1. The line *L* is given by the parametric equations $x = 1 - \lambda$, $y = 2 - 3\lambda$, z = 2. Find the coordinates of the point on *L* that is nearest to the origin.

(Total 6 marks)

2. (a) Show that the following system of equations will have a unique solution when $a \neq -1$.

$$x + 3y - z = 0$$

$$3x + 5y - z = 0$$

$$x - 5y + (2 - a)z = 9 - a^{2}$$
(5)

- (b) State the solution in terms of *a*.
- (c) Hence, solve

x + 3y - z = 0 3x + 5y - z = 0x - 5y + z = 8

> (2) (Total 13 marks)

(6)

- **3.** Consider the points A(1, 2, 1), B(0, -1, 2), C(1, 0, 2) and D(2, -1, -6).
 - (a) Find the vectors \overrightarrow{AB} and \overrightarrow{BC} .
 - (b) Calculate $\overrightarrow{AB} \times \overrightarrow{BC}$. (2)
 - (c) Hence, or otherwise find the area of triangle ABC.
 - (d) Find the Cartesian equation of the plane *P* containing the points A, B and C.

(3)

(3)

(2)

point D and perpendicular to (3)	Find a set of parametric equations for the line <i>L</i> through the point the plane <i>P</i> .	(e)
P. (4)	Find the point of intersection E, of the line <i>L</i> and the plane <i>P</i> .	(f)
(2)	Find the distance from the point D to the plane <i>P</i> .	(g)
(2)	Find a unit vector that is perpendicular to the plane <i>P</i> .	(h)
dinates of F. (4) (Total 25 marks)	The point F is a reflection of D in the plane <i>P</i> . Find the coordina	(i)
$\frac{z-4}{2}$ intersect and find the (8)	Show that lines $\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$ and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$ coordinates of P, the point of intersection.	(a)

- (b) Find the Cartesian equation of the plane Π that contains the two lines.
- (c) The point Q(3, 4, 3) lies on Π . The line *L* passes through the midpoint of [PQ]. Point S is on *L* such that $|\overrightarrow{PS}| = |\overrightarrow{QS}| = 3$, and the triangle PQS is normal to the plane Π . Given that there are two possible positions for S, find their coordinates.

(15) (Total 29 marks)

(6)

4.