then a translation through $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

- A reflection in the x-axis, a vertical stretch with scale factor 4, a horizontal stretch with scale factor 2, then a translation through $\begin{pmatrix} -3 \\ -1 \end{pmatrix}$.
- a Domain is $\{x \mid x \ge -3\}$, Range is $\{y \mid -3 \le y < 4\}$
 - **b** Domain is $\{x \mid x \ge \frac{1}{3}\}$, Range is $\{y \mid -10 < y \le 4\}$
 - Domain is $\{x \mid x \ge 3\}$, Range is $\{y \mid \frac{10}{3} \le y < \frac{17}{3}\}$
- $5\sqrt{2-x}+15$ Domain is $\{x \mid x \leq 2\}$, Range is $\{y \mid y \geq 15\}$
 - **b** $5\sqrt{2-x}+3$ Domain is $\{x \mid x \leq 2\}$, Range is $\{y \mid y \geq 3\}$
 - $5\sqrt{-x-2}+3$ Domain is $\{x \mid x \leq -2\}$, Range is $\{y \mid y \geq 3\}$
- a The vertical stretch has scale factor |a|. The reflection in the x-axis occurs if a < 0. Each point is then moved h units right and k units up.
 - b The function has shape \int if a > 0 and \int if a < 0. The function has vertex (h, k), and y-intercept $ah^2 + k$.
- - **b** A reflection in the x-axis, a vertical stretch with scale factor 4, a translation through $\begin{pmatrix} -3 \\ 5 \end{pmatrix}$, then a horizontal stretch with scale factor $\frac{1}{2}$.

EXERCISE 16E

- a invariant points are (-2, 1) and (-4, -1)
 - **b** invariant points are (-1, -1) and (1, -1)
 - \bullet invariant point is (1, 1)

3

d invariant points are $(\approx -1.24, 1)$, $(\approx -0.732, -1)$, $(\approx 2.73, -1)$, and $(\approx 3.24, 1)$

a x-intercepts -3 and -1, y-intercept 3, vertex (-2, -1)

- a Domain is $\{x \mid -1 \le x \le 6\}$, Range is $\{y \mid \frac{1}{5} < y \le \frac{1}{2}\}$
 - **b** Range is $\{y \mid y \leqslant -\frac{1}{3} \text{ or } y \geqslant \frac{1}{3}\},$ cannot say about the domain.

REVIEW SET 16A

y = f(x) + 2

- - **a** g(x) = 4x 10 **b** $g(x) = 5x^2 + 30$

 - g(x) = -3x 5 $g(x) = \frac{2}{9}x^2 \frac{1}{3}x + 4$
 - $g(x) = -x^3$

- 5 g(x) is the result of transforming f(x) 3 units to the left and 4 units down.
 - \therefore domain of g(x) is $\{x \mid -5 \leqslant x \leqslant 0\}$ range of g(x) is $\{y \mid -5 \leqslant y \leqslant 3\}$.
- 6 **a** $g(x) = (x-1)^2 + 8$
 - **b** i $\{y \mid y \ge 4\}$ ii $\{y \mid y \ge 8\}$
- $g(x) = 3x^2 + 5x + 9$
- 9 **a** -f(x+2)+3 **b** 2f(x-4)-2
- **a** (0,4) **b** (0,6) **c** $(\frac{1}{2},3)$
- **a** x-intercepts -9 and -3
 - **b** x-intercepts -5 and 1, y-intercept -9
 - \boldsymbol{c} x-intercepts -10 and 2, y-intercept -3
 - d x-intercepts -5 and 1, y-intercept 3
- 12 **a** $g(x) = \frac{2x-3}{x-1}$

 $x = -\frac{9}{2} \text{ or } \frac{1}{2}$

 vertical asymptote x=1, horizontal asymptote

y = 2• Domain is $\{x \mid x \neq 1\}$

13

 $y = x^2$ is transformed to $y = \frac{1}{4}(x-2)^2 - 1$ by vertically stretching with scale factor $\frac{1}{4}$ and then translating through

$$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
.

b g(x) = 16 - x

- - $g(x) = 3x x^2$
 - $g(x) = \frac{1}{12}x + 2$
- $g(x) = -x^2 6x 7$

$$y = f(x)$$

$$y = -f(x)$$

$$y = f(2x)$$

 $\longrightarrow y = f(2x)$ y = f(x-2)

- 8 A reflection in the x-axis, then a translation through $\begin{pmatrix} \frac{3}{2} \\ -\frac{7}{2} \end{pmatrix}$.
- (1, 6)
- a A vertical stretch with scale factor 2, then a translation through $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$.
 - A reflection in the x-axis, a horizontal stretch with scale factor $\frac{3}{2}$, then a translation through $\begin{pmatrix} 0 \\ -6 \end{pmatrix}$.
 - A vertical stretch with scale factor $\frac{1}{3}$, a reflection in the y-axis, then a translation through $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$.
- 11 b = 8, c = -20

12

- **b** A reflection in the x-axis, a vertical stretch with scale factor $\frac{1}{2}$, then a translation through $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$.
- $y = \frac{-4x 5}{2x + 2}$

Domain is $\{x \mid x \neq -1\}$, Range is $\{y \mid y \neq -2\}$

13

- **b** (1, 1) and (2, -1)
- vertical asymptote $x = \frac{3}{2}$

14

EXERCISE 17A

- a periodic
- **b** periodic
- - periodic
- d not periodic

