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An antiderivative of the
function f{x) is a function
F(x) such that

iF{x) =Fx) = fx)
wherever () is defined.
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Learning objectives

By the end of this chapter, you should be familiar with...

integration as antidifferentiation of functions

calculating and applying definite integrals

finding areas under curves (between the curve and the x-axis),
and areas between curves

antidifferentiation with a boundary condition

solving kinematic problems involving displacement s, velocity v,
acceleration g, and total distance travelled

working with integration of polynomial functions, trigonometric
functions and their inverses, and exponential functions

integration by inspection (reverse chain rule), use of partial fractions,
integration by substitution, integration by parts, and repeated integration
by parts

finding volumes of revolution about the x-axis or y-axis.

In Chapters 12 and 13 we learned about the process of differentiation. That is,
finding the derivative of a given function. In this chapter we will reverse the
process. That is, given a function f{x) how can we find a function F(x) whose
derivative is f{x)? This process is the opposite of differentiation and is therefore
called antidifferentiation or integration.

Antiderivative

For instance, let f(x) = x2. It is not difficult to discover an antiderivative of f{x).
Keep in mind that this is a power function. Since the power rule reduces the

power of the function by 1, we examine the derivative of x*: %{)ﬁ) =3x?

This derivative, however, is 3 times f(x). To ‘compensate’ for the ‘extra’ 3 we

have to multiply by L 5o that the antiderivative is L. Now i(l)ﬁ) =x?
3 3 dx\3

and therefore %x’ is an antiderivative of x2.

Table 14.1 shows some examples of functions, each paired with one of its
antiderivatives. The diagrams show the relationship between the derivative
and the integral as opposite operations.



Function Antiderivative
f®) F(x)
1 x
e
* 2
3x2 e
X x©
3
cosx sinx
Figure 14.1 The relationship between a
i . o
€os 2x sin 2x derivative and its integral
e e*
sinx —Ccos X

Table 14.1 Examples of functions paired to antiderivatives

Example 14

Given the function f(x) = 3x2. Find an antiderivative of f(x).

Solution
F,(x) = x* is one such antiderivative because %(Fx(x)) = 3x2

The following functions are also antiderivatives because the derivative of
each one of them is also 3x2.

Fx)=x3+27 Fx)=x*-m Fx)=x*+/5

Indeed, F(x) = x* + c is an antiderivative of fix) = 3x2 for any constant c.
This is simply because
(F(x) + ¢) = F(x) + ¢ = F(x) + 0 = flx)

Thus we can say that any single function f(x) has many antiderivatives, whereas
a function has only one derivative.

If F(x) is an antiderivative of f{x), then so is F(x) + c for any choice of the

h o DA g The mean value theorem
constant c. This statement is an indirect conclusion of one of the results of the 1 states that a function
mean value theorem. Two functions with the same derivative on an interval H(x), continuous over

aninterval [a, b] and

differ only by a constant on that interval. diffrentiable over Ja,

Let F(x) and G(x) be any antiderivatives of f(x); that is, F'(x) = G'(x). satisfies:

H(b) — H(a)
Take H(x) = F(x) — G(x) and any two numbers x, and x, in the interval [a, b] =(b— aH(c)
such that x; < x,, then for some ¢ € ]a, b[

H(x,) = H(x)) = (%, = x)H'(c) = (v, — x1) - (F(e) — G'(0))
= (% —x)-0=0= Hx) = H(x,)
which means H(x) is a constant function. Hence H(x) = F(x) — G(x) = constant.

That is, any two antiderivatives of a function differ by a constant.
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Note that if we differentiate
an antiderivative of f(x), we
obtain f(x). Thus

i( ) =0

The expression [f(x)dx

is called an indefinite
integral of f(x). The
function f(x) is called

the integrand, and the
constant c is called the
constant of integration.
The integral symbol [ isa
medieval S, used by Leibniz
as an abbreviation for the
Latin word summa (‘sun).
‘We think of the
combination [[]dxas

a single symbol; we fill

in the blank with the
formula of the function
whose antiderivative we
seek. We may regard the
differential das specifying
the independent variable
xboth in the function f(x)
and in its antiderivatives.
“This i true for any
independent variable, say f,
with the notation adjusted
appropriately. Thus

(‘T‘t(ffu)dt) =)
and
[fode=Fo + ¢

are equivalent statements.

‘The integral sign and
differential serve as
delimiters, adjoining the
integrand on the left and
right, respectively.

In particular we do not
write [dxfx) when we
mean f |fix)dx
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The notation
[ feodx = Foo + ¢ )
where ¢ is an arbitrary constant, means that F(x) + c is an antiderivative of f(x).
Equivalently, F(x) satisfies the condition that
%F(X) =F'tx) = flx) )
for all x in the domain of f(x).

It is important to note that that (1) and (2) are just different notations to
express the same fact. For example

1 . ‘ d(1
2dx = =x3 —|=x3) =
fx 3% Fcis equivalent to PR )
Derivative formula Equivalent integration formula
i ) =322 [axrdr=x+c
d; <1 —
w0 =35 Fdx=vEte

di(tan ) = sec?t )'seczrdr =tant+c¢
i J

)

3 (3 Lo a3
v [Fvidv=vite

Table 14.2 Derivative formulae and their equivalent integration formulae

Basic integration formulae

Many basic integration formulae can be obtained directly from their
companion differentiation formulae. Some of the most important are
given in Table 14.3.

Derivation formula ion formula
. >
- =1 dx=x+c¢
1 w0 |
2 | L=t Dane -1 forde =204 (e
dx K =
3 Lsinn) = cosx Jeosxdx = sinx + ¢
4 4 cosy) = —sinv [sinvdy = —cosv+c
dv /
5 %(taﬂ t) = sec’t fseczrdz =tant + ¢
6 %(e") —e ferdv=erte
d 1 1
7 okl =5 [Fdx=ln|x| +c
d[a o 1
d(a) _ P
& dx(lnu) € Jorde =gz e
9 i(amm x=—t arcsinx + ¢




10 | arccosn) = arccos x + ¢ = —arcsinx + ¢
d 1 J dx
< (arctanx) = —— ——— =arctanx + ¢
it @t AT 1+x2
12 4 et =tantsect J'tantsectdt:sect+c
dt
d - 2 2y dpm
13 ——cotx = —cosec’x cosec’tdt = —cott + ¢
dx J
14 %cosecl = —cottcosect Jcm tcosectdt = —cosect + ¢

Table 14.3 Many basic integration formulae can be obtained directly from their companion
differentiation formulae

Formula 7 is a special case of the ‘power’ rule shown in formula 2, but needs
some modification.

If we are asked to integrate %, we may attempt to do it using the power rule:
fldx*f"dxf : 0414 c=Lyo ichi
xdx = |x = X + ¢ = —x° + ¢, which is undefined.
(—1)+1 0
However, the solution is found by observing what we learned in Chapter 13:

d _1 T | ST
a(lnx) =5x>0 implies fx dx=Inx+¢x>0.

The function % is differentiable for x < 0 too. So, we must be able to find its
integral.
The solution lies in the chain rule.
If x < 0, then we can write x = —u where u > 0. Then dx = —du, and

1 1
Jrax=

But u = —x, therefore when x < 0:

A= [hdu=lnu+cu>0

[¥dx=Inu+c=1In(~x) + c and combining the two results, we have
[rdc=Injs +cx=0

Example 14

Evaluate
(a) [3cosxdx ®) [G + x2dx

Solution

(a) f3cosxdx: 3|cosxdx =3sinx + ¢

3 4 x2dx = [x3dx IR R
® [ +x3dv = [xdx + [x2dv Sefae

Sometimes it is useful to rewrite the integrand in a different form before
performing the integration.

Suppose that flx) and
(x) are differentiable
functions and kis a
constant. Then:

A constant factor can be
moved through an integral
sign; that is,

fkj(x)dx = kfﬂx)dx

An antiderivative of a

sum (difference) is the

sum (difference) of the
antiderivatives; i.e.,

f(j(x) * g))dx
:fﬂx)dx:fg(x)dx

701



702

Integral calculus 1

Example 14.3

Evaluate

= a0 A Gh
@) ft—sdt (b) f"x—z"dx

Solution
AR G SR 1 WU (15 o0 NS 07 S 1 PO
(a)f = [Lar ftsd"f' dt f = =aidie
| .
= Fidr@
xtSxty (X 55! e [L 2
(b)dex’fxzd"Jrfxzdx*fxd"*fSde

3
:1n|x|+5§+c

101

Integration by simple subst change of variables

In this section we will study substitution, a technique that can often be used to
transform complex integration problems into simpler ones.

The method of substitution depends on our understanding of the chain rule as
well as the use of variables in integration. Two facts to recall:

‘When we find an antiderivative, we can use any other variable.

‘That s, [f(u) du = F(u) + ¢, where u is a dummy variable in the sense that it
can be replaced by any other variable.

Using the chain rule %(F(u(x))) = Fl(ux)) - u'(x)

Which can be written in integral form as [F'(utx) - /(v dx = Flu(w) + ¢
Or equivalently, since F(x) is an antiderivative of f(x),
[t - w0 dx = Fuco) + ¢

For our purposes it will be useful and simpler to let u(x) = u and to write

g_u = u'(x) in its differential form as du = u/(x) dx or simply du = u'dx.
x

‘We can now write the integral as

) - weo dx = [fandu = Flugo) + ¢

Example 14.4 demonstrates how the method works.



Example 14.4

Evaluate

@ [+ 20 3x2dx ®) [tanxdx (@) [cossxdx
(d) fCOSxZ - xdx (e) fe”“dx

Solution

(a) To integrate this function, it is simplest to make the substitution ol

u = x* + 2, and so du = 3x>dx. Now we can write the integral as using the substitution
" (3 + 21 rule s to think of an
f(x3 +2)10. 3x2dx = fuwdu = ';_1 te=Eardade appropriate substitution.

You should try to
select u to be a part of
the integrand whose
differential is also

) . included (except for the
_ [sinx . constant). In Example
f‘a""d" fcosxd" fcosx sinxdx 14.4 (a), we selected 1

tobe (x* + 2) knowing
We now let u = cosx = du = —sinxdx, and that du = 3x*dx. Then

(b) This integrand has to be rewritten first and then we make the
substitution:

" " we compensated for the
ftanxdx = f— -sinxdx = fl - (=du) = 7f—du = —Infu| + ¢ absence of 3. Finding the
ki u u right substitution is a
subtle art, which you will
acquire with practice. It
is often the case that your
first guess may not work.

This last result can be then expressed in two ways:
ftanxdx = —In|cosx| + ¢, or

1

ftanxdx = —In|cosx| + ¢ = In|(cosx)!| + ¢ = In|
(cos x)

= In|secx| + ¢

(c) Weletu = 5x, then du = 5dx = dx = édu, and so

fcosSxdx:fcosu»édu:éfcosu du:ési.nu+c

11
= —sin5x +
SINOEEC

Another method can be applied here:

The substitution u = 5x requires du = 5dx. As there is no factor of 5
in the integrand, and since 5 is a constant, we can multiply and divide
by 5 so that we group the 5 and dx to form the du required by the
substitution:

fcosSxdx:lfcosx-de:1fcosudu:lsi.nu+c
5 5 5

Lsinsx+ ¢
5
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In integration,
‘multiplying by a constant
inside the integral and
compensating for that
with the reciprocal
outside the integral
depends on formula 2
from Table 14.3.
However, we cannot do
this with a variable.

For example,
Jerax= L fenar
2

is not valid because 2x is
not a constant.

704

Integral calculus 1

(d) By letting u = x?, du = 2x dx and so
fcosxz-xdx = %fcost»Zxdx = %fcosudu

sinu +c:%sinxz+ c

4
2

() fewdx:%fe—‘vwdx:%feudu:%euﬂzéem.ﬂ

Example 14.5

Evaluate each integral.

(@ [edx (b) [ sinxcosxdx (© [2sinGx -5 dx
(@ [emnd (¢) [xvxdxand F(1) =2
Solution

(a) Letu = —3x, thendu = —3dx
fe’“dx: lf H=bak)= —f “du—7§5“+c
= *%e’“ +@
(b) Letu = sinx = du = cosxdx, and hence
fsinzxcosxdx: fuzdu = %u’ +c= %sinzx e
(c) Letu = 3x — 5, then du = 3dx

fZSin(Sx*S)dxfz —fsm Sx=53dyv—

= *gcosu +c= *zcos(3x* 5)4F @
) 3

(d) Letu = mx + n, then du = mdx

1
Ut o= emtdc

fe"‘"*"dx:%fe”" ”mdx:%fe"du =

b

2 8
= = =
@ 5+c 2=c 5

(©) F) = [xvEde= [xidc = +c—3x2 2 @ G HI) =2

5
2

A1) :%1

g

Therefore F(x) = %xz IF %



Examples 14.4 and 14.5 make it clear that Table 14.2 is limited in scope
because we cannot use the integrals directly to evaluate composite functions.
We therefore need to revise some of the derivative formulae.

Derivative formula Integration formula

1 %(u(x)) = u(x) = du = wwdx .)'du =u+c
e - P e B

2 E(H+l)—uu(x),n¢ 1:>d(n“) wids | furde =2 g -1

3 i(sin(u)) = cosqu)u'(x) = d(sin(w) = coswu'(x) dx [cosudu=sinu+ec

4 %(cos(u]) = —sin(wu’(x) = d(cos(u)) = —sin(wu’(x)dx ,'sinu du= —cosu+c

5 %(lan 0 = secu u(t) = ditan ) = sec?u u/(t) dt [sectudu=tanu+c

6 i(e“) = enl(x) dx = de®) = en/(x) dx [erdu=en+c

7 i(]n\u” = Lt = dlinu) = L ax & du=1njul + ¢

s | Laarcsinw = W(x) = dlarcsing) = = arcsinu + ¢

dx Ny
9 i(arctan W=y +lu2 W) = dlarctanu) = ¢ :uzu’(x) ax | 1 i"ul = arctanu + ¢

Table 14.4 More advanced derivative and integration formulae.

Example 14.6

Evaluate each integral.
(@ [VexFTTdx ® [6x? +2x2dx

(d) fsin“(3x2) cos(3x?) xdx

Solution
(a) Weletu = 6x + 11 and calculate du:
u=6x+11 = du=6dx

Since du contains the factor 6, the integral is not in the form f flu) du,
However, here we can use one of two approaches.

Introduce the factor 6, as we have done before; that is,

[VerFTras= L[ver+ir6ax
6

:%f\/ﬁdu:%fu%du
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Integral calculus 1

Or since u = 6x + 11 = du:6dx:dx:%‘,then

f\ 6x+ 11dx = f»/ﬁd?u = éfu%du, then we follow the same steps as
before.

(b) Welet u = 5x3 + 2, so du = 15x2dx. This means that we need to
introduce the factor 15 into the integrand

[6x2 + 2px2dx = if(s:ci +2)815x2dx
= f =il
= L(5x3 AP e
135

(c) Weletu = x* — 8x + 13 = du = (4x® — 8)dx = 4(x3 — 2)dx

f x2—2 dxflf 4 —2)dx 1 (du
V' —8x+ 13 4 st 13 4

B
4
\ 5
= e AP
4 44
5
5 4
=—(x*—8x+ 135+ ¢

16
(d) Welet u = sin(3x?) = du = cos (3x?)6x dx using the chain rule.

fsin‘(SxZ)cos (3x)xdx = lfsin‘(3x2)cos (3x2) 6x dx
-1 f =il s
= Lsins(sz) +c
30

Exercise 14.1

1. Find the most general antiderivative of each function.

(a)ﬂx)*x+2 (b) ) =362 — 2t + 1

(c) gl)==— —x3 (d) fit) =t — DEt + 3)

(© g(u):u§—4u3 ®) for) = 2k — ==

(g) h(6) =3sin O + 4cos O (h) f(t) = 31> — 2sint

(i) flx) = vx(2x—5) (j) g(6) = 3cos O — 2sec?6
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2,

B3

4.

(k) h(t) = e !
ot

(m) h(u) = 38 +5

(0) flx) = (3 + 2x)2

Find f.

(a) f"(x) = 4x — 15x2

o fin=2
(n) h(6) = e*’cos 6

(b) f"(x) = 1 + 3x2 — 4x3,f'(0) = 2, f(1) = 2

© f7() = 8t — sint
@ f'(x) = 12x* — 8x + 7,£(0) = 3
(e) f'(6) =2 cos 6 — sin (26)

Evaluate each integral.

@) [x(x2+7)dx
© [22V5 +2dx
© [r2e=7d
(@ [sin7x — 3)dx
@) [sec50—2)do
) [secartan2edr
(m) [VEexdt

Evaluate each integral.

@ [t3—5edt

smf
© [

© f\/f(\/YJrZ)
S7ar 5

Cl v

@ [3x/x—Tdx

9 [VTF cos gsin 646

® [oam
(222,
® [(2+ 3)5(i)dx

sin(20 — 1)
() fcos(Z@* 1) = 3

@) fcos(mc+3)dx
O [xer+idx

@ [20n02d0

() [6sec20°do
(d) ftan52tsec22tdt
(f) fsecSZItanZIdt

() f

@) fcscZ atdt

kix2
=7 x‘
O [AT=rdt

) fe =cF

ex e”‘z
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Integration by parts

Although differentiation and integration are strongly linked, finding derivatives
is very different from finding integrals. With the derivative rules available,

we are able to find the derivative of just about any function we can think of.

By contrast, we can compute antiderivatives for a rather small number of
functions. Thus far, we have developed a set of basic integration formulas,

most of which followed directly from the related differentiation formulas

seen in Table 14.2.

In some cases, using substitution helps us reduce the difficulty of evaluating
integrals by expressing them in familiar forms. However, there are many cases
where simple substitution will not help. For example, we cannot evaluate

fxcosxdx

using the methods we have learned so far. However, we can evaluate this
integral using integration by parts.

Recall the product rule for differentiation:
%(u(x)v(x)) = w()vx) + ux)v'(x),
which gives rise to the differential form
d(u()v(x)) = v(x)d(u(x) + u(x)d(v(x))
and for convenience, we will write
dwv) = vdu + udv
If we integrate both sides of this equation, we get
fd(uv) = fvdu + fudv@uv:fvdu + fudv
Solving this equation for f udv, we get

fudv:uv—fvdu

This rule is integration by parts.

Example 14.7

Evaluate f xcosxdx

Solution

First, observe that we cannot evaluate this as it stands: it is not one of our
basic integrals and no substitution can help either.



‘We need to make a clever choice of # and dv so that the integral on the right
side is one that makes the evaluation easier.

‘We need to choose u (to differentiate) and dv (to integrate), thus we let

u = x,and dv = cosxdx

Then du = dx, and v = sin x. (We will introduce c at the end of the process.)
It can help to organise our work in table form:
u=x du = dx
dv=cosxdx v=sinx
This gives us

fﬁ cosxdx = fudv = uv - fvdu
u dv
xsinx — fsinxdx

= SIS ENCOS X G

To verify the result, simply differentiate the right-hand side.

g . .
a(xsmx+ cosx + ¢) =sinx + xcosx — sinx + 0 = x cosx

‘There are three other choices of u and dv that we can make in this problem.

(i) Let
u=cosx du=-sinxdy 2 >

2 s = i

bosts  v=E = [xcosxds zcosx+f2$|nxdx

This new integral is worse than the one we started with.

(ii) Let
u=xcosx du=(cosx — Ksinx)dx] _
dv=dx v=x
Jxcosxdx = x2cosx — [xtcosx — xsinx)dx

Again, this new integral is worse than the one we started with.
(i) Let
u=1 du=0
dv=xcosxdx v=122
‘This is obviously a bad choice since we still don't know how to integrate dv = x cos x dx
‘The objective of integration by parts is to move from an integral [udv that we canit see how to
evaluate to an integral [vdu that we can evaluate. So, keep in mind that integration by parts
does not necessarily work all the time, and that we have to develop enough experience with such a
process in order to make the correct choice for u and vdu.

Example 14

Evaluate

(@) [re—rdx ®) [Inxdx © [¥Inxd
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When applying
integration by parts more
than once, we need to be
careful not to change the
nature of the substitution
in successive applications.
For instance, in Example
14.9, the first substitution
was u = x2and

dv = sinxdx. In the
second step, if we had
switched the substitution
tou = cosxand

dv = 2x dx, we would
have obtained

[xsinxdx = —x2cosx
+xcosx + [@sinxdy
= [sinxdx

‘This undoes the previous

integration and returns to
the original integral.
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Solution

du =

v=—

d{x] = fxe”‘d)(: *xe”‘+fe’”dx

= Sl

- _ by
(by 4= Inx du= 7] = [inxde=xlnx— [x3%
X
dv=dx v=x
=xlnx—x+c¢
(c) Since x? is easier to integrate than In x, and the derivative of In x is also
simpler than In x itself, we make the following substitutions.

u=Ilnx du=-2
= o
dv=x2dx v 3

Sometimes we need to use integrations by parts more than once.

Example 14.

Evaluate f x?sinx dx

Solution

Since sin x is equally easy to integrate or differentiate while x? is easier to
differentiate, we make the following substitution

=P du = 2xdx

§ #fxzsinxdx:7x2cosx+2fxcosxdx
dv=sinxdx v= —cosx]

This first step simplified the original integral. However, the right-hand side
still needs further integration. Here again, we use Integration by parts.

u=2x du = 2dx]

e e :>f2xcosxdx:2xsi.nx*2fsinxdx

=2xsinx + 2cosx + ¢
Combining the two results, we can now write
fxzsinxdx = —x2cosx + focosxdx

= —x?cosx + 2xsinx + 2cosx + ¢



Example 14

Evaluate fxz eady

Solution

Since e* is equally easy to integrate or differentiate, while x? is easier to
differentiate, we make the following substitution

u=x> du=2xdx Aol v
it e ]@fxzedx—xle foedx

This first step simplified the original integral. However, the right-hand side
still needs further integration. Here again, we use integration by parts.

u=2x du=2dx

g V:ex]ﬂfZXedeer 72fedx

= 2xex = deX e
Hence
fxze"dx Sglet= f2xe’dx

= x2e* — 2xe* + 2e* + ¢

Using integration by parts to find u wn integrals

Integrals like the one in Example 14.11 often occur in electricity problems.
Their evaluation requires repeated applications of integration by parts followed
by algebraic manipulation.

Example 14.11

Evaluate f cosxe*dx

Solution
Let
= ex =
s o = dx] ﬂfcosxe"dx:e"sinx*fsinxe"dx
dv=cosxdx v=sinx
The second integral is of the same nature, so use integration by parts again:

u=e* du = e*dx

. #fsinxe“dx: S CrCOSK fcosxe"d.x
dv=sinxdx v= —cosx|

a



Integral calculus 1

Hence:
fcosxe’fdx = e*sinx — fsinxe"dx

= iy = (—e"cosx A fcosxe"dx)

= CESINIETICECOSICES fcosxe’fdx
Now, the unknown integral appears on both sides of the equation, thus
fcosxe"dx ar fcosxexdx = e¥sinx + e*cosx

= 2fcosxexdx = e*sinx + e*cosx
e*sinx + e*cosx "
G

:>fcosxexd.x= 5

Example 14.12

Evaluate f xInxdx

Solution
u=Inx du=% f 2 21 dx
5 |2 Jrlinabe =St = [t
dv = xdx v=x7 2 2
_& xdx a2 x?
—71nx > —7l.nx I+E

Alternatively, we could have used a different substitution
u=xlnx du=(nx+ l)dx] :fx]nxdx:xllnx— fx(]n“ Dx
dv=dx v=x

=D _ —

=x%Inx fxlnxdx fxdx

Adding f x In x dx to both sides and integrating f xdx we get

[xInxdx+ [xInxdx=x2nx -2+ ¢

2
:2[0::xlnxdx:lenxfx—+ c
2

D SO = ):X”ﬂ,x_
:fxlnxdx 2(xlnx 2+ > 4+c

ST S c
The constant c is arbitrary, and hence it is unimportant whether we use = or ¢

in our final answer.
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Exercise 14.2

—-

N

&

B

e

o

N

3

(d) fxzsinuxdx
(® [+*Inxdx
Gj) fe"costht

. Evaluate each integral.

@) [xedx

(m)fe’z"sin 2xdx

(@) [Inx + x3 dx

(s) fsi.nx sin 2xdx

(© [x2cos3xdx
(®) [xlnxdx
@) [xcos mrdx
O [xedx
(0) [coslinx)dx
() [xsectxdx

W ["Xax

. In one scene of the movie Stand and Deliver, the teacher shows his

students how to evaluate f x?sin x dx by setting up a chart similar to this:

sinx
i ~COsX +
2x —sinx i
2 cos x +

(a) Multiply across each row and add the result.

(b) The integral is

Explain why the method works for this problem.

Use the result of question 2 to evaluate each integral.

(a) fx‘sinxdx

fxlsinxdx = —x2cosx + 2xsinx + 2 cosx + ¢

(c) fx“e"dx

Show that the method used in question 2 will not work with f x2Inx dx

Show that
fx"e"dx Slvter nfx""e"dx, then use this reduction formula to

show that [xte*dv = axle” + bxe* + cxe* + dxe* + fe* + g, where

a,b,c, ..., gare to be determined.

Show that fx"lnx dx =

. Show that fe’"” cos nxdx =

. Show that fe’"" sinnxdx =

e"(m cos nx + n sin nx)

e”(m sin nx — n cos nx)

ar @

=
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More methods of integration

In Section 14.2, we looked at a very powerful method for integration that has
a wide range of applications. However, integration by parts does not work for
all situations. In some cases, even when it does work, it may not be the most
efficient method. In this section we will consider a few trigonometric integrals
and some substitutions related to trigonometric functions or their inverses.

These trigonometric identities will prove very helpful:

1. cos?0+ sin?6 =1

2. sin2f= 1 —cos26
: 2

3, coste = 1+ cos26
) 2

4. sec?0 =1+ tan?0

Example 14.13

Evaluate
(@) [sin2xdx (b) [costodo

Solution

(a) We can use identity 2 from the list above:
fsinzxd.x = fﬂ dx = lf(l — cos 2x)dx
2 %)
1 1.
=(x—- 4+
3 (x 3 sin Zx) @
(b) Using identity 3:

o 1+c0529)2 _a ;
fcos 0do f(—z de 4f(1 + 20826 + cos*26)d6

1

= <1+2c0529+ 0

i 4r cos49)
e d
= %(29 SF A @in 20 ar (¢ =F isiné}ﬁ) P

=£(129+ 85sin26 + sin46) + ¢



Here is a list how to find some integrals. In exam papers, any
non-standard cases
will be accompanied
by a recommended
substitution.

Integral How to find it

[sin"xcos?xdx | 1f m is odd then break sin*x into sin x and sin* ", use the
substitution # = cos x and change the integral into the form
cos’x sinxdx = [ u?du. Similarly if n is odd.

Jtan"xsecrx dx | 1fm and n are 0dd, break offa term for sec x tan x and express the
integrand in terms of sec x since d(sec x) = sec x tan x dx

,(an"x dx Write the integrand as , tan" "2 x tan®x dx, replace tan?x with
sec?x — 1and then use u = tanx

f secx dx If n is even, factor a sec*x out and write the rest in terms of
tan?x + 1.1f n is odd, factor a sec’x out. Here, integration by parts
may be useful.

Table 14.5 How to find some integrals

Example 14.14

Evaluate f secx dx

Solution

This integral is evaluated using a clever multiplication by an atypical factor:

2
fsecxd:c fsecxtanx ar secx g _ fsecxtanx =+ sec % ik
tanx + secx tanx + secx

Now use the substitution u = secx + tanx = du = (secx tanx + sec2x)dx,
hence

secx tan x + sec’x du
fsecxdx:f—dx: —
tanx + secx u

= Infu| + c = Injtanx + secx] + ¢

Example 14

Evaluate f sec’x dx

Solution

This can be evaluated using integration by parts and some of the results we
used earlier.

u = secx du = secx tanx dx
dv = sec?x dx v = tanx

Hence,

715



Integral calculus 1

fsec’xdx =secxtanx — ftanxsecxtanxdx
=secxtanx — fsecxtanzxdx
= secxtanx — fsecxseczx —ldx
= secx tanx — fsec’xdx 4 fsecxdx
Adding f sec®x dx to both sides

2fsec3xdx =secxtanx + fsecxdx
= secx tanx + In|secx + tan x|

And finally
secx tanx + In|secx + tan x|
R B ar

Example 14.16

Evaluate f sin®x cos®x dx

fsec’xdx:

Solution

This integral can be evaluated by separating either a cosine or a sine,
then writing the rest of the expression in terms of sine or cosine.

We will separate a cosine here
fsirﬁx cos*xdx = fsin3x cos?x cos x dx
= fsin%((l — sin?x) cos x dx
= f(sirﬁx — sin®x)cos x dx

Now we let

u = sinx = du = cos x dx, and hence
fsinjxcoijdx = f(sin’x — sin®x)cos x dx
4 6
:f(u37u5)du:"_—"_+c
4 6

_sinfx _ sin®x

4 6

GG
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Exercise 14.3

1. Evaluate each integral.

(a) fsi.n3tcos2t dt
(© fsi.n339cos38 do

(e fsm 2 e

cos’x

(@) [6tan (67 sect (67 d0

(i) f tan*(51) dt

e

sinx — 5cosx
(m) [SRX=2 00X
sinx + cosx

arctant
© f e
o fx V1 — (Inx?

() fsm 22 i

VCOSX

(u) fcos t cos’(sin #) df

2. Evaluate each integral.

(a) ftsecttantdt

(c) fe ~2tan(e~2) dx

© fl + cos 2t

dx
® [ gm

3etdt
AL et

@

i}
) [

(0) f‘:;zxzdx

(b) [sin*tcos’tdt

@ f_51n5( )COSZ( )dt
(6) [tan®3xsec?3x dx
(h) f%tarﬁﬂse&ﬂdi
0 [

O [

sec 6 tan 6
w fl +s clﬂde

1
(®) f 1+ tz)arctantd[
(1) fsin’xdx
fiad
) fs"‘l/zﬁdx

cos 0 + sin26
® f sin 6 do

COs X

(b) fZ = @lage do
@ =20
® [T=9x2dx

) [Va+ear

0 J o= 4x2
(l)f COS X

VI + sin?x
X
w fxz T

®) f X232

¢

For part (j), mul(ip]y the
—sint
1—sint

integrand by

For part (m), find
numbers a and b such
that you can replace
sinx — 5cosx with an
expression involving
terms alsinx + cosx)
and blcos x — sinx)

Parts (£) to ~(v) will
need trigonometric
substitution.
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Y y=fx)
=l

Figure 14.2 How do we find
the area?

y
y=fx)

fix)

) H

Figure 14.3 Dividing the
base interval into subintervals

_—

X

Figure 14.4 The total area of
the rectangles can be viewe
as an approximation

X

Figure 14.5 As n increases,
the approximations get better
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@ [x/T+ 27 dx @) [ex/I+ e dx
©) [eT—emax ()f el
Ve 9
Inx 5
(u) fﬁdx ) fmdx
; 5 oot o ] ;
3. The integral f 210 dx can be either by tr ric

substitution or by direct substitution. Do both, and reconcile the results.

2
4. The integral f 2X+ 5 dx can be evaluated either by tri ric
5

substitution or by rewriting the numerator as (x> + 9) — 9. Do it both
ways and reconcile the results.

m Area and the definite integral

The function f(x) is continuous and non-negative on an interval [a, b]. How do
we find the area between the graph of f(x) and the interval [a, b] on the x-axis?
(Figure 14.2)

‘We divide the base interval [a, b] into n equal subintervals, and over each
subinterval construct a rectangle that extends from the x-axis to any point on
the curve y = f(x) that is above the subinterval; the particular point does not
matter - it can be above the centre, above one endpoint, or above any other
point in the subinterval. In Figure 14.3 it is at the centre.

For each n, the total area of the rectangles can be viewed as an approximation
to the exact area in question. As n increases, these approximations will get
better and better and will eventually approach the exact area as a limit.

See Figures 14.3-14.5

A traditional approach would be to study how the choice of where to put the
rectangular strip does not affect the approximation as the number of intervals
increases. We can construct inscribed rectangles that, at the start, give us an
underestimate of the area (Figure 14.6). On the other hand we can construct
circumscribed rectangles that, at the start, overestimate the area (Figure 14.7).

As the number of intervals increases, the difference between the overestimates
and the underestimates will approach 0.

Figures 14.8 and 14.9 show n inscribed and circumscribed rectangles
and Figure 14.10 shows the difference between the overestimates and
underestimates.



Figure 14.10 shows that as the number 7 increases, the difference between the
estimates will approach 0. Because we set up our rectangles by choosing a point

inside the interval, the areas of the rectangles will lie between the overestimates
and underestimates, and hence, as the difference between the extremes approaches *

. . . Figure 14.6 Underestimation
zero, the rectangles we construct will give the area of the region required.

of area
If we consider the width of each interval to be Ax, then the area of any
rectangle is given as
A; = flx))Ax x
Figure 14.7 Overestimation
The total area of the rectangles so constructed is of area
n
A, =) flx)ax 1
=
H
where x; is an arbitrary point within any subinterval [x,_,, x;], X, = a,and x,, = b. Figure 14.8 n inscribed
In the case of a function f(x) that has both positive and negative values on seehengles
[a, b], it is necessary to consider the signs of the areas in the following sense.
On each subinterval, we have a rectangle with width Ax and height f(x*).
If f(x*) > 0, then this rectangle is above the x-axis; if f(x*) < 0, then this
E:

rectangle is below the x-axis. We will consider the sum defined above as the

sum of the signed areas of these rectangles. That means the total area on the f:cg: :3;1139 ciseumseribed
interval is the sum of the areas above the x-axis minus the sum of the areas of
the rectangles below the x-axis. _225242/

_ >

x

We are now ready to look at a loose definition of the definite integral:
Figure 14.10 difference
If f(x) is a continuous function defined for a < x < b, we divide the interval between over- and under-

b—a) estimates
n

[a, b] into n subintervals of equal width Ax = . We let x, = a, and

x, = band we choose x;,x;, ... ,x, in these subintervals, so that x; lies in the
ith subinterval [x;_,, x;]. Then the definite integral of f(x) from a to b is

[0 e = gim o)

b
In the notationf f(x) dx, a and b are called the limits of integration: a is the

lower limit and b is the upper limit.

Because we have assumed that f(x) is continuous, it can be proved that the Figure 14.11 Area of each
limit definition above always exists and gives the same value no matter how circumscribed rectangle
we choose the points x;. If we take these points at the centre, at two thirds the

distance from the lower endpoint or at the upper endpoint, the value is the

same. This why we will state the definition of the integral from now on as

Figure 14.12 Areas above
and below the x-axis

1) "f) dx = lim 3 fir) Ax

n—ocf={

For a more rigorous treatment of the definition of definite integrals using Riemann sums, refer to
university calculus books. Such a treatment is beyond the scope of the IB syllabus and this book.
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Calling the area under the function an integral is no coincidence. To make the
point, let us take the following example:

Example 14.17

Find the area A(x) between the graph of the function f(x) = 3 and the
interval [—1, x], and find the derivative A’(x) of this area function.

Solution

B

le—TB—x+1——+x | %

The area in question is
A= Aes = (E1) = dkaar 3
A'(x) =3 = flx)

Example 14.18

Find the area A(x) between the graph of the function f(x) = 3x + 2 and the

, and find the derivative A'(x) of this area function.

interval [*% 551

Solution

x+d

P — ) — b
The area in question is
=42 =1 2
Alx) 2(x 4 3)(3x +2=1a:42
since this is the area of a triangle. Hence

A'(x):%X2(3x+2)><3:3x+2:f(x)
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Example 14

Find the area A(x) between the graph of the function f(x) = x + 2 and the
interval [—1, x], and find the derivative A’(x) of this area function.

Solution

1
-~ xt1l——————>x x

This is a trapezium, so the area is

Mn:%u+u+wu+n:§ﬁ+u+yﬁm

A&):%Xux+®:x+2:ﬂn

Note that in every case, A (x) = f(x)

That is, the derivative of the area function A(x) is the function whose graph
forms the upper boundary of the region. It can be shown that this relation is
true not only for linear functions but for all continuous functions. Thus, to find
the area function A(x), we can look instead for a particular function whose
derivative is f(x). This is, of course, nothing but the antiderivative of f(x).

So, intuitively, as we have seen above, we define the area function as
A(x) = f f(t) dt, that is A'(x) = f(x)

This is the trigger to the fundamental theorem of calculus.

We will now look at some of the properties of the definite integral.

[ ae = ['fio ax

b
When we defined the definite integral f f(x) dx, we implicitly assumed that
N —a, la=b
to—0r—.

a < b. When we reverse a and b, then Ax changes from (bT 5

Therefore the result above follows.

b
Lﬂnu:o
When a = b, then Ax = 0, and so, the result above follows.
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e f:cdx:c(b—u)
4 W\ b b b
L, [T = gl dx = [ ax = [ g dx
f“bcf(x) dx = cﬁbf(x) dx, where ¢ is any constant.

—_ T C
5 | / ‘) de = [fwac+ [ "fx) dx

a c b

This property can be demonstrated as follows. The area from a to b is the sum of
Figure 14.13 A(x) = A; + 4, the two areas, that is A(x) = A, + A, (Figure 14.13). Additionally, even if ¢ > b
the relationship holds because the area from ¢ to b in this case will be negative.

Average value of a functi

From statistics, the average value of a variable is ¥ =

n

y=fx) We can also think of the average value of a function in the same
manner. Consider a continuous function f(x) defined over a closed
interval [a, b]. We partition this interval into # subintervals of
equal length in a fashion similar to the previous discussion.
Each interval has a length
_b—a

n

Ax

The average value of f{x) can be defined as
* X X,
Figure 14.14 y = f(x) partitioned a(f) _ for)  foe) e+ fix)

: , or written in sigma notation
into n subintervals

This leads us to the following definition of the average value of a function f(x)
over an interval [a, b]:

The average (mean value) of an integrable function f(x) over an interval [a, b]
is given by

alf) = 5= [ s
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Max—min inequality

If foyax and f,, represent the maximum and minimum values of a non-negative, ¥
continuous, differentiable function f(x) over an interval [a, b], then the area Sl
under the curve lies between the area of the rectangle with base [a, b] and
funin @8 height, and the rectangle with £, as height. S~
That is 0]
b Figure 14.15 Max-min
b= a)fom =< f S0 dx < (b — ) fine incquality
»
With the assumption that b > a, this in turn is equivalent to 1
1 f" e
P T = ;
fun <[ fOd < fo o
Using the intermediate value theorem, we can ascertain that there is at least one 0]
point ¢ € [a, b] where Figure 14.16 Average value
1ot
) =—— f x)dx
fio =52 [ A

The value f(c) in this theorem is, in fact, the average value of the function.

The first fundamental the of integral calculus

Our understanding of the definite integral as the area under the curve for f(x)
helps us establish the basis for the fundamental theorem of integral calculus.

In the definition of definite integral, we'll make the upper limit a variable, say x.
Then we will call the area between a and x, A(x); that is,

AW = [ fde
Consequently,
xth
Ax+m =] fwd
Now, if we want to find the derivative of A(x), we evaluate
A(x + h) — A(x)
h

lim
=)

Using the properties of definite integrals discussed earlier, we have
ot x
A+ -am=[ fod - [ fiar
a xth
- f finde + f A dr

x+h
- f A d
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Therefore
fo:
dr
At AW S fOd
[ =iy = Jiyy [ R

Looking at this result and what we established about the average value of f(x)
over the interval [x, x + h], we can conclude that there is a point ¢ € [x,x + h]
such that

fo =4[ foar

‘What happens to ¢ as h approaches 0? As h approaches 0, x + h

X
must approach x. This means, we are ‘squeezing’ ¢ between x and a
number approaching x. So, ¢ must also approach x. That is
flc) = fix), and consequently
. A(x+ h) — A(x)
Jim == = Jim hf f(t)dt = f(c) = f(x)
0] x 5 T+ T g2 This last equation is stating that

Figure 14.17 fic) approaching flx)

Itis important to
remember that [ f(f)dt

is a function of x.

724

La) = 400 = ([ oar) = )
This very powerful statement is called the first fundamental theorem of

integral calculus. In essence, it says that the processes of integration and
differentiation are inverses of one another.

Example 14.20

Find each derivative.

() & f secttdt () L[ ik © = f

dx’o 1 + ¢4 1+t‘

@ —fhﬂ 4dt © _f2x+x’

Solution

(a) This is a direct application of the fundamental theorem:
8
= tdi=sect
f _ see secx

(b) This is also straightforward:

d(fde _ 1
abodhy il 4rie Il ap g



(c) We need to rewrite the expression before we perform the calculation.

ah= il

if” 1 JZifC 1 ,,if" I q—
@bl il Ap @bty a4 aballs 1457 il 3k g

(d) This is a function of x, and the upper limit is a function of x, which

2x+:
1 1
makes
j,; ilqp {7 1L 4F

So, we have to use the chain rule.

2xtx? u
O (L
dx“o 1l 4= 7= du’o 1+ ¢4 dx

dtand u = 2x + x>

u
dt a composite of fa

=@ 37
1+ (2x + x4

. 2+3x>

il 4F (257 4F 298

(e) Again, we need to rewrite the integral before evaluation

d e ] d( ko] PIAE | )
= == dt + dt
dxfx 4 dxfx1+tA fk il 45 ¢

__ A%
i ap e ap s Il apae

The second fundamental theo of integral calculus

Recall that A(x) = f [f(t)dt. If F(x) is any antiderivative of f(x), then applying

what we learned earlier
F(x) = A(x) + ¢ where c is an arbitrary constant.
Now

F(b) = A(b) + c = f ") dt + ¢, and
Fla) = A(a) + c = f:f(t) di + ¢ =0 + ¢, and hence

b
F(b) — F(a) = f fdt+c—c = ‘The second fundamental

3 theorem of calculus states:
b ['foa=ro - ra
= f Fo)dt
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Notation

We will use the following
notation in evaluating
definite integrals. If we
Kknow that F(x) is an
antiderivative of f(x),

then we will write

b
[ A0 de=Feo)

726
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Integral calculus 1

‘The theorem is also known as the evaluation theorem. Also, since we know that F'(x) is the rate
of change in F(x) with respect o x, and that F(b) — F(a) is the change in y when x changes from a
to b, we can reformulate the theorem in words to read:

‘The integral of a rate of change is the total change:

f, Pl dx = FB) — F@)

Here are a few instances where this applies:

If V'(t) is the rate at which a liquid flows into or out of a container at time ¢,
A
thenfl V'(t) dt = V(t,) — V(t,) is the change in the amount of liquid in the

container between time ¢, and t,.

3
If the rate of growth of a population is n'(t), then f n'(t) dt = n(ty) — n(ty)

t
is the increase (or decrease) in population during the period from t, to f,.

This theorem has many other applications in calculus and several other fields.
It is a very powerful tool that allows us to deal with problems of area, volume,
and work. In this book, we will apply it to finding areas between functions and
volumes of revolution as well in displacement problems.

Example 14.21

Evaluate each integral

3 4
5;
@ fﬂx dx (b)f“&dx
2 24+ u?
© [ cos0do @ 2 g
Solution
2 X 36 1_ 364
5 == - e O o =i
® fﬂ" =5 |4 6 6 3
d _adF_2
) [ wan =3 =3 3
2 27
(c)f c0s0d6:sin9| =0-0=0
24+ u? 24 1 u? 2
= = ne =4.2 _ 4
@[ * 4 du ‘£<u3 u)du 424l
= =22 lnu|1z

=(-2-22+1n2)—(-2-1+1n1)

1 3
AL g =g
3 In2+2 3 In2



Using substitution with the definite integral

In Section 14.1, we discussed the use of substitution to evaluate integrals in
cases that are not easily recognised. We established that

ff(u(x)) s dx = ff(u)du =Fu(x)) + ¢

When evaluating definite integrals by substitution, two methods are available.

Evaluate the indefinite integral first, revert to the original variable, then use
the fundamental theorem. For example, to evaluate

H
f tan®xsec?x dx
o
we find the indefinite integral

ftansxseczxdx . fusdu = %uﬁ = %tanﬁx

then we use the fundamental theorem

f!tanixseczxdx = Liansy|’ = l(»?)s =
o 6 o 6

Or we can use the following substitution rule for definite integrals
b u(b)
[P ax= [ au

Proof:
If F(x) is an antiderivative of f(x), then by the fundamental theorem

b
[ A s = Pl = Fus) - Futa)
Also

= Flu(b)) — Flu(a))

u(b)
ula)

u(b)
[ fwy du = Fw
‘u(a)
Therefore, to evaluate
3o,
j;) tan®xsec?x dx
letu = tanx = u(g) =3, ul0) = 0,and so

3

Frantxsectrds = [utdu—Lud 7 22
Ltanxsecxdx Ludu s“l, =2
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y=vVix+1

0

1 2.8 &4 58 7%

Figure 14.18 The area under the

cus
an

be

rve y = /Ax + 1 between x =2
dx=6

Area: 16.33

4 8 12 16 20 24 28 ¥

Figure 14.19 The area under the

curvey = Z\E between u = 9 and
u=25
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Example 14.22

6
Evaluate fz VIx ¥ Tdx

Solution

Let u = 4x + 1, then du = 4dx. The limits of integration are u(2) = 9,
and u(6) = 25. Therefore

25

6« > 7123/2)
L\/4x+1dgc—4f9 \/;du—4(3u A

(95 = )= =2
3

Note that, using this method, we do not return to the original variable of
integration. We simply evaluate the new integral between the appropriate
values of u.

Notice that the substitution u = 4x + 1 stretched the interval [2, 6] by a
factor of 4, and shifted it by 1 unit to the right. But the areas are the same.

Exercise 14.4

1. Evaluate each integral.

@ J v - axax ) ['sax

> 2
© f,%d‘ (@ fz(cosz— tan ) dt

7 s -
(&) f‘ %d}c ® fo cos 0dO
. 1
@ [ sinodo ®) [ (530 + 37 dx
) N 2ds
o [ 2au o [2&
25 2
W [ 2 dx O [ - @
z 1
(m) [ *3sec0do @) [ (67 + v dx

© G [ e @) [ Jaxdx (i) szli’vx\dx

B o
(p)f'l sin 2x dx (q) lﬁd:c

dx

2 1
@ [ e = edx ® [ =



N

@

'S

® LE dx

()f24+xZ

. Evaluate each integral.

_xidx
R

(a)

(c)

g tlnt

© f

3 Jarctan x
® f BETZ

3 3+cosx

In2 er
@ f n2e% + QdX

(k) jfvtanxseczxdx

4m g4
o) fﬂ; sl:z\/f ity

&
B dx
@] 9+ 4x?
@/ S(1l = sin39cos 36dE

(s) fas(3 + etn2)sec22¢ dt

(@) x*41,2]
(c) sec’x, E,%]

o

. Find the indicated derivative.

(@) —f L‘”dz

© —f L“'dz

(b) j; sin(‘l;lnx)dx

b
(d) fi‘Sx\/9 —Pdx
(f)f lnx
)j; xvl

n2/3) o-2x gy
n2 =

J
v )
[1)] j; 7x cosx?dx

()f

(P)f 3+xA

4*3)(“

(r) f:e“"“’cosﬂ)de

fm
(t) j; 4te’sinle’)dt

. Find the average value of each function over the given interval.

(b) cosx, [O, g]

(d) e™>,[0,4]

3sinx

d
b) 22, =

d [“sinu
(d)afb D gy
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cosy bx
et e
© f"’l+y L f5+t‘
— i xi 3
® Gl e Ll
e 1
5. Does the function F(x) = f cos( )dt have an extreme value?
0 40 2
6. (a) Find G giving your answer in terms of k.
b 3x + 2

(b) Given that f = 1, calculate the value of k.

SEpar )

59

Given that p, g € N, show that
1 1
[ 22— x2dx = [ xa1 - rdx
0 0

Do not attempt to evaluate the integrals.

2

Given that k € N, evaluate each integral:

.
(@) [x( - 0kdx (b) fo x(1 — 0kdx

52

Let Flx) = f:\/5t2 + 2dt, find:
(a) F3) (b) F'(3) () F"(3)

10. Show that the function

S

ﬂX):L i

is constant over the set of positive real numbers.

Integration by method of partial
fractions

In this section, we will integrate rational functions with polynomial

" ) . Lo x+1
denominators. For example, if we find the indefinite integral fxz o dx,
we first decompose the integrand into partial fractions (Section 2.6) and then

the integration process is straightforward.

X+ 1 a_ . b

Pt 5x+6 x+2 x+3

After solving for a and b we can perform the integration:



Xt 1
fz+5x+6 = (x+2 3)dX:*1n|x+2\+ln|x+3\+c
_ i |x+3
= ln|x+ 2| +c
Example 14.23
Find the indefinite integral f A ed| W dx
2t 4xt+4

Solution
Using partial fractions will make integration easier.
From Example 2.33 we know that

skl 3 s

X rdxtd xT2 (xt2P
Hence the integral can be rewritten as
Sximl! 7
= = ||==ake
fxz+4x+4 fx+2 f(x+2)z

These two integrals can be found by inspection, giving

o=l 7
B /A
x2+4x+4dx 31nlx + 2| x+2+c

Example 14.24

2

Find the indefinite integral f mdx

Solution

Factorising the denominator and separating fractions as we did in chapter 2,
we have:
2 1 a2,

W +2x2+2x X xP+2x+2

Hence, we can write the integral as

2 dx +2
fx3+212+2xdx:f77fx212x+2dx
s dldril
7f_7fx:+2x+2
_ 271 20ln ) _ dx
’fx Efx2+x2x+zd’° f(x+l)2+1

= In|x| = %ln(xz +2x +2) —arctan(x + 1) + C
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Example 14.25

5 A G = 17/
2 A CR2 AR 7 =

Find the indefinite integral f

Solution

From Example 2.32 we have

f B ar e il :f

+
2 AF S ar The= 6 S f

3 e f
2x—1 x+2 e
= %ln\Zx — 1 —Inlv+ 20 + 2Inlx + 31 + ¢
For IB Mathematics
fl'"‘“.“’“s"h“’"f?"“l A few cases of partial fractions
raction to be rewritten

as partial fractions will Denominator is quadratic - it factorises into two distinct linear factors,

Eoemehligitatl i and the numerator p(x) is a constant or linear
of the denominator will
not be greater than 2; px) A B

+
(ax+bllex+d)  ax+b cox+d

factors will be at most
two distinct linear terms,
"“_":;hi:“;f]“l”b":lg:: Denominator is quadratic - it factorises into two repeated linear factors,
numerator will be les
than the degree of the and the numerator p(x) is a constant or linear

denominator.

¥ _ A B
lax +b? ax+b  (ax+b)?
The last case is unlikely i . o o L
since it would require 1 Denominator is cubic - it factorises into three distinct linear factors,
factorisation of a cubic, and the numerator p(x) is a constant, linear, or quadratic
unless it i given in
factorised form. px) A B C

-— =8 4+ 2 4=
(ax +bex +dex+f) ax+b cox+d ex+f

real coefficients can only have factors that are linear or quadratic.

1. Evaluate each integral.

I Remember that a consequence of the fundamental theorem of algebra i that any polynomial with

o [ e
ON e @ [ty
oI e 0 [RrECL
® [Fr o ® [
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3x+4 . 12
B [t O o=

2 Xl 2
® fx3 +xdx o s 4p 3xdx
Bkt 2 2iar s
(m)f 3+6x () fx3+8x
Areas

We have seen how the area between a curve defined by y = f(x) and the x-axis
b
can be computed by the integral l f(x) dx on an interval [a, b] where f(x) = 0.

In this section, we shall use integration to find the area of more general regions
between curves.

Areas between curves of functions of the form y = f(x)

and the x-axis

If the function y = f(x) is always above the x-axis, finding the area is a

b
straightforward computation of the integral L flx) dx.

Example 14.26

Find the area between the curve f(x) = x> — x + 1 and the x-axis over the
interval [—1, 2]

Solution

This area is:
2 4 a 2

f (x3*x+1)dx:[%*x7+x] :(472+2)7(%7%71) 2% Figure 14.20 Usinga GDC to
=l =il find the area
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|dx
3.614515769

Figure 14.21 Itis best to use
aGDC

734
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Using our GDC, the area in Example 14.26 is found by simply choosing the
MATH menu, then the f dx menu item, then typing in the function with the
integration limits.

In some cases, we will have to adjust how to work. This is the case when the
graph intersects the x-axis. Since we are interested in the area bounded by
the curve and the interval [a, b] on the x-axis, we do not want the two areas
to cancel each other. This is why we have to split the process into subintervals
where we take the absolute values of the areas found and add them.

Example 14.27

Find the area under the curve
flx) = x*— x — 1and the
x-axis over the interval [—1, 2]

Solution

As we see from the diagram, a part of the graph is below the x-axis, and
its area will be negative. If we try to integrate this function without paying
attention to the intersection with the x-axis, here is what we get:

This integration has to be split before we start. However, this is a function
where we cannot find the intersection point. So, we either use a GDC to find
the intersection or we just take the absolute values of the different parts of
the region. This is done by integrating the absolute value of the function:

Area = Lb‘f(x)| dx

As we said earlier, this is not easy to find given the difficulty with the
x-intercept. It is best if we use a GDC.

2

Hence, Area = f x3 — x — 1| dx =~ 3.6145




Example 14.28

Find the area enclosed by the graph of the function f{x) = x* —4x2 + x + 6
and the x-axis.

Solution

This function intersects the x-axis at three points where x = —1, 2, and 3.
To find the area, we split it into two and then add the absolute values:

area= [ |feolax= [ fodx+ [ (f)ax

2 3
:fil(x3*4xz+x+6)dx+fz(7x3+4x2*x*6)dx

xl 413 xZ | X‘ 4x3 xZ |3
=X -2 4Z 4 + a2

x5 sl T G
b,

1 12 s

es

In some practical problems, we may have to compute the area between two
curves. Let f(x) and g(x) be functions such that f(x) = g(x) on the interval [a,
b] (Figure 14.22). We do not insist that both functions are non-negative.

Figure 14.22 Area between two curves
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To find the area of the region R between the curves from x = atox = b,
we subtract the area between the lower curve g(x) and the x-axis from the
area between the upper curve f(x) and the x-axis; that is

Areaof R = f:f(x)dx - ng(x)dx: fab[ﬂx) — ¢ dx

Figure 14.23 Areas under functions fand g

1Iff(x) and g(x) are functions such that flx) = g(x) on the interval [a, b], then the area between
b
the two curves is given by A = D[ flx) — g(x)] dx

This fact applies to all functions, not only positive functions. These facts are
used to define the area between curves.

Example 14.29

Find the area of the region between the curves y = x*and y = x> — x
on the interval [0, 1].

Solution
y = x*appears to be higher than y = x> — x with one intersection at x = 0.
Thus, the required area is

@ A _ B

1 1
= 3 () =A Al D
A fo[x (62 = Al e

In some cases we must be very careful how we calculate the area. This is the
case where the two functions intersect at more than one point.
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Example 14.30

Find the area of the region bounded by the curves y = x* + 2x?
andy = x? + 2x.

Solution
The two curves intersect when:

5P AR B = 2 AR A = 6 AR 5P = D= 0) = sk AR A= 1 =0
That is, when x = —2,0, or 1

The area is equal to:

o

Plotz Plot3

0 1 =
A= e+ 2x— G+ 20l [ [+ 20— 0+ 202 e NS 4l
\Y3E abs (Y1-Y2)
0 : § ~\Yim
:f [x3+x2*2x]dx+f[*x2+2x*x3]dx R
-2 0
N
3
= Xf x? = [Y3=abs (Y1-¥2)

x=—2 1 v=0

This discussion leads us to stating the general expression we should use in
evaluating areas between curves.

If f(x) and g(x) are functions that are continuous on the interval [a, b],

then the area between the two curves is given by ‘
A b o J£ (x)dx=3.083523
- l |f(x) g(x)| Figure 14.24 Usinga GDC
to find the area between two
We can do this on our GDC. curves
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Areas along the y-axis
b4

To find the area enclosed by
y=l—-xandy?=x+1,
it is best to treat the region
between them by regarding
x as a function of y

(Figure 14.25).

The area of the shaded
region can be calculated
using the integral:

Figure 14.25 Area between two curves expressed by
regarding x as a function of y

A0 = [ Jit=9 = (2= 1]y

o B yz },3‘
—£2|2—y—y2| dy—‘b—;—;

=2
2 2
If we used y as a function of x, then the calculation would involve calculating
the area by dividing the interval into two: [—1, 0] and [0, 3].

In the first part, the area is enclosed between y = Vx + 1andy = —vVx + 1,
and the area in the second part is enclosed by y = 1 — xand y = —Vx + 1:

Ax) = zf: /x+ 1dx+ f;((l —x—(=Vx+1)dx

Exercise 14.6

1. Find the area of the region bounded by the given curves. Sketch the
region and then compute the required area.

©) =iy by =7 =P (b)y:cosx,y:xfg,x:—ﬂ-

© y=2xy=x*-2 @y=x\y=x*-2x=1

(e) y=x5y=x (@) yy=sr=ety =2
(@) y=2x—x%y=x—x2 (h) y=sinx,y =2 — sinx (one period)
i) y=%y= = T
@) y=5y=vx.x=9 G) y=Tgy=3%—x
il il
(k)y:;,y:;,xzs

(1)) y:251nx,y:‘/§tanx,f%sx£

LE]



(m)y=x—1,92=2x+6 (n)x=2y%x=4+y>

(0) &x+y?=12,y=x P x—y=7x=2y2—y+3
(@ x=py,x=2y2—y—2

(r) y=x*+2x%y=x>—2x,x= —3,andx =2

(s) y = sec’x,y = secxtanx,x = *g,andx:%r

() p=adar ibyp=(Eaar 1bP

(W y=x+xy=3—x

AEzar il

@) p=d=tmy=2

N

. Find the area of the shaded region.

@

. Find the area of the region enclosed by y = e*, x = 0, and the tangent to
pEgteia=1l

'S

. Find the area of the inside of the ‘loop’ in the graph of the curve
y2=xx+3)

v

. Find the area enclosed by the curve y? = 2x? — 4x*

-y

. Find the area of the region enclosed by x = 3y? and x = 12y — y> — 5

N

. Find the area of the region enclosed by y = (x — 2)? and y = x(x — 4)2

8. Find a value for m > 0 such that the area under the graph of y = e2*
over the interval [0, m] is 3 square units.

©

. Find the area of the region bounded by y = x* — 4x2 + 3x and the x-axis.

1V:W4 Volumes with integrals

The underlying principle for finding the area of a plane region is to divide
the region into thin strips, approximate the area of each strip by the area of
a rectangle, and then add the approximations and take the limit of the sum
to produce an integral for the area. The same strategy can be used to find the
volume of a solid.
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The idea is to divide the solid that stretches over an interval [a, b] into thin
slices, approximate the volume of each slice, add the approximations, and take
the limit of the sum to produce an integral of the volume.

‘We start by taking cross-sections perpendicular to the x-axis, as shown in
Figure 14.26. Each slice will be approximated by a solid whose volume will
be equal to the product of its base times its height (Figure 14.27).

Figure 14.26 Taking a cross-section Figure 14.27 Volume = area of base X height
perpendicular to the x-axis

Cross-section
with area A(x)

If we call the volume of the slice v; and the area of its base A(x), then

v, = A(x) -h = A(x) - Ax;

74 Planeatx,_

| Ax,=x—x,
neatx
X,

‘The cylinder’s base ' x

Figure 14.28 Subintervals of [a, b] Figure 14.29 A cylindrical strip

Using this approximation, the volume of the whole solid can be found by

Ve Y AG)Ax;

i=1

Taking the limit as » increases and the widths of the subintervals approach zero
yields the definite integral

n b
V= lim > A)AY, = [ A dx
= a

If we place the solid along the y-axis and take the cross-sections perpendicular
to that axis, we will arrive at a similar expression for the volume of the solid:

n b
V=lim> AG)Ay = ["am @y
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Example 14.31

Consider the solid formed when the graph of the parabola y = 2x over
[0, 4] is rotated around the x-axis through an angle of 277 radians as shown
in the diagrams.

Solution

The cross-section is a circular disk whose radius is y = V2x. Therefore
A(x) = mR? = m(V2x)? = 2mx

The volume is then

. . 2
v=[Awd=[ chdx:211]—[ = 167 cubic units.
) ) 2

4
0

Ifthe region bounded by a closed interval [a, b] on the x-axis and a function f(x) is rotated about
the x-axis, the volume of the resulting solid of revolution is given by:

v [ wlfopax

Ifthe region bounded by a closed interval [¢, d] on the y-axis and a function g(y) i rotated about
the y-axis, the volume of the resulting solid of revolution is given by:

v= ["rlety)ay

/. ¥y

<>

d

=& 50)

Ay

c

o x - 0o  x

Example 14.32 is a special case of the general process for finding volumes of
solids of revolution.

M4
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Example 14.32

Find the volume of a sphere with radius R = a.

Solution

If we place the sphere with its centre at the origin, then the equation of the
circle is

x2ty2=a2=y=*tya®—x2
% Y

AX) = (@ — )

Ax

The cross-section of the sphere, perpendicular to the x-axis, is a circular disk
with radius y; so the area is

A(x) = 7R* = my? = wla? — ¥’ = ma? — x2)

So, the volume of the sphere is

Ifwe want to rotate the right-hand region of the circle around the y-axis, then the cross-section of the
sphere, perpendicular to the y-axs, i a circular disk with radius . Solving the equation for x instead:

X2+ yt=a2 = x=* /a2 — ), and hence the area is

A() = mR? = mx? = w2 = y2)? = ma? — y2), and the volume of the sphere is

.
v=Let=rm=oy=] o 5)oe5)

= ﬂ(z,f = zﬁ) Wi
3 5

‘The same result as given in Example 14.32



Example 14.33

Find the volume of the solid
generated when the region enclosed
byy=V3x,x=3,andy = 0is

Solution
3
V= [ (fopdx
= #Lz(\/ﬂ)zdx

213
:37[’6_] — 2
21 S

Example 14.34

Find the volume of the solid generated when the region enclosed by
y =3x,y = 3,and x = 0 is revolved about the y-axis.

Solution

Here, we first find x as a function of y.
2
y=V3x =>x= y?, the interval on the y-axis is [0, 3]

So, the volume required is

&) }'22 a3 ‘11}"53 27
= S == 4 =as [ e L
v fu"(s)dy gfo}'dy 9[5],, 5

Consider the region R between two curves, y =f(x) and y = g(x), from x =a
to x = b where f(x) > g(x). Rotating R about the x-axis generates a solid of
revolution S. How do we find the volume of §?

743



Integral calculus 1

x)
y Bl y y
80
A
0 T x5 x 0 0 x

Figure 14.30 Generating washers

Consider an arbitrary point x in the interval [a, b]. The segment AB represents
the difference f(x) — g(x). When we rotate this slice, the cross-section
perpendicular to the x-axis is going to look like a washer whose area is:

‘ A=aiR =) = m((f(x) — ()P

So, the volume of S is

V= f“bA(x)dx = nf"b((ﬂx))z — (g(0)?) dx

Area = (R - )

If we are rotating about the y-axis, a similar formula applies.
Figure 14.31 Area of a typical

d
washer V=7 (b)) - law)) dy

‘To understand the washer more, we can think of itin the following manner. Let P be the solid generated by rotating the curve
= flx) and Q be the solid generated by rotating the curve y = g(x). Then § can be found by removing the solid of revolution
‘generated by y = ix) from the solid of revolution generated by y = g(x)

i y 57

fx),
&)

O‘N\}x 0 x

=
=

Volume of § = volume of P — volume of Q, which justifies the formula:

v=r[(feoPas [ oPar = m [ (e ~ (e ax

Example 14.35

The region in the first quadrant between f(x) = 6 — x*>and h(x) = %
5

is rotated about the x-axis. Find the volume of the generated solid.



Solution

The rotated region is shown in the diagram. f(x) is larger than h(x) in this
interval. Moreover, the two curves intersect at:

L=t = =0 =0

Hence the volume of the solid of revolution is:
2 G2
- _ 22 (S
venf (o= () )ax
2
= #fi(x“f 12x2+36*§)dx
V2 xt
5 2
= #[x— —4x3 + 36x + ﬂ]
5 3x% 5

_ 736 — 5122 y
S
15

An alternative me volumes by cylindrical shells P

Consider the region R under the curve y = f(x). Rotate R about the y-axis. We Figure 1432 Divide R into vertical
divide R into vertical strips, each of width Ax (Figure 14.32). When we rotate strips of width Ax

a strip around the y-axis, we generate a cylindrical shell of thickness Ax and

height f(x) (Figure 14.33). To understand how we get the volume, we cut the i
shell vertically as shown and unfold it. The resulting rectangular parallelepiped f(l)
has length 277x, height f(x), and thickness Ax (Figure 14.34). |

—mx

So, the volume of this shell is
Figure 14.33 Cylindrical shell

Av; = length X height X thickness = (2mx) X f) X Ax

The volume of the whole solid is the sum of the volumes of these shells as the ﬁﬂx)

number of shells increases, and consequently 27x Ax
n b Figure 14.34 Resulting rectangular
V= Jim Y Av, = lim Y m X fo) X Ax =27 [ xfoods pasleiepiped
=00 1 Ax~o A

In many problems involving rotation about the y-axis, this would be more
accessible than the disk-washer method.
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Example 14.36

Find the volume of the solid generated
when we rotate the region under

2
(x) = —=——,x = 0,and x = 3 about
i il 4p g

the y-axis.

Solution

Using the shell method, we have

V:wa:xx dx

il 3 o2

3 10
=2m 2% dx:27rf dz
0 il 552 o

=27(lnul}’ = 27In10

Exercise 14.7

il

Find the volume of the solid obtained by rotating the region bounded
by the given curves about the x-axis. Sketch the region, the solid, and a
typical disk.

(a)y:3*§,y:0,x:2,x:3
(b)y=2-x%y=0

(c) y:m,yzo,x:LXZS
(d)y:%,yZO,x:Lx:3
(&= 3=ty =0 =10

(f) y=Vsinx,y=0,0<x<m
(g)y:m,yzo,*gixg
(h)y=4—-x%4y=0

@) y=x*+t2x+1,y=0x=1

wls

() y=—tx— A y=x

= =W s
(k) y =secx,x 4,x 3 0
) p=ll=eap=caaril



(m)y =36 —x%,y=4
()X =y, Y= 2%

(o) y:sinx,y:cosx,x:g

=

)

(P y=2x>+4y=xx=1,x=3

(@ y=Vx"+1,y=0x=1x=3

() y=16—xy=3x+12,x=—1
1, 5

O) p=oi=5=c

Find the volume resulting from a rotation of the region shown in the
diagram about:

(a) the x-axis
(b) the y-axis.
Find the volume of the solid obtained by rotating the region bounded

by the given curves about the y-axis. Sketch the region, the solid, and a
typical disk/shell.

Figure 14.35 Diagram for
question 2

(@ y=x4y=0x=1x=3
) y=xy="V0—x5x=0
(© y=x>—4x2+4x,y=0

(d)y:\/§,x:5,x:11,y:0

2
=x2y=—=_
(&) y=x%y T+x2
(f) y=Vx2+2,x=3,y=0,x=0
7x

=~ 2370
(€457 Ve

(h)y:sinx,y:cosx,x:%,x:

IE

i) y=2x2+4,y=xx=1x=3
() y=sinlx?,y=0,x=0,x= 7

() y=5-x%y="5—14x
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Modelling linear motion

So far, our mathematical models considered the motion of an object only along
a straight line. For example, projectile motion (e.g. a ball being thrown) is often
modelled by a position function that simply gives the height (displacement) of
the object. In this way, we are modelling the motion as if it was restricted to a
vertical line.

In this section, we will again analyse the motion of an object as if its motion
takes place along a straight line in space. This makes sense only if the mass (and
thus, size) of the object is not taken into account. Hence, the object is modelled
by a particle whose mass is considered to be zero. This study of motion, without
reference either to the forces that cause it or to the mass of the object, is known
as kinematics.

Displacement and total distance travelled

Recall from Chapter 13 that given time t, displacement s, velocity v, and
acceleration a, we have:
vzéanda:g alsou:i(é):d—zs
dt dr’ de\dt)  de
It is important to understand the difference between displacement and distance
travelled. Consider a couple of simple examples of an object moving along the
X-axis.

Assume that the object does not change direction during the interval 0 < t < 5.
If the position of the object at t = 0 is x = 2, and at t = 5 its position is x = —3,
then its displacement, or change in position, is —5 because the object changed
its position by 5 units in the negative x-direction. This can be calculated by:
(final position) — (initial position) = —3 —2 = —5

However, the distance travelled would be the absolute value of displacement,
calculated by |final position — initial position| = |—3 — 2| = 5.

Assume that another object’ initial and final positions are the same as in the
first example; that is, at t = 0 its position is x = 2, and at t = 5 its position is

x = —3. However, the object changed direction in that it first travelled to the

left (negative velocity) from x = 2 to x = —5 during the interval 0 < t < 3,

and then travelled to the right (positive velocity) from x = —5tox = —3.

The object’s displacement is —5, the same as in the first example because its

net change in position is just the difference between its final and initial positions.
However, it’s clear that the object has travelled further than in the first example.
But, we cannot calculate it the same way as we did in the first example. We

will have to make a separate calculation for each interval where the direction
changed. Hence, total distance travelled = |—5 — 2| + |=3 — (=5)| =7 +2=09.



3<t=5e@
0=t=3e<
—§ k= - =f & T 2 3 4 3 *

Figure 14.36 Travelled distances

o Thevelocity v = % of a particle is a measure of how st it is moving and of it direction of
motion relative to a fixed point.
# The speed || ofa particle is a measure of how fast it is moving that does not indicate direction.

‘Thus, speed s the magnitude of velocity and is always positive.

+ The acceleration a = % ofa particle is a measure of how fast it velocity is changing.

Example 14.37

The displacement s of a particle on the x-axis, relative to the origin, is given by
the position function s(f) = —# + 6t where s in centimetres and  is in seconds.

(a) Find a function for the particle’s velocity v(#) in terms of ¢. Graph the
functions s(t) and v() on separate axes.

(b) Find the particle’s position at the following times: ¢ = 0, 1, 3, and
6 seconds

(c) Find the particle’s displacement for the following intervals: 0 < t < 1,

1<t<33<t<6and0<t<6

(b) Find the particle’s total distance travelled for the following intervals:
OstsL1sts33sts6ad0st<6

Solution
=L -
(@) vi)=—(—2+6t) = —2t+6
dt
Position function: s(t) = —# + 6t Velocity function: v(t) = s'(t) = =2t + 6
s v
10 10
5 5
4190 1 2 3 4 5 6 7 -19[ 1 2 3 6 74
-5 -5
—10 —10

(b) The particle’s position at:
=0is 5(0) = —(0)2 + 6(0) = 0cm

t=1liss(l) = —(1)2 + 6(1) = 5cm
t=3iss(3) = —(3)2+6(3) =9cm
t=6iss(6) = —(6)2 + 6(6) = 0cm
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(c) The particle’s displacement for the interval:
0 <¢= L: A position = s(1) — s(0) =5 — 0 = 5cm
1 <t=3: Aposition = 5(3) — s(1) =9 — 5= 4cm
3 <1t<6: A position = 5(6) — 53) =0 — 9= —9cm
0 =<t=6:A position = 5(6) — s0) =0 — 0= 0cm
This last result makes sense considering the particle moved to the right

9 cm then at t = 3 it turned around and moved to the left 9 cm, ending
where it started - thus, no change in net position.

(d) The particle’s total distance travelled for the interval:
O<t<1lis|s(1) —s0] =15-0l=5
1<t<3is|s(3) — s =19 — 5| =4
3<t<6isls6) —sBI=10—-9=1-91=9

The object’s motion changed direction (velocity= 0) at t = 3

0=<t=<6is|s(3) — sO) + |s(6) — s(3)| =19 — 0] + 10 — 9l
=9+9=18

Since differentiation of the position function gives the velocity function

(i.e. v= E), we expect that the inverse of differentiation (integration) will lead

de

us in the reverse direction - that is, from velocity to position. When velocity is
constant, we can find the displacement with the formula:

displacement = velocity X change in time
If we drove a car at a constant velocity of 50 km h™! for 3 hours, then our
displacement (same as distance travelled in this case) is 150 km. If a particle
travelled to the left on the x-axis at a constant rate of —4 units s~! for
5 seconds, then the particle’s displacement is —20 units.

G The velocity-time graph (Figure 14.37) depicts an object’s motion with a

wi) =3 constant velocity of 5cms~! for 0 < < 3. Clearly, the object’s displacement is
5cms™! X 3s = 15cm for this interval.
_ The area under the velocity curve for a certain interval is equal to the
0 12 37 displacement for that interval. We can argue that just as the total area can be
Figure 14.37 Velocity-time found by summing the areas of narrow rectangular strips, the displacement can
graph be found by summing small displacements (v - Af). Consider:

displacement = velocity X change in time = s = v- At=s=v-dt

‘We already know that when fix) = 0, the definite integral fabf(x) dux gives the
area between y = f(x) and the x-axis from x = a to x = b. And if f(x) < 0, then
f“bf(x) dx gives a number that is the opposite of the area between y = f(x) and
the x-axis from a to b.
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Given that v(f) is the velocity function for a particle moving along a line, then:

v
| vt dt gives the displacement from £ = atot = b

!
|1ttt gives the totaldistance travelled from ¢ = ato £ = b

Let’s apply integration to find the displacement and distance travelled for the
two intervals 3 < t < 6 and 0 < t < 6 in Example 14.37

For3<it=<é6:
6 6
Displacement = [ (=2t + 6idt =~ + 6:|3 —0-9=—9
6 6
Distance travelled = f} (=2t + 6)ldt = | -2 + 6ﬂ|3 =10-91=9
For0<t=<6:
6 6
Displacement = [ (=2t + 6idt =~ + 6t|0 -0
2, 6
Distance travelled = f (=2t + 6)|dt + f (=2t + 6)|dt
0 3

(particle changed direction at t = 3)
3 6
=l-2+ 6t||Q + -2+ 6z||3 =9+9=18

Example 14.38 Note when usinga GDC

The function v(f) = sin(7rt) gives the velocity in ms~! of a particle moving ::z"’“;::;“‘::‘;“&g"
need to separate

along the x-axis. integrals as we did here.

(a) Determine when the particle is moving to the right, to the left, and stopped.

J¢]-2x+6|ax
If it stops, determine if it changes direction at that time. e 18
(b) Find the particle’s displacement for the time interval 0 < ¢ < 3. 0
(c) Find the particle’s total distance travelled for the time interval 0 < t < 3. =]

Solution

(a) v(t) =sin(wt) = 0=sinlk - m) = 0fork€e Z=>mt=kn=>t=kkeZ
for0 < t=3,t=0,1,2,3. Therefore, the particle is stopped at t = 0, 1, 2, 3.
Since t = 0 and ¢ = 3 are endpoints of the interval, the particle can
change direction onlyatt = 1ort = 2.

A s o) -

= direction changes at t = 1

A s =)=

= direction changes again at t = 2
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3 1 3
—f sin(art) dt = 7—cos(-n-t)|
0 o

(b) displacement =

*%cos@n) = (7%cos(0)) = %z 0.637 metres
 § 2 3

(¢) total distance travelled = [ Isinarn|dt + [ Isin(olde + [ lsin(oldt
0 1 2

2] a2 26
= |;| t | ;| & |7r = 7~ 1.91 metres
Note that in Example 14.39, the position function is not known precisely.

The position function can be obtained by finding the antiderivative of the
velocity function.

st = fv(t) dt= fsin(m) dt= —Tlrcos(m) +C

‘We can determine the constant of integration ¢ only if we know the particle’s
initial position (or position at any other specific time). However, the particle’s
initial position will not affect displacement or distance travelled for any interval.

Position and velocity from acceleration

If we can obtain position from velocity by applying integration, then we can also
obtain velocity from acceleration by integrating. Consider the next example.

Example 14.39

The motion of a falling parachutist is modelled as linear motion by
considering that the parachutist is a particle moving along a line whose
positive direction is vertically downwards. The parachute is opened at t = 0,
at which time the parachutist’s position is s = 0. According to the model,
the acceleration function for the parachutist’s motion for t > 0 is given by:

alh) = —54e 15t
(a) At the moment the parachute opens, the parachutist has a velocity of

42ms~!. Find the velocity function of the parachutist for t > 0.
‘What does the model say about the parachutist’s velocity as t — oo?

(b) Find the position function of the parachutist for t > 0.

Solution
(@) w0 = [atn dt = [(~54e-15) d
= — 1 =15¢
54(7L S)e 4@
S SccalbtiiC



Since v =42 whent = 0,then42 = 36e’ + C=42=36+C=C=6

Therefore, after the parachute opens (¢ > 0) the velocity function is
WD) = 36e715 + 6

Since lim =% = lim —— = 0, thenas £ — 0, Jim v(f) = 6ms~" The limit of the velocity
— Ben e a5t — oo, fora flling
object, is called the
(b) stt) = f i) dt = f (36e 15 + 6)dt terminal velocity of the
object. While the limit
= 36( 1 )371»51 +6t+C t— 00 is never attained
=ik as the parachutist
— —24e- 15 + 6t + C eventually lands on the
ground, the velocity gets
Since s = 0 when t = 0, then 0 = —24e® + 6(0) + C= 0= —24 + C cestoifioatl
velocity very quickly.

= (0= For example, after just

e S 8 ds, the velocity is
Therefore, after the parachute opens (¢ > 0), the position function is V(;fcfnsse,,i&f f? s

s() = —24e 713t + 6t + 24 ~6.0002ms"!

iformly accelerated moti

Motion under the effect of gravity in the vicinity of Earth (or other planets) is
an important case of rectilinear motion. This is called uniformly accelerated
motion.

If a particle moves with constant acceleration along the s-axis, and if we know
the initial speed and position of the particle, then it is possible to have specific
formulas for the position and speed at any time .

Assume acceleration is constant; that is, a(t) = a, v(0) = v, and s(0) = s,.
wt) = fﬂ([)d[ = at + ¢; however, we know that v(0) = v, so
W0)=vy=a X0+ c= c=v,hencevt) = at + v,
st = [viodt = [(at + v)dt = %at’ “+ vyt + ¢, and, as above, substituting
5(0) = s, into the equation, we have
sty = Loy Vot + so

When this is applied to the free-fall model (s-axis vertical), then
vt) = —gt + vyand

st = —%gzz + vt + 5, where g = 9.8 ms 2

Example 14.40

A ball is hit directly upwards from a point 2 m above the ground with initial
velocity of 45 m s~!. How high will the ball travel?
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Solution

vt) = —9.8t + 45

st = —%(9.8) {24 456+ 2= —49¢ + 45t + 2
The ball will rise until v(f) = 0, = 0 = —9.8¢ + 45, = t ~ 4.6'5
At this time

s(4.6) = —4.9(4.6)> + 45(4.6) + 2~ 105.32m

Exercise 14.8

1. The velocity of a particle along a rectilinear path is given by each
equation for v(f) in ms~!. Find both the net distance and the total
distance it travels between the times t = a and t = b.

(@) v(t) =t2— 11t +24,a=0,b = 10
®) =1 L =@l h= il

(c) v(z):sinzt,a:o,b:g
(d) v(t) =sint + cost,a=0,b=
(e) v(t) =t*— 812+ 15t,a=0,b=6

() (1) —sm( 7 ) 4t cos(m) a=0b=1

2)

)

The acceleration of a particle along a rectilinear path is given by each
equation for a(t) in ms~2 and the initial velocity v, in ms~! is also given.
Find the velocity of the particle as a function of £, and both the net
distance and the total distance travelled between times t = a and t = b.
(@) at) =3,v%,=0,a=0,b=2
(b)fa)=26=4y,=13lal=10;b'=3

() a(8)= sinyvp = 0)a = 0}b— 32"
d) a(t) = t+1,vo—2,a:0,b:4

A | - =
(e) a(t) = 6t TEE —— ¥ =2,a=0,b

@

. The velocity and initial position of an object moving along a coordinate
line are given. Find the position of the object at time £.

(a) v=9.8t+5,5(0) =
(b) v=32t—2,5(0.5) =4
(c) v= sin‘n't s(0)=0

1
S A s i
) v= [ 2t —2,s(—1) = 3



4. The acceleration is given as well as the initial velocity and initial position
of an object moving on a coordinate line. Find the position of the object
at time f.

(a) a= e, v(0)=20,s(0)=5
(b) a=19.8,v(0) = —3,s(0) =0
(¢) a = —4sin 2t,v(0) = 2,5(0) = —3

(d) a= %cos%ﬁ,v(o) =0,s0) = —1

e

An object moves with a speed of v(f) m s~! along the s-axis. Find the
displacement and the distance travelled by the object during the given
time interval.

(@) v(t) =2t —40<t<6
(b) v(t) = [t —3;0st<5
© vt) =8 —-32+260<t<3

) v =VE—2,0<t<3

-y

. An object moves with an acceleration a(f) ms~2 along the s-axis.
Find the displacement and the distance travelled by the object during
the given time interval.

@) a)=t—2,v,=0,1<t<5

1
1,
Gt+1 °

(©) al)=—2,m=31<t<4

(b) at) = =20=t=3

B

The velocity of an object moving along the s-axis is v = 9.8t — 3

(a) Find the object’s displacement between ¢ = 1 and t = 3 given that
s(0) =5

(b) Find the object’s displacement between ¢ = 1 and t = 3 given that
s(0) = -2

(c) Find the object’s displacement between ¢ = 1 and t = 3 given that
s(0) =5

*

The displacement s metres of a moving object from a fixed point O at
time ¢ seconds is given by s(f) = 50t — 10£> + 1000.

(a) Find the velocity of the object in ms~1.

(b) Find its maximum displacement from O.
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Figure 14.38 Graph for
question 1

b4

olys

Figure 14.39 Diagram for
question 2

»

0 1 a

Figure 14.40 Diagram for
question 3
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9. A particle moves along a line so that its speed v at time # is given by

st o=t<l1
N (2

where ¢ is in seconds and v is in cm s~ . Estimate the time(s) at which
the particle is 4 cm from its starting position.

10. A projectile is fired vertically upwards with an initial velocity of 499 ms~!
from a platform 150 m high.

(a) How long will it take the projectile to reach its maximum height?
(b) What is the maximum height of the projectile?

(c) How long will it take the projectile to pass its starting point on the
way down?

(d) What is the velocity of the projectile when it passes the starting
point on the way down?

(e) How long will it take the projectile to hit the ground?
(f) What will its speed be at impact?

pter 10 practice questi

1. The graph in Figure 14.38 represents the function
fix—pcosx,peN.
Find:
(a) the value of p
(b) the area of the shaded region.

i

2. The diagram in Figure 14.39 shows part of the graph of y = ¢
(a) Find the coordinates of the point P, where the graph meets the
y-axis.

The shaded region between the graph and the x-axis, bounded by
x = 0and x = In 2, is rotated through 360° about the x-axis.

(b) Write down an integral that represents the volume of the solid
obtained.

(c) Show that this volume is .
3. The diagram in Figure 14.40 shows part of the graph of y = % 5

The area of the shaded region is 2 units.

Find the exact value of a.



4. (a) Find the equation of the tangent to the curve y = In x at the point
(e, 1), and verify that the origin is on this line.
(b) Show that (xInx — x)’ = Inx
(c) The diagram shows the region enclosed by the curve y = In x,
the tangent in part (a), and the line y = 0.

Figure 14.41 Diagram for
question 4

Use the result of part (b) to show that the area of this region is % @=1

e

The main runway at Concordville airport is 2 km long. An aeroplane,
landing at Concordyville touches down at point T and immediately starts
to slow down. The point A is at the southern end of the runway.

A marker is located at point P on the runway.

Not to scale

As the aeroplane slows down, its distance, s, from A, is given by
s =c+ 100t — 4
‘where t is the time in seconds after touchdown, and ¢ metres is the
distance of T from A.
(a) The aeroplane touches down 800 m from A4, (i.e. ¢ = 800).

(i) Find the distance travelled by the aeroplane in the first
5 seconds after touchdown.

(ii) Write down an expression for the velocity of the aeroplane at
time ¢ seconds after touchdown, and hence find the velocity
after 5 seconds.

The aeroplane passes the marker at P with a velocity of 36 ms~!.

Find:

(iii) how many seconds after touchdown it passes the marker

(iv) the distance from P to A.

(b) Show that if the aeroplane touches down before reaching point P,
it can stop before reaching the northern end, B, of the runway.

o

(a) Sketch the graph of y = wsinx — x, —3 < x < 3, on millimetre
square paper, using a scale of 2 cm per unit on each axis.
Label and number both axes and indicate clearly the approximate
positions of the x-intercepts and the local maximum and minimum
points.

(b) Find the solution of the equation 7rsinx — x = 0, x > 0.

(c) Find the indefinite integral f (77 sin x — x)dx and hence, or

otherwise, calculate the area of the region enclosed by the graph,
the x-axis, and the line x = 1.
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q . _ 1
7. Figure 14.42 shows the graph of the functiony = 1 + 5,0 <x<4.

Find the exact value of the area of the shaded region.

e

Note that radians are used throughout this question.

(a) (i) Sketch the graph of y = x? cos x, for 0 < x < 2, making clear the
approximate positions of the positive intercept, the maximum
point, and the endpoints.

Figure 14.42 Diagram for (ii) Write down the approximate coordinates of the positive
Question 7 x-intercept, the maximum point and the endpoints.

(b) Find the exact value of the positive x-intercept for 0 =< x < 2.

Let R be the region in the first quadrant enclosed by the graph and the
x-axis.
(c) (i) Shade R on your sketch.
(ii) Write down an integral which represents the area of R.
(d) Evaluate the integral in part (c) (ii), either by using a graphic display

calculator or by using:

%(xzsinx + 2x cosx— 2 sinx) = x>cosx.

<
S
©

. Note that radians are used throughout this question.
C, The function f s given by f(x) = (sin x)? cos x

X Figure 14.43 shows part of the graph of y = f(x).

The point A is a maximum point, the point B lies on the x-axis, and the
point C s a point of inflection.

Figure 14.43 Diagram for . X

Gieston’ (a) Give the period of

(b) From consideration of the graph of y = f(x), find the range of f,
accurate to 1 significant figure.

() (i) Findf'(x)

(ii) Hence, show that at the point A, cos x = v‘g

(iii) Find the exact maximum value.
(d) Find the exact value of the x-coordinate at the point B.
() () Find [fiodx

(ii) Find the area of the shaded region in the diagram.

(f) Given that f"(x) = 9(cos x)* — 7 cos x, find the x-coordinate at the
point C.
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Note that radians are used throughout this question.
(a) Draw the graph of y = 7 + x cos x, 0 < x < 5, on millimetre square
graph paper, using a scale of 2 cm per unit. Make clear:
(i) the integer values of x and y on each axis
(ii) the approximate positions of the x-intercepts and the turning
points.
(b) Without the use of a calculator, show that 7 is a solution of the
equation 77 + x cosx = 0
(c) Find another solution of the equation 7 + x cos x = 0
for 0 = x < 5, giving your answer to 6 significant figures.
(d) Let R be the region enclosed by the graph and the axes for
0 =< x < . Shade R on your diagram, and write down an integral
which represents the area of R.
(e) Evaluate the integral in part (d) to an accuracy of 6 significant
figures. If considered necessary, you can make use of the result

d
—(xsinx + cosx) = x cos x
dx

. Figure 14.44 shows the graphs of fix) = 1 + e* and g(x) = 10x + 2,

OE=P=1%5;
(a) (i) Write down an expression for the vertical distance p between
the graphs of fand g.
(ii) Given that p has a maximum value for 0 < x < 1.5, find the
value of x at which this occurs.

The graph of y = f(x) only is shown Figure 14.45.
Whenx =a,y =5.
(b) (i) Findf~'(x)

(ii) Hence, show thata = In2

(c) The region shaded in Figure 14.45 is rotated through 360° about the
x-axis. Write down an expression for the volume obtained.

. The area of the enclosed region shown in Figure 14.46 is defined by

y=x2+2,y<ax+2 wherea>0

This region is rotated through 360° about the x-axis to form a solid of
revolution. Find, in terms of a, the volume of this solid of revolution.

0.5 1 154

Figure 14.44 Diagram for
question 11

Figure 14.45 Second diagram
for question 11

Figure 14.46 Diagram for
question 12
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P Q
0 x

y=a-x

Figure 14.47 Diagram for
question 18

Figure 14.48 Diagram for
question 19
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. Using the substitution u = %x + 1, or otherwise, find the integral

fxv‘%erldx

A particle moves along a straight line. When it is a distance s from a
g5an7)
o=l

fixed point, where s > 1, the velocity v is given by v =

Find the acceleration when s = 2.

. The area between the graph of y = e* and the x-axis from x = 0 to x = k

(k > 0) is rotated through 360° about the x-axis. In terms of k and e,
find the volume of the solid generated.

k
- Find the real number k > 1 for which [*(1+ -)dx = 3
X

The acceleration, a(f) ms—2

motion is given by

, of a fast train during the first 80 seconds of

1
H=—ot+2
alt) 20

where ¢ is the time in seconds. If the train starts from rest at £ = 0,
find the distance travelled by the train in the first minute.

. In Figure 14.47, PTQ is an arc of the parabola y = a> — x, where ais a

positive constant and PQRS is a rectangle. The area of rectangle PQRS
is equal to the area between the arc PTQ of the parabola and the x-axis.

Find, in terms of a, the dimensions of the rectangle.

, where k € N

Consider the function f(x) = {x ln)z) —kx x>0
B

=0

(a) Find the derivative of f;(x), x > 0.

(b) Find the interval over which f(x) is increasing.

The graph of the function f(x) is shown in Figure 14.48.

(c) (i) Show that the stationary point of f,(x) is at x = ek,

(ii) One x-intercept is at (0, 0). Find the coordinates of the other
Xx-intercept.

(d) Find the area enclosed by the curve and the x-axis.
(e) Find the equation of the tangent to the curve at A.

(f) Show that the area of the triangular region created by the tangent
and the coordinate axes is twice the area enclosed by the curve and
the x-axis.

(g) Show that the x-intercepts of f,(x) for consecutive values of k form a
geometric sequence.



20.

2

=

22.

23.

Consider the graphs of the functions f(x) = a — |x — a| and
g(x) = |x — al, where a > 0. Find the value of a if the two graphs
enclose an area of 12.5 square units.

. The equation of motion of a particle with mass  subjected to a

force kx can be written as kx = mvil—‘::, where x is the displacement and

v is the velocity. When x = 0, v = v,. Find v, in terms of v;, k, and m,
when x = 2.

(a) Sketch and label the graphs of fix) = e ~**and gix) = e " — 1 for
0 =< x =< 1, and shade the region A that is bounded by the graphs
and the y-axis.

(b) Let the x-coordinate of the point of intersection of the curves
y = f(x) and y = g(x) be p. Without finding the value of p,
show that% < area of region A < p.

(c) Find the value of p correct to 4 decimal places.

(d) Express the area of region A as a definite integral and calculate its value.

Let f(x) = x cos 3x
(a) Use integration by parts to show that
[f@dx= §xsin3x 4 %cossx ih

(b) Use your answer to part (a) to calculate the exact area enclosed by
f(x) and the x-axis in each of the following cases. Give your answers
in terms of 7.

i) T<x<3T i) 37 < x < 57 i s
(i) FEaSE (ii) TS (iii) e

7m
(c) Given that the above areas are the first three terms of an arithmetic

sequence, find an expression for the total area enclosed by f(x) and
) T 2n+ )7 )
the x-axis for 5 sxs< =% where n € Z. Give your answers

in terms of 7 and 7.

. A particle is moving along a straight line so that f seconds after passing

through a fixed point O on the line, its velocity v(f) m s~ is given by
e

v(t) = tsm(? t).

(a) Find the values of ¢ for which v() = 0, given that 0 < t < 6.

(b) (i) Write down a mathematical expression for the total distance
travelled by the particle in the first six seconds after passing
through O.

(ii) Find this distance.
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25. A particle is projected along a straight-line path. After t seconds,
5 q 2 G 1
its velocity v in metres per second is given by v = ——

Y P 8! Y Py

(a) Find the distance travelled in the first second.

(b) Find an expression for the acceleration at time £.

*

Figure 14.49 shows the shaded region R enclosed by the graph of

y = 2xV1 + x2, the x-axis, and the vertical line x = k.

y=2Vit e 2

&
Find —~
(a) Fin o

(b) Using the substitution u = 1 + x or otherwise, show that

f2xv1+x2dx:§(1+x2)%+c

Figure 14.49 Diagram for
question 26

(c) Given that the area of R equals 1, find the value of k.
27. A particle moves in a straight line with velocity in metres per second,
at time ¢ seconds, given by v(t) = 6t> — 6t, t = 0.
Calculate the total distance travelled by the particle in the first two
seconds of motion.
28. A particle moves in a straight line. Its velocity vms~! after t seconds is
givenby v = e sint.
Find the total distance travelled in the time interval [0, 277].
29. The temperature T °C of an object in a room, after ¢ minutes, satisfies the
differential equation CL—]; = k(T — 22), where k is a constant.
(a) Solve the differential equation showing that T = Ae* + 22, where A
is a constant.
(b) When ¢t = 0, T'= 100, and when t = 15, T = 70.
(i) Use this information to find the values of A and k.
(ii) Hence, find the value of t when T = 40.
30. Consider the function f(x) = S |
x¥+5x+ 4
(a) Sketch the graph of the function, indicating the equations of the
asymptotes, intercepts, and extreme values.

1
(b) Find ](; f(x) dx and express it in the form In k.

(c) Sketch the graph of f(|x|) and hence determine the area of the region
between this graph, the x-axis, and the lines x = —1,and x = 1.
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31. Use the substitution u = x + 2 to find

32. (a) On the same axes, sketch the graphs of the functions, f(x) and g(x),
where

flx)=4— (1 =xPfor—2=x=4
glx)=In(x+3) —2,for 3=x<5
(b) (i) Write down the equation of any vertical asymptotes.
(ii) State the x-intercept and y-intercept of g(x).
(c) Find the values of x for which f(x) = g(x).
(d) Let A be the region where f(x) = g(x) and x = 0.
(i) On your graph, shade the region A.
(ii) Write down an integral that represents the area of A.
(iii) Evaluate this integral.

(e) In the region A, find the maximum vertical distance between

() and g(x).
y__y
33. Consider the tion — =
onsiderthelequation s Eeorrer
dy dx
i _ .0 e =t
(a) Use the substitution x = e to show that f ¥y fx(xz )
. dx
®) Fnd (oo
(c) Hence, find y in terms of 6, if y = V2 when 6= 0
9 (In x)
34. Figure 14.50 shows part of the graph of y = ——, x>0 b2
(a) Find the extreme points of the curve.
(b) The region R is enclosed by the curve, the x-axis, and the line x = e. A

Find the area of the region R.
Figure 14.50 Diagram for

(c) Find the volume of the solid formed when the region R is rotated question 34

through 277 about the x-axis.

35. (a) The functions fand g are defined by:

fo= & +ex,x€IR g =2 e xeR
i) Show that—L =€
@) Sl 4fix) — Zg(X) ez"+3
In3
(ii) Use the substitution u = e* to find f +&
0 4fix) — 2g(x)

4 B T/a
Give your answer in the form —r wherea,be Z*+.
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Integral calculus 1

(b) Let h(x) = nf(x) + g(x) wheren € R,n > 1
(i) By forming a quadratic equation in e%, solve the equation
h(x) = k, where k € R*.
(ii) Hence, or otherwise, show that the equation (x) = k has two
real solutions, provided that k > Vn> — 1 and k € R*.

_&
(c) Lettix)= I
2 2
(i) Show that f'(x) = M forx € R.
[fa]?

(ii) Hence show that £(x) > 0 for x € R.
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Answers

43.

&

@ f0 =577 +1
44. See Worked Solutions
45.

46.

s

(a) See Worked Solutions
(b) b=-—
{5

- k
zk
. (a) 5@\x2 + 4 + 5(2 — x) minutes
(b) See Worked Solutions
© (@) x=1
(i) 30 minutes
(iii) % > 0 for x = 1, therefore it's a minimum

47. (a) bod

® k=2
4

3

72 8
49. —Carccos ies cm

Chapter 14
Exercise 14.1
1.(a)x72+2x+c b)) -2 +t+c

s g
©% 7+c (d)%+%—3t+c

5
(e)%—uu-c

(f)‘*"T—sﬁn

(g) —3cosf+4sinf+c  (h) £+ 2cost+ ¢
42VE _ 100E

B —g=—=g=te (j) 3sinf—2tanf + ¢
(O] éc”" +c ) 2t +c
(m)éln(S 45+ (n) e+ ¢
L N
6
VR
2. (a) —%-in-#:x-%—k

®) ——+ +—+zx—ﬁ
(c) T+Sint+tt+k
(d) 3x¢ —4x2 +7x + 3
(¢) 2sinf + %cnslﬂ +e

Gx2 +7)° 1

3@ X (3 J— E—

® "5 < L 1BG2+57

8/(5x* + 2 @ux +3)°
(c) e T (d) e +c

fer =77 [

¥ _xt 3

(& = ¢ ® —F
© _w +e
() —3Inlcos20— 1 +3) + ¢
@) étzn(SH -2 +¢ G) Lein(mx+3) + ¢

® %sccll te

(e +c

984

@ 2an0 + ¢

(b)y:—%x+L;+ln7

A 23 1

_ LG+ ling
4@~ G5 te b) tune e
(©) —cosVE+c ) ﬁtzn“zt +e
(e) 2In(T +2) + ¢ ) %scézt tc

(@ %ln(x’ ex+7+c

; 5
[ LA e e PP S, oy
2a* 21a®

[6) %(39(2 —x—2VE=T+c
() —Lcotmt +c

JE—

®) —%m FcosO + ¢

2 (15p_3p— T=F
) 105(15: 3 -4t -8l —t+c
() £Gr + 2= 193 =T+

() %ln(e"’ Fe )4

Exercise 14.2
1 (a) —%e”"+ ¢
(b) —e*(x*+2x+2)+¢
2 . 1 .
(€ gxcosdy — -sindx + 3 sindx + ¢
(@ L (2cosax — ax* cos ax + 2axsinax) + ¢
(&) sinx(ln(sinx) — 1) + ¢
) %;?(ln;,‘ “+e
(2 lx‘lnx —lx* te
(h) 2¢* + KPe* — 2xer — %x’*—c
(@) ﬁ(msmc + mxsinmx) + ¢
iy 2 3y 2eng
() Jycos2te’ + eisin2e + ¢
(k) {1-x* + xarcsinx + ¢
» e"(x’ 3 46x—6)+c
() e cos2x + sin2) + ¢
(@) 2x(sin(in )~ costin ) + ¢
(0) %x(sin(ln %) + cos(n ) + ¢
(9) Inx+ 1) = 2x + xIn(x> + %) + ¢
e (ksinx — cosy)
i
@ %71 ¢
(®) In(cosy) + xtanx + ¢
(s) %sinx - ésin 3x+c
o) %arctanx(l ) - %x e

() 2%(nx —2) + ¢
2. Verification: First column represents u in “repeated by
parts” and second column represents v.



w

. (a) —x'cosx + 4xsinx + 12x%cos x — 24x sinx
— 24cosx + ¢
(b) xsinx + 5x*cosx — 20xsinx — 60x*cos x
+ 120xsinx + 120 cosx + ¢
(0) exlxt — 4x° + 12x% — 24x + 24) + ¢
No pattern in the second column
Use repeated “by parts” with u = x* and dv = evdx
“By parts” with u = In x
Repeated “by parts” to find the unknown integral
Repeated “by parts” to find the unknown integral

PNAAM

Exercise 14.3
cosst cos’t

L) SGE -G
e =5 1 +
() mcosst cos2t+
sin*30
=0
© =5

(@ %5053% - %cnsS% + %cos7% i
(€) secx +cosx + ¢

1 6
= +
(f) Jgtantax+c
(8 i(ﬁitaﬂ‘ﬂz + 2tan® %) + ¢
2secT _ 2secE
5 3
(6] Tls(tanlst — 3tan5t + 150 + ¢
() tant —sect+c
(K) csct = cott+ ¢
() —In(1 —sind +c
(m) —2x — 3In(sinx + cos ) + ¢
(n) arctan(secf) + ¢
(0) Jrctan? + ¢
(p) Inlarctan| + ¢

(q) arcsin(inx) + ¢
—cosx,

(sin?x +2) + cor S2X — cosx + ¢

(s) —(cos X(COSE — 101608%) + ¢

ﬂ(z;.m& +4)+ cor?| °°‘3”‘ - cosf) +e

““(%“‘(cosi(sin D42 +c

e
or sin(sinz) — SEEIY o
() In(sin®) + 2 sin6 + ¢

tsect — Inlsect + tantl + ¢
(b) ~In@ — sin®) + ¢

© %ln(cos(e’z")) T

(d) 2 Inlsec ¥ + tan & + ¢

»
O

1
—1 L,
(© Ftanx+ ¢

® é(arcsin 3x+ 30T —9%) + ¢
(9 —=—+¢
8 4lx2+4

(h) 21In(t + 2 +4) + l,\\m e

) —arctzn( )+c

"

4.

o 1 e d O
= =x) +
G 23rcs:n(3x) ¢
1, |V4 + 9x2 + 34
(9 Lot

M) In(Vsin® + 1 + sinx) + ¢

(m)—F—x7 +c

@) 3t +16) + ¢

(s) l(sin"e"+e“¢l+e‘ +c
(t) ln( cx+%\‘e1‘+9)
(u) 27%(Inx — 2) + ¢
8, x

— + —4x+
() 12l +2) + 2+ T —dx ke
Vx2+9)

3

%ln(x’ +9) + cix = 3 tanfyields ln(
+ ¢;; they differ by a constant

x-3 zman(%‘) + ¢5x = 3 tanf yields 3(tan6 — 6)
+o= 3(7 — arctanX ) +

Exercise 14.4
1.

() 24 (®) 40 © % @0
@8 o © 2
) —zss o) % G) 2
® ln(?) ) % -8 (m)3
() o7+ 1
© @ 6 G)e G 12
® 1 (@) 4 @0 © 3

z ™ x
() . () 3 (s

14917 + 2 |
@ W72y L © 1)
@) 162 ~565 (&) V14 — {10 () %

203 1 T
® ’73/2( 27 E) &
. 15 — 7

o ~n(2) o) —arctan( 2T

2 ™
3 m o (m) —4 ) & ( @)

= (3 - 33 arctan( -

(0) éamzn(?) (p) 1782
@! w5t
() 1+& ® st(l) +2
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Answers

12-403
7

3 @ % ® 2 © 5. Yes
s
@ 6@ %ln(3k+2) o k=2e : i)
6ln3 7. Substitute u = 1 — x
4. () ¥ (b) -Snx (©) —zx‘“‘" 8. (a) —(1 — )m( 1o, x— 1)
sinx? COS[ @ ; k1 k2
i
@ 20 © 5 ® 1
k+ Dk +2) —
(8) —csch — sec (h) J(EMX;) 9. (a) 0; (b) © =
ax 10. f) = 0.
Exercise 14.5
1 (@) fﬂ jfdx+j’ildx:31n:x+z\+zln\x—1| +ec
x
®) JEE 0= =3lnlx - 2| - 21w + ¢
12 ge= =L e+ f=L _dr="Linl+ 31+ L+ 11+ = Linle 4+ ax+ 31+
O e T R e Lt L R L Pkl I +e

5x2+20x + 6 9 1 6 9

it TG i s . T T + G
@ [P e = [ e [t [gde= — Sl b 11 Gtz o

2x2+x—12, _ 2 -
(‘)fmd’f*fx dﬁf”zdx JZdx=1Inlx + 31 + 3Inkx + 2| ~ 2Inix + ¢

4x2 4 2x — _ 1 3. _ 1
0 [P e = [pde = [pdet [Rde=lnle+ 11+ 5 3l +c
1
= dpr=| + -1l +c=
(g)fx2+x_zdx dx fx+zdx Inlx + 2 + Inlx = 1] + ¢ = ln 2|+c
2 3Inl2x - 1]
= - [—= _ +
(h)fhl” Jdx de = [Fgdx 5 2Inlx+ 1] + ¢

® [EL a3

2
dx=3lnlx+2l + —— +¢
G+ 272 x+2

2
x+ 2 ‘[(x+ 27

G) fidx

xt—x3—2x2

6 3 6
dx — R R T
1 J&dr+ [Zde=lnly =20~ alnlx + 11+ 3+ 3nix + ¢

® fﬁdx:f%dx—j’xfildx:zlmm —In( 1) +c

+2 2 dx 2% 2Inix | 3 (ﬁx) In(x® + 3)
D[22 de= [Zdxt [~ - Bx) _ i
O S5 Ins s e 3 3 \3 3 é
x+2 Inixi {6 (V?x) In(x® + 6)
oy 71 d’H'fx2+5d" 13u2+6)d" —

Exercise 14.6 ) (between —Jand ) Bln(%) —23+4

[NORES ® 21 (© 43 ()18 w2 %
@3 © 3 ® 3 ®o w? ® 1
©® 5 ®) 4 o 32 w22 02 Wl
() 465 ) 31n2 - % w22




269

28813
35
22
3
16

3
2536
m=0973
37

12

© ©N o

Exercise 14.7

1277
L@ 2T ®
@ 6m ©
s
®(Z+1)r w
(i) approx.5.9377
WaE-D
) S ©
@32 ®
88
2@ J3m (b)
EORS (®)

6412 7 © 70
15 3
om ® 27
5127
15 3
o 32m
0 =3
237w 16075
210 (m =3
T 1778
kY @) 5=
656 9
d © g7
L
6
2m(18 -9 (9) %w

(d) gﬂ(mvﬁ— 25415)

© Zﬂ(lnz = %)
(8 ?ﬂ(m -7
o r B}
Exercise 14.8
1. @) gﬂm, 65m
© Tmim
(€) 18m,28.67m
2. (@) 3t,6m, 6m

® zn(L;m = %&)
) ﬂ(%ﬁn— o+ z)

256
27 [CR4

(b) 8.5m to the left, 8.5m.

(d 2m,22m.

4 4
) 2mim

(b) 2~ 4t +3,0,267m

©1- cosz,(%"éf 1)m,(37’7 + l)m

(d) 4 - 207F1,243m,291m

3+ ——
o 20+ 2

3. (a) 4962 + 5+ 10
L cosmt
© 7
4. (a) e'+ 19t + 4

(9) sin2) — 3

+%, 11.3m,11.3m

®) 1662 =2t +1
(@ In(t+2) + %
(b) 496 - 3t

@ —cos(2)

13 13

5. (a) 12;20 b) S35
9 11 iy =
© 37 ) 23 - 66203
10 17 204 13
6. @ 55 ®) 25 © =67
166 166 166
7.0 75" o5 @5
8. (a) 50 — 20t (b) 1187.5
9. 1.0041's
10. (a) 55 (b) 2725m (c) 10s
(d) —49ms™'  (e) 12465 (f) —73.08ms!

Chapter 14 practice questions

Lp=3 (b) 3 square units
w2
2. (a) (0,1) () V= ﬁn (e3) dx
() See Worked Solutions
3.a=e
A(a)y:% b) Inx+1-1

4 ’
(© E~e-l—fllnxdx

=

(@) () 400m
(ii) v =100 — 8,60 m/s
(iif) 8s
(iv) 1344m

(b) Distance needed 625

(a) See Worked Solutions

>

*

(b) 231
(c) —mcosx — "7 +¢;0.944

In3
(a) (i) See Worked Solutions

(i) (1.57,0); (1.1,0.55); (0, 0), (2, —1.66)
b) x= ’2—’

e

() () See Worked Solutions
5
w e
:12) fn x2cosxdx
(@ 72~ 04674

9. (a) 27
(b) range: {y|—0.4 <y <04}

(0 () —3sin’x+2sinx (i) ?
x

@z

© @ %sin’x ‘e (i) %

® arccns% ~0.491

10. (@) () See Worked Solutions (i) See Worked
Solutions
(b) See Worked Solutions ~ (c) 3.69672

(@ fn "(m+ xcosdx () 7 — 2~ 7.86960
Ins
3

L) () 10x—1-—eX i) 122~ 0.805
® 6 [ =10 (i) See Worked
Solutions
(© v=mfi( + e92dx

2,542 3)
12. 7(1511 +3a

987



Answers

17. 1800 m
18. 2aby %a’
19. (@) Inx + 1 — k ®) x>1
(0) () See Worked Solutions
(i) (e*,0)
@< @ y=x—c
4

() See Worked Solutions  (g) Common ratio =

y =g

¥ =fx)

0 P 1 x
(b) See Worked Solutions (<) 0.6937

»
@ [ (e = (e ~Didx ~ ~0.467

o

23. (a) See Worked Solutions
o 20 . o 6T
®) @ 5 @) 5 (i) =5
@ 5+
24.(a) t=0,3,0r6
.
®) @) fn |:sm(§)tdz| @) 115m
- 4
25, 0.435 b) ———
© O v
d I
2. @) L=22_ 7=
dx T+

(b) See Worked Solutions ~ (c) k = 0.918.
27. 6m

28. 0.852

29. (a) See Worked Solutions

® 0 A=7sk=1nE @) s

988

30. (a)

710 1 2
—2
—3
—4-
®) lnE (©) area= zlng

2
3L S+ 22+ S e
x+2
32. (a) .
o
o

S
b) () x=23

(i) x—int=¢—3;y—int=In3 -2
(0) —1.343.05

s
(d) (i) fn (4— (1= 02 — (In(x + 3) — 2)dx

(iii) 10.6
(e) 4.63
33. (a) See Worked Solutions
1 27
(b) Inx — sG>+ D +c (o) y=
2 [y



4 1

34. (a) (1,0),(:2, 5) ® 3
35. (a) (i) See Worked Solutions

(i)

L)
2e*t+e ) —(e*—e

) 2solutions = k> (k" — n? ¥ 1
andk?—n2+1>0
() () See Worked Solutions
(if) Use quotient rule f(x) > g(x) and result follows.

Chapter 15

Exercise 15.1

. (a) discrete
(d) discrete
(g) discrete

(b) continuous
() continuous
(h) continuous

(c) continuous
(£) continuous
(i) continuous

(c) T(24e - 65)

(b) 035
030

025
0.20
0.15
0.10

0.05
0.0
2 3 4
17 _ _
© 52 (d) p=12;Var = 1.08
8. (a) P(X = 18) = 02, P(X = 19) = 0.1, Symmetric
distribution.

(b) = 17,SD = 1.095
(a) p=19,5D = 1338
k= 0,667, E(X) = 5.444
11. (a) k=030r0.7

-

(b) between 0 and 5.

3]

() discrete ® (b) for k = 0.3: E(X) = 2.18; for k = 0.7: E(X) = 1.78
(m)discrete 12. (@) [ o123
2. (a) 0.4 1 2 4 8
(b) 0.5 PX=x |1 5|35 |%
0.4 () 2 | |
B.@ k=k ® 3
03 14. (a) See table below. (b) 0.85 (©) 0.15
0 (d) 48.87 (e) 2057 ® 072
[ [4s]a6]47 a8 [a9 5051 ]52]55]54]55]
0.1
|cDE]0.05]0.13[0.25] 0.4 [0.65[0.85] 0.9 [0.94]0.97]0.99] 1 ]
00 15.
O 0. o W 4 & @ JToJ1[2]3]a]s5]6]
(¢) 1.85,1.19 (e) 2.85, 1.19 | coF [ 0.08 [ 023 [ 045 072 [ 092 [0.97 [ 1]
(f) E(2) = E(Y + b) = E(Y) + band (b) 0.72 () 0.97 (d) 2.63 (e) 1.440
V(Y) = V(Y + b) = V(Y) 16. (a) 0.9 (b) 0.09 () 0.009
3. (a) 0.26 (b) 0.37 () 0.77 (d) (i) unacceptable (i) acceptable
() 1629 () 81259 (@) p(x) = (0.11) X 0.9
(F) 4.145;2.031475 17. @) 0 ®) 081 © 0162
(g) E(aX + b) = aE(X) + band V(aX + b) = a’V(X) (d) (i) either (ii) acceptable
4. (a) 0.969 (b) 0.163 () 35 (e) (x—1)(0.152) X 0.9%, x> 1.
(d) Y(x— 352+ Px) = 1.048 = o = {T.048 ~ 1.02 e
(e) Empirical: 0.68, 0.95; approximately 0.68, N 1
approximately 0.90 9@ ® 5 ) g1
1 ) - 575
5.k 73 575
® O &g () 329
(&) (i) See Worked Solutions
@) [y 12345 s
1 37 19 1| 15 | 65 | 175 | 369 | 671
-1 37 19 CDF | L |15 | 65 | 175 | 369 | 671
8:8) k=g ® © 3 1296 | 1296 | 1296 | 1296 | 1296 | 1296
(d) E(X) = 16,SD=7 i) 6797
© (i) 1296
= ) 20.93
(e) E(Y) %
7. (@) % Exercise 15.2

1. @
[ [o v T2l s a5 |
[P(x = ) [0.01024] 0.0768 | 02304 [ 0.3456 | 0.2592 [0.07776]
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