1. Consider the plane with equation 4x - 2y - z = 1 and the line given by the parametric equations

$$x = 3 - 2\lambda$$

$$y = (2k - 1) + \lambda$$

$$z = -1 + k\lambda.$$

Given that the line is perpendicular to the plane, find

- (a) the value of k; (4)
- (b) the coordinates of the point of intersection of the line and the plane.

(4) (Total 8 marks)

2. The points A(1, 2, 1), B(-3, 1, 4), C(5, -1, 2) and D(5, 3, 7) are the vertices of a tetrahedron.

(a)	Find the vectors \overrightarrow{AB} and \overrightarrow{AC} .	(2)
(b)	Find the Cartesian equation of the plane Π that contains the face ABC.	(4)
(c)	Find the vector equation of the line that passes through D and is perpendicular to Π . Hence, or otherwise, calculate the shortest distance to D from Π .	(5)
(d)	(i) Calculate the area of the triangle ABC.(ii) Calculate the volume of the tetrahedron ABCD.	(4)
(e)	Determine which of the vertices B or D is closer to its opposite face.	(4)

(4) (Total 19 marks) **3.** The equations of three planes, are given by

$$ax + 2y + z = 3$$

 $-x + (a + 1)y + 3z = 1$
 $-2x + y + (a + 2)z = k$

where $a \in \mathbb{R}$.

(a) Given that a = 0, show that the three planes intersect at a point.

(3)

(b) Find the value of *a* such that the three planes do **not** meet at a point.

(5)

(c) Given a such that the three planes do **not** meet at a point, find the value of k such that the planes meet in one line and find an equation of this line in the form

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} l \\ m \\ n \end{pmatrix}.$$

(6) (Total 14 marks)

- 4. The points P(-1, 2, -3), Q(-2, 1, 0), R(0, 5, 1) and S form a parallelogram, where S is diagonally opposite Q.
 - (a) Find the coordinates of S.

(2)

(b) The vector product
$$\overrightarrow{PQ} \times \overrightarrow{PS} = \begin{pmatrix} -13\\ 7\\ m \end{pmatrix}$$
. Find the value of *m*. (2)

- (c) Hence calculate the area of parallelogram PQRS.
- (d) Find the Cartesian equation of the plane, Π_1 , containing the parallelogram PQRS.

(3)

(2)

- (e) Write down the vector equation of the line through the origin (0, 0, 0) that is perpendicular to the plane Π_1 .
- (f) Hence find the point on the plane that is closest to the origin.
- (g) A second plane, Π_2 , has equation x 2y + z = 3. Calculate the angle between the two planes.
- **5.** (a) Show that the two planes

are perpendicular.

(b) Find the equation of the plane π_3 that passes through the origin and is perpendicular to both π_1 and π_2 .

2x - 2y - z = 3

 $\pi_1 : x + 2y - z = 1$ $\pi_2 : x + z = -2$

6. The three planes

4x + 5y - 2z = -33x + 4y - 3z = -7intersect at the point with coordinates (*a*, *b*, *c*).

- (a) Find the value of each of *a*, *b* and *c*.
- (b) The equations of three other planes are
 - 2x 4y 3z = 4-x + 3y + 5z = -23x - 5y - z = 6.

Find a vector equation of the line of intersection of these three planes.

(4) (Total 6 marks)

(4) (Total 7 marks)

(2)

(4) (Total 17 marks)

(3)

(1)

(3)

7. (a) Show that a Cartesian equation of the line, l_1 , containing points A(1, -1, 2) and B(3, 0, 3) has the form $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$. (2)

(b) An equation of a second line, l_2 , has the form $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$. Show that the lines l_1 and l_2 intersect, and find the coordinates of their point of intersection. (5)

- (c) Given that direction vectors of l_1 and l_2 are d_1 and d_2 respectively, determine $d_1 \times d_2$.
- (d) Show that a Cartesian equation of the plane, Π , that contains l_1 and l_2 is -x y + 3z = 6. (3)
- (e) Find a vector equation of the line l_3 which is perpendicular to the plane Π and passes through the point T(3, 1, -4).
- (f) (i) Find the point of intersection of the line l_3 and the plane Π .
 - (ii) Find the coordinates of T', the reflection of the point T in the plane Π .
 - (iii) Hence find the magnitude of the vector $\overline{TT'}$.

(7) (Total 22 marks)

(3)

(2)