A ray of light coming from the point (-1, 3, 2) is travelling in the direction of vector 1 and 1. -2

meets the plane π : x + 3y + 2z - 24 = 0.

Find the angle that the ray of light makes with the plane.

- Find the angle between the lines $\frac{x-1}{2} = 1 y = 2z$ and x = y = 3z. 2.
- 3. Consider the planes defined by the equations x + y + 2z = 2, 2x - y + 3z = 2 and 5x - y + az = 5 where *a* is a real number.
 - If a = 4 find the coordinates of the point of intersection of the three planes. (a)
 - Find the value of *a* for which the planes do not meet at a unique point. (b) (i)
 - (ii) For this value of a show that the three planes do not have any common point.

(6) (Total 8 marks)

4. Two lines are defined by

$$l_1: \mathbf{r} = \begin{pmatrix} -3 \\ -4 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} \text{ and } l_2: \frac{x-4}{-3} = \frac{y+7}{4} = -(z+3).$$

Find the coordinates of the point A on l_1 and the point B on l_2 such that \overrightarrow{AB} is (a) perpendicular to both l_1 and l_2 .

(13)

- Find | AB |. (b)
- Find the Cartesian equation of the plane Π that contains l_1 and does not intersect l_2 . (c)

(3) (Total 19 marks)

(Total 6 marks)

(Total 6 marks)

(2)

- 5. The points A, B, C have position vectors i + j + 2k, i + 2j + 3k, 3i + k respectively and lie in the plane π .
 - (a) Find
 - (i) the area of the triangle ABC;
 - (ii) the shortest distance from C to the line AB;
 - (iii) the cartesian equation of the plane π .

The line L passes through the origin and is normal to the plane π , it intersects π at the point D.

- (b) Find
 - (i) the coordinates of the point D;
 - (ii) the distance of π from the origin.

(6) (Total 20 marks)

(14)

- 6. Consider the points A(1, -1, 4), B(2, -2, 5) and O(0, 0, 0).
 - (a) Calculate the cosine of the angle between \overrightarrow{OA} and \overrightarrow{AB} . (5)
 - (b) Find a vector equation of the line L_1 which passes through A and B.

The line L_2 has equation $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k} + t(2\mathbf{i} + \mathbf{j} + 3\mathbf{k})$, where $t \in \mathbb{R}$.

- (c) Show that the lines L₁ and L₂ intersect and find the coordinates of their point of intersection.
 (7)
- (d) Find the Cartesian equation of the plane that contains both the line L_2 and the point A.

(6) (Total 20 marks)

(2)

7. Find the vector equation of the line of intersection of the three planes represented by the following system of equations.

$$2x - 7y + 5z = 1$$

$$6x + 3y - z = -1$$

$$-14x - 23y + 13z = 5$$

(Total 6 marks)

8. (a) Write the vector equations of the following lines in parametric form.

$$\boldsymbol{r}_{1} = \begin{pmatrix} 3\\2\\7 \end{pmatrix} + m \begin{pmatrix} 2\\-1\\2 \end{pmatrix}$$
$$\boldsymbol{r}_{2} = \begin{pmatrix} 1\\4\\2 \end{pmatrix} + n \begin{pmatrix} 4\\-1\\1 \end{pmatrix}$$
(2)

(b) Hence show that these two lines intersect and find the point of intersection, A.

(5)

(c) Find the Cartesian equation of the plane Π that contains these two lines.

(4)

(d) Let B be the point of intersection of the plane
$$\Pi$$
 and the line $\mathbf{r} = \begin{pmatrix} -8 \\ -3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 8 \\ 2 \end{pmatrix}$.
Find the coordinates of B. (4)

(e) If C is the mid-point of AB, find the vector equation of the line perpendicular to the plane Π and passing through C.

(3) (Total 18 marks)